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Abstract

To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation,
which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between
compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network,
we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the
random walker therefore gives us the best hierarchical clustering of the network — the optimal number of levels and
modular partition at each level — with respect to the dynamics on the network. With a novel search algorithm, we extract
and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global
air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more
than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and
social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural
networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.
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Introduction

Ever since Aristotle, organization and classification have been

cornerstones of science. In network science [1,2], categorization of

nodes into modules with community-detection algorithms has

proven indispensable to comprehending the structure of large

integrated systems [3–5]. But in real-world networks, the

organization rarely is limited to two levels, and modular

descriptions can only provide cross sections of much richer

structures. For example, both biological and social systems are

often characterized by hierarchical organization with submodules

in modules over multiple scales [6–10].

Several network clustering algorithms generate hierarchical

trees, but few make more than a single cut through the

dendrogram. To extract multiple levels of the network structure

[9–12], the common approach is to first generate a dendrogram or

group nodes with one method and then determine the multiple

cuts or the resolution thresholds with a different method.

Moreover, these methods approach the problem of community

detection by inferring a model of an underlying generative process

that created the network. That is, they view the real network

structure as a realization of a probabilistic process that creates links

between groups of nodes and try to identify the most likely

underlying grouping. While this may be the appropriate strategy

when one is fundamentally interested in the modular nature of the

dynamics by which a given network was formed, it may not be

optimal when one is more interested in understanding the

subsequent dynamics or behavior that occur on the real network

[13].

In many real-world networks, directed and weighted links

represent the constraints that the structure of a network places on

dynamical processes taking place on this network. Networks thus

often represent literal or metaphorical flows: people surfing the

web, passengers traveling between airports, ideas spreading

between scientists, funds passing between banks, and so on. This

flow through a system makes its components interdependent to

varying extents. The objective of our hierarchical clustering

approach, therefore, is to reveal the multiple levels of interdepen-

dences between the nodes of a network with a single method. That

is, a method that does not require multiple external resolution

parameters, but rather inherently reveals the natural multiple

levels of the system.

In this paper, we generalize the flow-based and information

theoretic clustering method called the map equation [14,15] to

uncover important multilevel structures and their relationships in

networks. This generalization yields the hierarchical map equation,

which provides a natural answer to three questions: Into how

many hierarchical levels is a given network organized? How many

modules are present at each level? And which nodes are members

of which modules? Here we focus on hard partitions and flow of

random walkers; we postpone the natural extension of this

approach to overlapping partitions and generalized flows to a
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subsequent paper. We begin by briefly reviewing the map

equation, and then introduce the hierarchical map equation, of

which our earlier two-level map equation [14,15] can be seen as a

special case. We then illustrate the mechanics of the hierarchical

map equation, and extract and depict the hierarchical structure of

several large-scale networks. Finally, in the Materials and Methods

section, we provide a detailed description and a performance test

of our novel recursive search algorithm.

Results and Discussion

The two-level map equation
We have recently introduced the map equation to simplify and

highlight important structures with respect to the dynamics on

networks. This approach uses a random walk as a proxy for the

real flow [14,15], and exploits the duality between compressing a

message and finding patterns in the structure that generates that

message [16,17]. To find the regularities that induce the dynamics

on networks, the map equation measures, for a given network

partition, the per-step average description length of a random

walker moving along the (weighted and directed) links between the

nodes of a network. By minimizing the map equation over all

possible network partitions, we can reveal the structures that

generate the flow on the network.

The map equation is designed to capitalize on the modular

structure of a network; the description length of the dynamics on

the network can be compressed if the network has localized

regions in which small groups of nodes have long persistence times.

Compression is achieved by using multiple module codebooks with

reused short codewords for different nodes in the network. To

make the compressed description unambiguous, an index

codebook distinguishes which module codebook is active.

Specifically, for a module partition M of n nodes a~1,2, . . . ,n
into m modules i~1,2, . . . ,m, the lower bound on the code length

L(M) is the sum of the average length of codewords for each

codebook weighted by the rate of use of each codebook. Shannon’s

source coding theorem [18] states that, when we use n codewords

to describe the n states of a random variable X that occur with

frequencies pi, the average length of a codeword can be no less

than the entropy of the random variable X itself:

H(X )~{
Pn

1 pi log(pi) (we measure code lengths in bits and

take the logarithm in base 2). This gives us the map equation:

L(M)~q H(Q)z
Xm

i~1

pi H(Pi): ð1Þ

H(Q) is the frequency-weighted average length of codewords in

the index codebook, and H(Pi) is the frequency-weighted average

length of codewords in module codebook i. Further, the entropy

terms are weighted by the rate at which the codebooks are used.

With qi for the probability of exiting (and entering) module i, the

index codebook is used at a rate q ~
Pm

i~1 qi , which is the

probability that the random walker switches modules on any given

step. With pa for the probability of visiting node a, module

codebook i is used at a rate pi ~
P

a[i pazqi , the fraction of

time the random walker spends in module i plus the probability

that she exits the module and the exit message is used. We have

provided an interactive and dynamic visualization of the

mechanics of the map equation here: www.mapequation.org.

Figure 1A illustrates the partitioning obtained by using the two-

level map equation. The 27-node example network is partitioned

into nine modules, and the description length is theoretically 3.57

bits. For comparison, a single-module description of the network

(one module codebook and no index codebook) has a lower bound

of 4.75 bits.

When driven by a strong search algorithm, the map equation

provides an efficient tool for revealing the modular structure of

networks [19]. But many networks have important structures at

multiple scales [3], and the code structure of the two-level map

equation cannot capitalize on these. For example, the network

in Fig. 1A is hierarchically organized with submodules within

modules, but the two-level map equation cannot simultaneously

capitalize on both the module and submodule levels of structure.

It minimizes code length by partitioning at the submodule level,

revealing nine modules as shown in Fig. 1A. Additional

potential for compression from the module level structure goes

untapped, and thus additional structure at the module level goes

unreported.

The hierarchical map equation
To reveal pattern at multiple levels, we must generalize the

coding structure upon which the two-level map equation is based.

Figure 1B shows a hierarchical description of the network with not

one but two index codebooks, one for each level of hierarchy. With

this code structure, the description length can be reduced from the

3.57 bits required by the two-level map equation to 3.48 bits,

because the average description length to determine which of the

nine module codebooks is active has been reduced by 0.09 bits per

step. The extra codebook makes it possible to exploit the fact that

the fine-level modules are themselves organized into larger

modules: once a random walker enters one of the three larger

modules, she tends to stay there for a long time.

Broadly, in the hierarchical map equation we release the

constraint of a single index codebook and allow for an arbitrary

number of hierarchically nested index codebooks that specify

movements between modules, submodules, subsubmodules, and so

on, down to the finest modular level. Formally, for a hierarchical

map M of n nodes partitioned into m modules, for which each

module i has a submap Mi with mi submodules, for which each

submodule ij has a submap Mij with mij submodules, and so on,

the hierarchical map equation takes the form

L(M)~q H(Q)z
Xm

i~1

L(Mi), ð2Þ

with the description length of submap Mi at intermediate levels

given by

L(Mi)~qi H(Qi)z
Xmi

j~1

L(Mij) ð3Þ

and at the finest modular level by

L(Mij...k)~p
ij...k

H(Pij...k): ð4Þ

At each submodule level, qi is the rate of codeword use for

entering the mi submodules or exiting to a coarser level and H(Qi)
is the frequency-weighted average length of the codewords in the

subindex codebook. At the finest level, p
ij...k

is the rate of

codeword use for visiting nodes in submodules ij . . . k or exiting to

a coarser level and H(Pij...k) is the frequency weighted average

length of the codewords in the submodule codebook. To find the

hierarchical structure that best represents the structure with
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respect to flow, we seek the hierarchical partition of the network

that minimizes the hierarchical map equation over all possible

hierarchical partitions of the network (see Materials and Methods

for a detailed description and a performance test of the algorithm).

Figure 1B illustrates the optimal hierarchical partition and the

corresponding code structure for the example network.

Multilevel organization in real-world networks
The hierarchical map equation can reveal rich multilevel

organization in real-world networks. Figures 2A–C provide

thumbnail illustrations of the hierarchical structure of the journal

citation network of science [20], the global air traffic network [21],

and the human disease network [22]. For comparison, Figures 2D–

F show the structure of each network as characterized by the two-

level map equation.

The journal citation network traces more than nine million

citations among nearly 8,000 journals in the sciences and social

sciences. From the pattern of citations, we reveal more than 100

scientific fields organized in four major disciplines: life sciences,

physical sciences, ecology and earth sciences, and social sciences.

The physical sciences are in turn organized into physics and

chemistry, with 35 subfields, and mathematics, with 24 subfields

(see Fig. 3).

In the global air traffic network, two cities are considered

connected if a regularly scheduled commercial passenger flight

travels between them. From the network of 3,883 cities connected

by 14,142 links, the algorithm uncovers an overall organization of

cities grouped in countries and countries grouped in continents.

For example, the largest module comprises European and African

cities arranged into 55 submodules; the second largest module

Figure 1. Minimizing the map equation over all network partitions gives an optimal clustering of the network with respect to the
dynamics on the network. Optimal two-level clustering is shown in A and hierarchical clustering is shown in B. The description length, which is
4.75 bits for an unpartitioned network, is the sum of the average length of codewords from the index codebook(s) and the module codebooks
weighted by the rate of use of each codebook. For this undirected unweighted network with total degree 78, all rates can be calculated by counting

links and normalizing: The codewords of the index codebook in A are used at relative rates Q~
3
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doi:10.1371/journal.pone.0018209.g001
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comprises North and South American cities organized into 75

submodules. These submodules represent the Eastern US cities,

the Western US cities, Mexican cities, and so on.

For the familiar networks of science and global air traffic, the

organization revealed by the hierarchical map equation is intuitive

and anticipated. But for the human disease network that connects

diseases if they share common genes [22], the outcome is quite

different. In the hierarchical partition of this network, the

submodules contain class-related diseases, but only the largest

module, which groups different cancers together, is compatible

with any natural classification of diseases. We interpret this as an

effect of missing data and a bias toward studies on oncogenes and

other genes associated with cancer.

Beyond these three examples, many real-world networks have

rich hierarchical structures. To illustrate, we have used the

generalized map equation to partition twelve networks, ranging

in size from hundreds to millions of nodes. In Table 1, these

networks are listed in descending order according to the

magnitude of the compression gained by using a multilevel

partitioning instead of a two-level partitioning. In general, we find

shallow hierarchical structures in globally interconnected systems

and rich multilevel organizations in systems with highly separated

regions.

The network with the highest compression gain — i.e., the

network with the greatest degree of nested hierarchical structure

— is the California road network. The geographical constraints of

the road network prevent shortcuts between different and remote

parts of the network. As a result, the organization is distinct down

to the very many small bottom modules. The web graphs have the

next greatest compression gain. They are as deep as the road

network, but without physical constraints, different parts of the

web are presumably more interconnected. The lowest-level are on

average larger, and the flow between different large-scale regions

reduces the compression gain.

In the other extreme in Table 1 are the C. Elegans brain network

[23] and the weighted and directed network of US air travel

passengers [24], which were best compressed by two-level

descriptions. The many links between different regions at a global

scale of these networks maintain high connectivity and short

distances, and prevent further gain from a multilevel description.

For the same reason, the dual road network of Stockholm, with

roads as nodes and intersections as edges, has a less pronounced

multilevel structure than the road network of California, with

intersections as nodes and roads as links, and the different

representations overshadow differences in the actual road layouts.

For example, a main road that intersects with many streets in

Figure 2. Multilevel organization in three real-world networks. The bottom row illustrates structures that a two-level clustering can capture.
The width of the horizontal lines represents the size of the modules and the number to the left of the braces gives the number of submodules within
each module. For visual simplicity, we exclude submodules with less than 1 per mil of all flow. See Fig. 3 for a hierarchical map of science based on
the journal citation network.
doi:10.1371/journal.pone.0018209.g002
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several suburbs forms a hub that connects suburban streets in the

dual representation. Therefore, the gain from a deep multilevel

description is lost in the dual representation, which suppresses

distances and makes the network more interconnected. When

comparing the hierarchical depth between the road network of

California and the dual road network of Stockholm, the range of

the networks also plays an important role. Both networks represent

streets in neighborhoods in suburbs, but the road network of

California also includes the additional level of multiple cities. In

this way, and because the number of nodes in a network quickly

grows for every additional level of nested modules, there is a

general trend that the hierarchical depth increases with network

size in Table 1.

Figure 2 and Table 1 summarize the extent of hierarchical

structure found in several large networks, but they provide no

information about the relationships among the modules at any given

level. To comprehend the dynamics of a system, we must capture

both its hierarchical structure and the connections among modules

at all levels of structure. Because the hierarchical map equation

naturally balances the persistence times in modules and the flow

between modules when it exploits the regularities in patterns of

movement on a network, both are intrinsic to our approach. In

Fig. 3, we illustrate the relationships among modules in a

hierarchical map of science. The multilevel map highlights and

simplifies the citation flow between the major disciplines. At the

same time, it summarizes the flows between fields that integrate

those fields into larger disciplinary areas; for example, the arrows

indicate the flows among the fields composing the social sciences. If

a researcher would make a random walk in the scholarly literature

by reading a paper and following a random citation to a new paper,

she would spend 54 percent of her time reading journals in the life

Table 1. The hierarchical organization of real-world networks.

Network n l m (.
n

100
) SdT SsbT DC

California roads [30] 2.0M 5.5M 0.45M (0) 4.8 6.3 36%

Google webd [30] 0.74M 5.1M 73k (34) 4.5 0.67k 16%

Stanford webd [30] 0.28M 2.3M 35k (41) 4.9 0.20k 15%

Call graphwd [31] 2.5k 7.2k 0.91k (53) 4.7 8.3 8.0%

Coauthorshipsw [31] 0.55k 1.3k 94 (55) 3.3 9.5 5.7%

Human diseasesw [22] 1.3k 1.5k 0.62k (23) 2.5 5.4 4.5%

Global air traffic [21] 3.9k 14k 0.53k (27) 3.0 46 2.3%

Stockholm roads* [32] 11k 23k 1.0k (19) 3.1 16 1.7%

Journal citationswd [20] 7.9k 1.1M 0.21k (32) 3.3 0.16k 1.6%

Political blogswd [31] 1.1k 13k 0.28k (13) 2.8 75 0.0%

US airportswd [24] 0.50k 18k 14 (9) 2.0 0.14k 0.0%

C. Elegans brainwd [23] 0.30k 2.3k 22 (18) 2.0 35 0.0%

wWeighted links.
dDirected links.
*Dual representation with roads as nodes and intersections as edges.
For each multi-level classification of a network with n nodes and l links, we
report the total number of modules m together with the number of modules
with more than one percent of all nodes, the per-node average depth SdT, the
per-node average size of the lowest-level module SsbT, and the compression
gain over a two-level clustering DC. The 12 networks are ordered by the
compression gain, which provides information about how hierarchical the
organization is.
doi:10.1371/journal.pone.0018209.t001

Figure 3. A hierarchical map of science. We partitioned 7,940 journals connected by 9.2 million citations [20] into four major disciplines, which we
identified as life sciences, physical sciences, ecology and earth sciences, and social sciences. In physical sciences, we followed a second-level split into the
areas of mathematics and of physics and chemistry. The size of the modules represents the fraction of time that a random surfer spends following
citations in that field, and the arrows indicate flow volume between the fields. For visual simplicity, we exclude fields and arrows with low flow.
doi:10.1371/journal.pone.0018209.g003
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sciences, 33 percent in the physical sciences, 8 percent in the ecology

and earth sciences, and 4 percent in the social sciences. The

disciplines are well defined with long persistence times; only around

one percent of the time would she follow a citation across discipline

boundaries, the traversal from the physical sciences to the life

sciences being the most common of these.

Using the fundamental mathematics of information theory to

exploit the duality between compression and pattern detection, we

have shown how to reveal the multilevel organization of networks.

Combined with powerful visualizations, the hierarchical map

equation provides a useful tool to comprehend the hierarchical

organization of large multiscale social and biological systems. Here

we have focused on hard partitions and the flow of random

walkers, but in a subsequent paper we will demonstrate the natural

extension of the map equation to overlapping partitions and

generalized flows. In short, we can capitalize on overlapping

structures by modifying the code structure and releasing the

constraint that a node can only belong to one module codebook.

Because the codelength only depends on the rates of node visits

and module transitions, the map equation framework is agnostic to

the origin of the flow. Therefore, we can comprehend the

organization in real systems for which a random walker is not a

good proxy for flow through the system, by using a different model

of flow or by directly measuring the real flow.

Materials and Methods

Here we provide a detailed description of the mathematics of

the hierarchical map equation and outline the stochastic and

recursive algorithm we have developed to search for the

hierarchical partition of a network that minimizes the hierarchical

map equation. We also describe how we quantify the performance

of our method with the relative mutual information of module and

submodule assignments between the benchmark networks and the

hierarchical clustering generated by the algorithm.

The hierarchical map equation
The hierarchical partitioning algorithm builds on the fast stochastic

search algorithm presented in ref. [15], with two major differences.

First, to explore multilevel solutions, the algorithm recursively tries to

add extra index codebooks both at coarser and finer levels.

Sometimes movements between modules can be further compressed

by adding one or more coarser index codebooks and sometimes

movements within modules can be further compressed by adding one

or more finer index codebooks. In its search for the optimal

hierarchical partitioning, the algorithm successively increases and

decreases the depth of different branches of the multilevel code

structure. Second, to reduce the small cohesive effect of random

teleportation, the map equation only measures the description length

of steps following links and not the steps associated with random

teleportation. In this way, the resolution increases slightly and the

algorithm can better detect less-separated modules or submodules.

The code is available here: http://www.tp.umu.se/,rosvall/code.

html. Below we explain how we have implemented these differences.

To exclude random teleportation steps from the description

length of directed networks, we first calculate the ergodic node visit

frequencies pa for a~1, . . . ,n with random teleportation at rate

t~0:15 as before. Then, for every node a and for all its outgoing

links with relative weight wab to node b, we calculate the

probability that the random surfer does not teleport but rather

follows a link in a given step:

qa b~(1{t)pawab: ð5Þ

Note that the in- and outflow no longer need to be equal, as in the

ergodic case. Finally, we update the node visit frequencies to

exclude the contribution from random teleportation:

pa~
Xa

b

qb a: ð6Þ

For a given hierarchical network partition, the hierarchical

map equation measures the per-step average minimal informa-

tion necessary to track a random walker’s movements along

links on a network. Sometimes the random walker stays

within the same finest-level submodule, and sometimes she

moves up and down one or more levels in the hierarchy. At

the coarsest level, the description length measures the

information necessary to determine which coarsest-level module

the random walker enters, weighted by how often such

movements happen. The relative rate of codeword use is

Q~fqi =q g~q1 =q ,q2 =q , . . . ,qm=q , where

q ~
Xm

i~1

qi ð7Þ

is the per-step average flow into the modules and the total

codeword use at the coarsest level. The Shannon information of

movements at the coarsest level — weighted by the total use — is

therefore

q H(Q)~q {
Xm

i~1

qi

q
log

qi

q

 !
: ð8Þ

At intermediate levels, to measure the contribution to the total

codelength in submodule i, it is sufficient to aggregate the flow

associated with movements to coarser levels qi and flow that is

associated with movements into the mi finer levels of the

hierarchy fqij g. The relative rate of codeword use is Qi~

qi =qi ,qi1=qi , . . . ,qimi
=qi , where

qi ~qi z
Xmi

j~1

qij ð9Þ

is the total codeword use. The Shannon information of

movements in this submodule, weighted by how often the code

is used, is therefore

qi H(Qi)~qi {
qi

qi
log

qi

qi
{
Xmi

j~1

qij

qi
log

qij

qi

0
@

1
A: ð10Þ

At the finest levels, nodes rather than submodules are visited and

the relative rate of codeword use is Pij...k~qij...k=p
ij...k

,

fpa[ij...k=p
ij...kg, where

p
ij...k

~qij...kz
X

a[ij...k

pa ð11Þ

is the total codeword use. The Shannon information of

movements at the finest level weighted by the total use of the

Hierarchical Organization in Integrated Systems
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code therefore is

p
ij...k

H(Pij...k)~

p
ij...k

{
qij...k

p
ij...k

log
qij...k

p
ij...k

{
X

a[ij...k

pa

p
ij...k

log
pa

p
ij...k

0
@

1
A: ð12Þ

Adding the contribution from every module at all levels gives

the total description length, which is quantified by the hierarchical

map equation. For a hierarchical map M of n nodes partitioned

into m modules, for which each module i has a submap Mi with

mi submodules, for which each submodule ij has a submap Mij

with mij submodules, and so on, the hierarchical map equation

takes the form

L(M)~q H(Q)z
Xm

i~1

L(Mi), ð13Þ

with the description length of submap Mi at intermediate levels

given by

L(Mi)~qi H(Qi)z
Xmi

j~1

L(Mij) ð14Þ

and at the finest modular level by

L(Mij...k)~p
ij...k

H(Pij...k): ð15Þ

Fast stochastic and recursive search algorithm
The hierarchical map equation measures the per-step average

code length necessary to describe a random walker’s link

movements on a network, given a hierarchical network partition,

but the challenge is to find the partition that minimizes the

description length. Into how many hierarchical levels should a given

network be partitioned? How many modules should each level

have? And which nodes should be members of which modules?

We have generalized our search algorithm for the two-level map

equation to recursively search for multilevel solutions. The

recursive search operates on a module at any level; this can be

all the nodes in the entire network, or a few nodes at the finest

level. For a given module, the algorithm first generates submodules

if this gives a shorter description length. If not, the recursive search

does not go further down this branch. But if adding submodules

gives a shorter description length, the algorithm tests if movements

within the module can be further compressed by additional index

codebooks. Further compression can be achieved both by adding

one or more coarser codebooks to compress movements between

submodules or by adding one or more finer index codebooks to

compress movements within submodules. To test for all combi-

nations, the algorithm calls itself recursively, both operating on the

network formed by the submodules and on the networks formed

by the nodes within every submodule. In this way, the algorithm

successively increases and decreases the depth of different

branches of the multilevel code structure in its search for the

optimal hierarchical partitioning. For every split of a module into

submodules, we use the search algorithm detailed in ref. [15] and

described again here.

Any greedy (fast but inaccurate) or Monte Carlo-based (accurate

but slow) approach can be used to minimize the map equation. To

provide a good balance between the two extremes, we developed a

fast stochastic and recursive search algorithm, implemented it in

C++, and made it available online both for directed and

undirected weighted networks [25]. As a reference, the new

algorithm is as fast as the previous high-speed algorithms (the

greedy search presented in the supporting appendix of ref. [14]),

which were based on the method introduced in ref. [26] and

refined in ref. [27]. At the same time, it is also more accurate than

our previous high-accuracy algorithm (a simulated annealing

approach) presented in the same supporting appendix.

The core of the algorithm follows closely the method

presented in ref. [28]: neighboring nodes are joined into

modules, which subsequently are joined into supermodules,

and so on. First, each node is assigned to its own module. Then,

in random sequential order, each node is moved to the

neighboring module that results in the largest decrease of the

map equation. If no move results in a decrease of the map

equation, the node stays in its original module. This procedure

is repeated, each time in a new random sequential order, until

no move generates a decrease of the map equation. Now the

network is rebuilt, with the modules of the last level forming the

nodes at this level, and, exactly as at the previous level, the

nodes are joined into modules. This hierarchical rebuilding of

the network is repeated until the map equation cannot be

reduced further. Except for the random sequence order, this is

the algorithm described in ref. [28].

With this algorithm, a fairly good clustering of the network can be

found in a very short time. Let us call this the core algorithm and see

how it can be improved. The nodes assigned to the same module are

forced to move jointly when the network is rebuilt. As a result, what

was an optimal move early in the algorithm might have the opposite

effect later in the algorithm. Because two or more modules that

merge together and form one single module when the network is

rebuilt can never be separated again in this algorithm, the accuracy

can be improved by breaking the modules of the final state of the

core algorithm in either of the two following ways:

Submodule movements. First, each cluster is treated as a network

on its own and the main algorithm is applied to this network.

This procedure generates one or more submodules for each

module. Then all submodules are moved back to their

respective modules of the previous step. At this stage, with

the same partition as in the previous step but with each

submodule being freely movable between the modules, the

main algorithm is re-applied.

Single-node movements. First, each node is re-assigned to be the

sole member of its own module, in order to allow for single-

node movements. Then all nodes are moved back to their

respective modules of the previous step. At this stage, with

the same partition as in the previous step but with each

single node being freely movable between the modules, the

main algorithm is re-applied.

In practice, we repeat the two extensions to the core algorithm

in sequence and as long as the clustering is improved. Moreover,

we apply the submodule movements recursively. That is, to find

the submodules to be moved, the algorithm first splits the

submodules into subsubmodules, subsubsubmodules, and so on

until no further splits are possible. Finally, because the algorithm is

stochastic and fast, we can restart the algorithm from scratch every

time the clustering cannot be improved further and the algorithm
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stops. The implementation is straightforward and, by repeating the

search more than once, 100 times or more if possible, the final

partition is less likely to correspond to a local minimum. For each

iteration, we record the clustering if the description length is

shorter than the previous shortest description length. In practice,

for networks with on the order of 10,000 nodes and 1,000,000

directed and weighted links, each iteration takes a few seconds on

a modern laptop.

Performance test of the hierarchical map equation
To test the performance of our algorithm, we used the benchmark

paradigm developed by Lancichinetti and Fortunato [19]. They

have provided an extension of their algorithm to generate

benchmark networks with an extra submodular level and made

it available here: http://sites.google.com/site/santofortunato/

inthepress2. But before detailing the performance test, we follow

the reasoning in ref. [19] and provide an approximate relationship

between a well-defined hierarchical structure and the coarse- and

fine-level mixing parameters.

From a topological point of view, a three-level hierarchical

structure is well defined if

p3wp2wp1, ð16Þ

where p3 is the probability that a random link connects two nodes

in the same fine-level module, p2 is the probability that it connects

two nodes in different fine-level modules but the same coarse-level

module, and p1 is the probability that it connects two nodes in

different coarse-level modules. We can estimate these probabilities,

given the expected number of links a node i shares with nodes

within the same fine-level module k3
i , with nodes within the same

coarse-level module but different fine-level modules k2
i , and with

nodes in other coarse-level modules k1
i , We do this by

approximating the number of available links within the same

module to n3SkT, where n3 is the number of nodes in the fine-level

module and SkT is the average degree of nodes in the network.

The corresponding approximation for within-coarse-level modules

is (n2{n3)SkT, where n2 is the number of nodes in the coarse-

level module. The approximation for available links in other

coarse-level modules is (n1{n2)SkT, where n1 is the number of

nodes in the full network. Now we have

p3*
k3

i

n3SkT
ð17Þ

p2*
k2

i

(n2{n3)SkT
ð18Þ

p1*
k1

i

(n1{n2)SkT
: ð19Þ

The mixing parameters m1 and m2 are defined as follows:

1{m2{m1~
k3

i

k3
i zk2

i zk1
i

ð20Þ

Figure 4. The range of mixing parameters that give a well-defined three-level hierarchical structure for the benchmark networks in
the paper. The networks have n1~10,000 nodes, coarse-level module sizes between n2;~400 and n2:~4,000 nodes, and fine-level module sizes
between n3;~10 and n3:~100 nodes. The connected points illustrate the sets of mixing parameters we present in the paper.
doi:10.1371/journal.pone.0018209.g004
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m2~
k2

i

k3
i zk2

i zk1
i

ð21Þ

m1~
k1

i

k3
i zk2

i zk1
i

, ð22Þ

such that nodes share on average a fraction m1 of their links with

nodes in other modules, a fraction m2 of their links with nodes in

other submodules, and the remaining fraction 1{m1{m2 of their

links with nodes in the same submodule. Now we have the

information to determine where the full hierarchical structure is

well defined. Combining eqs. (16–22) yields the relationship

1{m2{m1

n3
w

m2

n2{n3
w

m1

n1{n2
: ð23Þ

The two inequalities correspond to two lines in the m1–m2 plane,

determined by the extreme values of n3, n2, and n1. For a well-

defined three-level hierarchical structure, m2 must be larger than

n2:{n3;

n1{n2:
m1 ð24Þ

and smaller than

n2;{n3:

n2;
(1{m1): ð25Þ

Here n3; is the smallest number and n3: the largest number of

nodes a fine-level module can have, with the same notation for the

coarse-level modules. Figure 4 shows the range of mixing

parameters that correspond to a well-defined three-level hierar-

chical structure, for the values we have used in the benchmark test.

To quantify the performance of our method, we use the relative

mutual information [29] and measure how much we learn about the

true benchmark partitions by studying the inferred partitions that

we get by applying the hierarchical map equation. We indepen-

dently compare the coarse and fine levels of the benchmark

networks with the multilevel partitioning inferred by the map

equation. That is, we compare the first-level modules of the

benchmark networks with the first-level modules of the inferred

Figure 5. Hierarchical benchmark test. Figures A–D show how well the algorithm reveals the three-level organization of the hierarchical
benchmark networks with 10,000 nodes and 100,000 links. The nodes share a fraction m1 of their links with nodes in other coarse-level modules and a
fraction m2 of their links with nodes in other fine-level modules. Every data point represents the average value of 100 measures.
doi:10.1371/journal.pone.0018209.g005
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modules and the second-level submodules of the benchmark

networks with the finest-level submodules of the inferred modules.

Note that with this approach, the finest-level submodules do not

need to be at the second level in the inferred structure. Therefore,

we also measured the per-node average depth of the hierarchy to

pick up information about how many levels were detected.

To calculate the relative mutual information, we label every

node by its module number. In this way, picking a random node

and reading off its module number corresponds to sampling

from the discrete random variable X with probability distribu-

tion P(X )~n1=n,n2=n, . . . ,nm=n, where n is the number of

nodes, nx is the number of nodes in module x, and m is the

number of modules. The average information necessary to

describe the random variable, the Shannon information of X , is

accordingly

H(X )~{
X

x

nx

n
log

nx

n
: ð26Þ

With X for the benchmark partition, Y for the algorithm

partition, and nxy for the number of nodes that are jointly

partitioned in module x and module y, the mutual information

is

I(X ; Y )~{
X
x,y

nxy

n
log

nnxy

nx ny

: ð27Þ

Finally, the normalized mutual information [29] with a range

between 0 for independent partitions and 1 for identical partitions is

R(X ; Y )~
2I(X ; Y )

H(X )zH(Y )
: ð28Þ

We used scale-free networks (exponent -2) with 10,000 nodes,

average degree 20, and maximum degree 100, and let the module

sizes vary between 400 and 4,000 nodes and the submodule sizes

between 10 and 100 nodes, both with a scale-free size distribution

(exponent -1). Figure 5 shows the result of the benchmark test. The

performance is excellent as long as the hierarchical organization is

well defined and nodes have strictly more links within than

between fine-level modules and more links within than between

coarse-level modules; otherwise, the well-defined range is too

narrow. Because of fluctuations in the benchmark networks, the

levels interweave close to the limits of well-defined modules and

the algorithm can only extract the fine-level modules. Overall, the

results are on par with what we have obtained for two-level

benchmark networks [19].
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