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Abstract

Background: Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution
of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-
metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells
with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell
migration, and that cell emigration is a by-product of that selection.

Methods and Findings: We developed an agent-based model to simulate the evolution of neoplastic cell migration. We
simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in
neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control
the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing
degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration.

Conclusions: We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by
angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor,
which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential
solution to the puzzle of metastasis.
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Introduction

Clinically, the evolution of metastasis is one of the most

important transitions in neoplastic progression. Prior to metastasis,

most neoplasms can be cured surgically, and 5-year survival rates

are often above 90%. However, once a neoplasm has spread to

distant sites, some form of systemic therapy is necessary, and 5-

year survival rates often fall below 15% [1]. Understanding and

preventing metastasis would have a dramatic impact on the

management and burden of the disease.

Bernards and Weinberg focused attention on a paradox in our

understanding of the evolution of metastasis [2]. Within a

neoplasm, cells compete for space and resources. (Epi)genetic

instability generates new mutant clones, and those with a survival

or reproductive advantage tend to spread within the neoplasm [3].

If a cell acquires a mutation that increases the chances that its

offspring will emigrate from the neoplasm, that clone should be at

a disadvantage within the primary neoplasm, because some of its

reproductive potential is lost to emigration [4]. Clones that do not

emigrate will have a net growth advantage over the emigrating

clone, which should be quickly driven extinct [4,5]. However,

evidence suggests that 106–107 cells emigrate from a neoplasm

every day yet rarely establish a growing metastasis in a new

location in the body [6]. Thus the evolution of cell emigration

from the primary neoplasm does not seem to be a rate limiting step

in metastasis. How could a metastatic clone ever grow large

enough to produce the millions of emigrating cells necessary to

overcome the low probability of establishing a metastasis?

Four possible, non-mutually exclusive, solutions for the puzzle

of metastasis have been proposed previously. First, a mutation that

provides the potential to metastasize might have other effects

(pleiotropy) that increases the survival or reproductive potential of

the clone and so compensates for the fitness penalty of cell

emigration [2,5]. In a theoretical exploration of the first solution,

Dingli and colleagues [4] suggested a second solution: there may

be so many cells in a neoplasm that millions of de novo metastatic
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mutants may be produced every cell generation. Even if each

metastatic clone is at a competitive disadvantage and tends to go

extinct, new metastatic clones may continually replace them.

Third, the potential to metastasize might only be triggered late in

progression, by a change in the tumor microenvironment [7],

allowing the clone to expand, without the fitness penalty of

emigration, before the change in the microenvironment. Fourth,

an early mutation might confer the potential to metastasize, but

that potential may only be activated by a later mutation [2].

However, this is not actually a solution because the later mutation

leads to a fitness disadvantage for the metastatic clone and that

clone with both mutations should not expand, which mirrors the

original framing of the problem.

Recently, we identified a fifth alternative based on dispersal

theory in ecology [3], the ‘‘resource heterogeneity’’ solution.

Dispersal theory predicts that resource heterogeneity in both space

and time selects for migration in organisms [8] because organisms

that move to locate regions with more resources than their current

location will leave more offspring than sedentary organisms. We

apply dispersal theory [8] to cancer to solve the paradox of the

evolution of metastasis. There is microenvironmental variability in

neoplasms - regions within a neoplasm can become transiently

hypoxic [9–13] due to poorly regulated angiogenesis, changes in

the vascular architecture and temporary occlusion or interruption

of blood flow by neoplastic cells [13–15]. Thus, we propose that

resource heterogeneity within neoplasms selects for cell ‘‘migra-

tion’’ - or motility - within the neoplasm, and that cell emigration

from the neoplasm - or invasion - is a by-product of that selection.

The puzzle of metastasis was criticized for not being framed

quantitatively [16]. Here we show that a quantitative model can

illustrate a solution to the paradox of the evolution of cell

emigration. Our computational model extends previous models

[4,5,17] by including spatial effects, the dynamics of resources in

that space and the evolution of the migratory phenotype. We

observe the evolution of cell migration and emigration in a

neoplasm under different degrees of temporal and spatial

heterogeneity of resources.

Methods

Model Overview
We implemented an agent-based model of a neoplasm

(NetLogo 4.0.2 [18], source code available upon request from

the corresponding author). The neoplasm is represented as a grid

of patches that store nutrients delivered by blood vessels, while

cells are represented as motile agents that consume nutrients

stored in the patches. For simplicity, the resources in the model are

described as oxygen, though they could alternatively represent

glucose or any other diffusible factor delivered through the

vasculature.

Time is divided into short intervals of 12 hours. During each

time step, blood vessels can form, be occluded by neoplastic cells

proliferating in the confined space [15], and produce nutrients,

which then diffuse. Cells can consume resources, move, reproduce,

and die. See Figure S1 for a flow chart of a time step and Table S1

for model parameters and their normalized values.

Model Behavior
C cells and V blood vessels are positioned in continuous 2D

space atop a square grid of P patches. For each time step, every

patch containing a blood vessel receives ri units of oxygen. To

approximate continuous oxygen dynamics, we performed oxygen

updates ta times in a time step (Eq. 1). Resource concentrations

ctz1
j at patch j at time t+1 can be described by the following

difference equation:
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where there are ta resource updates per time step in the model, dc

is the resource diffusion constant, N(j) are the eight adjacent

neighbour patches of j, ra is the cell absorption rate, nt
j is the

number of cells at position j at time t, ri is the resource production

rate for a microvessel and dt
j takes value 1 if there is a microvessel

at position j at time t and 0 elsewhere. Resource concentrations

cannot become negative because cells are prevented from

absorbing more resources than are present in the location.

Our results are robust with respect to the granularity of the

diffusion dynamics (ta = 100, Figure S2). In each update, ri/ta units

of oxygen immediately diffuse throughout the grid by using

NetLogo’s discrete space diffusion function, where each patch

distributes a fraction (dc) of its oxygen to its eight neighboring

patches each iteration. Each cell ci consumes and stores as much

oxygen as is available to it from its host patch pj, up to ra/ta units.

Next, each cell uses rm/ta units of its stored oxygen nt,i for its

metabolism, leaving it with nt,i - rm/ta units. When we changed the

number of blood vessels, we adjusted ri so that the total input of

oxygen to the system remained constant. The parameters of

oxygen dynamics were set so as to achieve realistic oxygen

gradients around microvessels in normal tissues [19] (see Table

S1).

Any blood vessel vi with more than to cells in its patch is

occluded and removed from the simulation. If the total number of

blood vessels v is less than the equilibrium number V, then V - v

new vessels are added randomly to hypoxic patches with less than

th units of oxygen and at least one cell, which is required to signal

for angiogenesis. Angiogenesis is a complex process, including the

sensing of hypoxic conditions, release of angiogenic and anti-

angiogenic factors as well as endothelial cell response. The result of

these processes, to a first approximation, is that new blood vessels

grow into areas of hypoxic cells. Because angiogenesis is not the

focus of our model, we have abstracted away most of the

complexities of the process and simply maintain a homeostatic

density of blood vessels, growing new blood vessels in locations

where there are hypoxic cells that would release angiogenic

factors.

Next, each cell ci may die (if nt,i = 0), reproduce (if nt,i.nr), or

move (if 0,nt,i#nr,). When a cell divides it splits its stored resources

equally between its two daughter cells. During division, in both

daughter cells, the migration propensity pi and maximum

migration distance mi are mutated with probability m by drawing

a random number from a truncated normal distribution with

mean pi or mi and standard deviation sdp or sdm, respectively. A cell

moves with probability pi. Migrating cells move up to mi patches.

These mi steps can be taken either randomly (‘‘random migration’’)

or by ascending the local oxygen gradient (‘‘gradient ascent’’) as

both strategies have been observed in neoplasms [20]; in both

cases, the cell can move to any one of its nine closest patches (its

current patch and eight neighboring patches). If during its

movement it reaches a patch on the edge of the neoplasm, the

cell is removed from the population and recorded as an emigrating

cell.

Model Analysis
The ‘‘variable lifespan blood vessel’’ model as described results

in spatial and temporal resource heterogeneity because the blood

vessel lifespan varies as a result of local cell dynamics. To tease

Evolution of Cell Migration in Neoplasms
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apart the role of spatial and temporal effects in the variable

lifespan blood vessel model, we developed a ‘‘fixed lifespan blood

vessel’’ model in which we controlled more precisely spatial and

temporal dynamics. In this model, blood vessels are destroyed after

a fixed number of time steps tf rather than being occluded by cell

crowding. While the fixed lifespan blood vessel model is not

biologically realistic, it allows us to interpret the results from the

more realistic variable lifespan blood vessel model. ‘‘Static blood

vessels’’ can be simulated by setting the blood vessel lifespan to be

infinity, and ‘‘uniform oxygen input’’ can be simulated by creating

exactly one, static blood vessel per patch. Using this simplified

model, we can control the degree of spatial heterogeneity by

controlling the number of blood vessels, and the degree of

temporal heterogeneity by varying the lifespan of a blood vessel (or

the density of cells that cause occlusion to in the variable lifespan

blood vessel model).

Because the cells evolve to exploit the available resources, there

is not a precise mapping of parameter values to available resource

heterogeneity in the model. We predicted that it is the amount of

available resources that is relevant to the evolution of migration.

Since cells are quickly selected to utilize all available resources,

only the combination of spatial and temporal heterogeneity of

blood vessels in the neoplasm produces transient unutilized

resources. To test this, we measured the average amount of

available resource per patch, over the last 200 time steps of each

model run, and evaluated its relationship to the evolution of cell

migration.

We ran the model for 5,000 time steps, ,7 simulated years, to

approximate the time required to develop metastasis [21,22].

Every parameter configuration was replicated 10 times. Data were

collected and averaged over the final 200 time steps of each run. In

each case, we measured the: (1) Mean migration propensity of all

the cells (pi), (2) Mean maximum migration distance (mi) of all the

cells in the neoplasm, and (3) Mean number of cells leaving the

edge of the neoplasm (emigrating cells) per time step. We also

computed the product of the first two parameters, and refer to it as

the ‘‘expected migration distance’’ of the neoplasm, which reflects

the expected distance a cell will travel in one time step. If not

specified explicitly, all following experiments were done under the

random migration strategy.

Statistical Analysis
A t-test was used to test the difference of the mean equilibrium

values between two simulation conditions. Linear regressions were

used to quantify associations between experimentally manipulated

variables (blood vessel number and lifespan) or their outcomes

(observed degree of resource heterogeneity) with the expected

migration distance and number of migratory cells.

Results

Each of the model variants and parameter conditions

corresponds to angiogenesis and cell movement behaviors within

a neoplasm. For each of the experiments that follow, we observe

the evolution of cell migration and emigration from a neoplasm

across the range of parameters.

Because the amount of cell movement within a neoplasm early

in progression is unknown, we tested several reasonable initial

conditions within which a migratory cell could evolve: (1) Cells are

generally stable and do not move, (2) Cells have a low level of

movement within a neoplasm, and (3) Each cell within a neoplasm

can have a different level of motility. We tested these three initial

conditions by initializing (1) All cells with a migration propensity of

0 and a maximum migration distance of 0; (2) All cells with a

migration propensity of 0.05 and a maximum migration distance

of 1; and (3) Cells with random migration propensity values and

maximum migration distance values with uniform probability over

the intervals [0, 0.6] and [0, 6] respectively. We found that the

initial amount of cell motility had no influence on the evolution of

the final levels for both phenotypes (Figure S3; t-test P.0.05 for all

outcomes).

We then compared the evolution of migration under the three

oxygen input methods: ‘‘uniform resource input’’, ‘‘static blood

vessels’’, and ‘‘variable lifespan blood vessels.’’ In the uniform

resource input simulations, each patch received a constant amount

of oxygen input every time step, which resembles the resource

input in normal, adequately oxygenated tissue. In the static and

variable lifespan blood vessel simulations, resources were distrib-

uted via a constant number of blood vessels, which either stayed in

the same locations for the entire run or changed their locations.

The variable lifespan blood vessel model simulates the blood vessel

dynamics observed in a neoplasm. Comparison of the static blood

vessel model to the variable lifespan blood vessel model allows us

to test the effects of temporal heterogeneity on the evolution of cell

motility. A variable lifespan blood vessel was occluded when more

than 20 cells occupied its patch and was replaced by a new vessel

in a hypoxic patch. The value of this parameter did not affect the

qualitative results. Neoplasms with variable lifespan blood vessels

evolved higher values for the migration propensity and maximum

migration distance than the other two resource input models

(Figure 1). The combination of spatial and temporal heterogeneity

generates transient regions of unexploited resources (Figure 2).

Note that static blood vessels do not produce heterogeneity of

unutilized resources because cells proliferate around the blood

vessels until they consume all available resources (Figure 2B).

Uniform input of resources across the entire environment can lead

to more available resources and greater evolution of cell migration

than static blood vessels because the uniform input of resources

leads to fewer cells at each source of resources and so more

stochasticity of cell dynamics in each patch. The spatial

heterogeneity generated by blood vessels leads to patches of

necrosis and hypoxia that are typical of a neoplasm (Figure 2D).

We ran the fixed lifespan blood vessel model with number of

blood vessels from 30 to 600 and vessel lifespans from 4 to 500

time steps on a log scale, which covered the ranges observed in real

neoplasms (Table S1). Decreasing blood vessel numbers and

lifespan (increasing spatial and temporal heterogeneity) selected for

increased cell migration and number of emigrating cells (Figure 3;

linear regressions P,0.001). The emigrating cell number and

expected migration distance are closely correlated (r = 0.984,

P,0.001).

We repeated the experiments under the condition in which cells

climb up resource gradients [20] (Figure 4). If a cell reached a local

maximum of resources, it remained there even if it had the

capacity to move further. Here, resource heterogeneity still selects

for cell migration with the similar pattern as in neoplasms using

random migration strategy (Figure 4). The association between

resource heterogeneity (both temporal and spatial) and the

expected migration distance remains strong (linear regression

P,0.001), as does their relationship with the number of cells that

migrate off the edge of the neoplasm (linear regression P,0.001).

In a real neoplasm, resource concentrations may increase at the

borders of the neoplasm (and other routes of exit) and so migratory

cells following those gradients may exit the neoplasm more

frequently than we have represented in our model.

We found that the fewest number and shortest lifespan of blood

vessels led to the maximal amount of available, unutilized

resources, which was statistically significantly associated with the

Evolution of Cell Migration in Neoplasms
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evolution of expected migration distance (Figures 5A and 5B;

r = 0.79 for random migration, r = 0.81 for gradient ascent,

P,0.001 for both), and the number of emigrating cells

(Figures 5C and 5D; r = 0.74 for random migration, r = 0.79 for

gradient ascent, P,0.001 for both). Figure S4 shows snapshots of

available resources at the four extreme settings of the number of

blood vessels and their lifespans.

In the model, the parameter values for the mutation standard

deviation of migration propensity (sdp) and maximum migration

distance (sdm) affect the rate of evolution and are set empirically.

To see whether sdp or sdm affect the above results, we ran the model

with different values of sdp (0.01, 0.1) and sdm (0.1, 1). Though the

final evolved values for these migration phenotypes vary with

different sdp or sdm, neoplasms with variable lifespan blood vessels

still evolved higher values for all migration phenotypes (Figure S5).

To explore the interaction of selection for migration with

selection for proliferation, we allowed cells to evolve the ability to

divide with fewer resources. Increased proliferation is a hallmark

of carcinogenesis [23]. When cells could optimize their prolifer-

ation under restricted resources, cell migration rates evolved to

even higher levels than before. Neoplasms with variable lifespan

blood vessels quickly evolved a lower threshold of resources

necessary to divide (increased their proliferation rate), compared to

uniform resource input or static blood vessels (Figure S6).

All the prior experiments were run on a grid of 4,096 patches.

We tested neoplasms of 1024, 2116, 4096, 8100, and 16,384

patches to determine how the dynamics scale with the size of the

simulated neoplasm. The fixed lifespan blood vessel model, with 6

time step lifespans, was used in these simulations. Blood vessel

numbers were scaled with neoplasm size from 25, 50, 100, 200, up

Figure 1. Examples of evolution of migration with dynamic blood vessels, uniform input, and static blood vessels. (A) Evolution of the
migration propensity. (B) Evolution of the maximum migration distance per time step. (C) Evolution of the expected migration distance (the product
of migration propensity and maximum migration distance). (D) The number of migratory cells leaving the neoplasm per time step. In the static blood
vessel model (dotted lines), 100 blood vessels remain fixed in position throughout the run of the model. In the dynamic model with variable lifespan
blood vessels (solid lines), a blood vessel was occluded when there were more than 20 cells in its location (patch) and replaced by a new blood vessel
in a hypoxic location. In the uniform input model (dashed lines), all patches received an equal amount of resources each time step.
doi:10.1371/journal.pone.0017933.g001
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to 400 respectively, to ensure that the blood vessel density was the

same regardless of neoplasm size. Each blood vessel delivered the

same amount of resources per time step, regardless of the size of the

neoplasm, so that larger neoplasms received more total resources

and could support a larger population of neoplastic cells. Resource

heterogeneity and expected migration distance appear to be sensitive

to boundary effects in small simulations, but approach an

equilibrium value (and have lower variance) in simulations of

.8,000 patches (Figures S7A and S7B). The emigrating cell number

scales linearly with neoplasm size, and so the frequency of cell

emigration is stable over changes in neoplasm size (Figures S7A and

S7C). Selection for cell migration by temporal and spatial resource

heterogeneity holds regardless of the size of the simulated neoplasm.

Discussion

Using a computational model, we explored a possible solution to

the paradox of the evolution of metastasis identified by Bernards

and Weinberg[2]. We propose that resource heterogeneity selects

for cell motility, which leads to emigration from the primary

tumor. Our model captures the fitness disadvantage associated

with cell migration in that emigrating cells are removed from the

model. Intriguingly, we observed that these same ‘‘disadvanta-

geous’’ clones were favored in conditions predicted by dispersal

theory in ecology. Namely, we have shown that spatial and

temporal resource heterogeneity selects for cell migration within a

neoplasm, and as a by-product, emigration from a neoplasm.

Figure 2. Resource and cell densities in the model. Green circles show the position of blood vessels and resource density is represented on a
continuum from blue (low) to white (high). When resources flow into the tissue uniformly (A) or through static blood vessels (B), the cells consume all
of the resources and the spatial heterogeneity of unutilized resources is low. When blood vessels are dynamic due to occlusion and angiogenesis (C),
heterogeneity of available resources is greater because there is a lag time between the appearance of a new blood vessel and increased density of
cells in that locale. This explains the differences in the evolution of cell migration for the different resource input modes shown in Figure 1. When
resources flow into a tissue through sparse blood vessels, patches of normoxia and hypoxia lead to corresponding regions of high densities of cells as
well as necrotic regions. Panel D shows an overlay of the cell density for the blood vessels and resources of panel C. The brightness of the cells in
panel D represents the amount of resources each cell has accumulated.
doi:10.1371/journal.pone.0017933.g002
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Specifically, the migration propensity, the maximum migration

distance within a neoplasm, and the resulting number of

emigrating cells, were maximized when there were only a few

blood vessels in the model and when the location of those resource

rich patches changed frequently (Figures 3, 4, 5) as is thought to

occur in neoplasms[9–12,14,15,24]. Oxygen levels can fluctuate in

neoplasms over a period of 109s of minutes, in a spatially

heterogeneous manner, the details of which vary between

neoplasms [10,12]. Transient hypoxia has been observed to occur

over periods of minutes to hours [10] and chronic hypoxia over

longer time scales [13]. Thus, our simulation results confirm that

selection for migration within a neoplasm under resource

heterogeneity can result in increased levels of cell emigration

from the neoplasm, providing support for the resource heteroge-

neity solution to the paradox of the evolution of metastasis.

The resource heterogeneity solution to the paradox of

metastasis is consistent with a variety of experimental observations,

including spatial and temporal patterns of tumor invasion, patterns

of gene expression in the primary tumor that predict metastasis,

and the metastatic effects of hypoxia on neoplasms. Our model is

consistent with observations of rapid metastasis once a neoplasm

becomes malignant [21], because we predict that there has been

selection for cell migration prior to invasion. In gene expression

studies, primary neoplasms often exhibit an expression signature of

Figure 3. Relationship between resource heterogeneity and selection for migration when cells move randomly. Spatial heterogeneity
is varied with the number of blood vessels providing resources. Temporal heterogeneity is determined by varying the lifespan of the blood vessels. As
temporal and spatial heterogeneity increased the product of migration propensity and maximum migration distance (expected migration distance)
increased (A) as did the number of cells emigrating from the neoplasm (B). The amount of transiently unutilized, available resources is also maximized
by increasing spatial and temporal heterogeneity (C).
doi:10.1371/journal.pone.0017933.g003
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metastasis [25–29]. Since expression arrays measure the most

common clones in the neoplasm, this has been interpreted as

evidence that a metastatic phenotype often evolves early in

neoplastic progression [2]. These gene expression profiles may

actually be a signature of resource heterogeneity or of migratory

clones. For example, cell motility and stress response genes were

enriched in primary neoplasms associated with recurrence [26].

Hypoxia has also been associated with increased risk of metastasis

[9,30–33]. The resource heterogeneity hypothesis predicts that

temporal variation in hypoxia should select for increased

emigration, and this is consistent with observations in mouse

models [34–36]. Intriguingly, a molecular mechanism connects

hypoxic stress and migration through HIF1-a [37], suggesting that

natural selection could co-opt and optimize the (epi)genetics of

cells under hypoxic stress to increase cell migration.

The paradox of the evolution of metastasis depends on the

observation that emigration is a competitive disadvantage for

clones in the primary tumor, and so natural selection should

suppress cell emigration. The following steps in metastasis (e.g.,

survival in the blood, invasion and establishment in a new location,

etc. [38]) are all selectively advantageous for the emigrating clone,

and so are not paradoxical. We have focused here on the evolution

of the first step of metastasis: migration of cells within the

neoplasm, which leads to emigration from the neoplasm, or

Figure 4. Relationship between resource heterogeneity and selection for migration when cells move up resource gradients. Spatial
heterogeneity was controlled by varying the number of blood vessels and temporal heterogeneity was controlled by varying their lifespan. As with
random movement, increasing temporal and spatial heterogeneity both select for increasing cell migration (expected migration distance); A) and cell
emigration from the neoplasm (B). The combination of both spatial and temporal heterogeneity leads to increased amounts of transiently unutilized,
available resources (C).
doi:10.1371/journal.pone.0017933.g004
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invasion in our model. The paradox of metastasis hinges on this

first step.

The possible resolutions to the paradox of metastasis are distinct

in our model, including that metastatic mutations may also

increase fitness, the mutation rate is high enough to generate the

metastatic cells de novo, and microenvironmental changes ‘‘acti-

vate’’ a previously neutral mutation late in progression. In our

model, mutations only affect the propensity or speed of migration,

and do not directly affect apoptosis or proliferation. De novo

migratory mutations cannot explain the evolution of high rates of

migration observed in our models. That being said, the other

solutions to the puzzle of metastasis are not mutually exclusive

with each other or our proposal. There is evidence that some

mutations that facilitate metastasis may also increase the fitness of

the mutant clone [39,40].

Our model is clearly a simplification of intra-tumor dynamics.

In a real neoplasm, cells are likely to emigrate through lymphatic

and blood vessels, not just by leaving the borders of the neoplasm.

Incorporating those details into our model would likely increase

the number of emigrating cells, consistent with the behavior of our

current model.

One of the weaknesses of models of metastasis is the lack of

experimental data on cell migration and hypoxia, particularly at

the single cell level in vivo. Thus, we have used a quantitative model

to explore the puzzle of metastasis and develop a hypothesis that

can explain current data and be used to guide future experiments.

Our model supports previous predictions [41] that assays of spatial

and/or temporal heterogeneity of available resources in a

neoplasm [10] should predict the risk of metastasis. Spatial

statistics of patchiness could be applied to assays of hypoxia,

Figure 5. Available resources, those not currently being fully exploited by the cell population, select for increased cell migration.
The expected migration distance that evolved (A, B) was closely correlated with the average amount of transiently unutilized, available resources per
patch. Similarly, the number of cells emigrating from the neoplasm was also highly correlated with amount of available resources (C, D). This was true,
regardless of whether cell migration was random (A, C) or by gradient ascent (B, D).
doi:10.1371/journal.pone.0017933.g005

Evolution of Cell Migration in Neoplasms

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e17933



glucose or other limiting resources in tissue sections [9–13]. We

also predict that direct measures of cell migration in the primary

tumor, perhaps through measures of genes expression and proteins

in cell migration pathways, should be good biomarkers for the risk

of metastasis.

There are a number of additional experimentally testable

predictions from our model. First, our model suggests that we

should find greater expression of migration related proteins in

neoplasms with regions of hypoxia compared to neoplasms with

uniform oxygenation. If the half-lives of hypoxia inducible markers

are significantly longer than the rate of cell movement, migratory

cells with those markers might be detected as recent arrivals in

normoxic regions. With a fast enough molecular clock, perhaps

through methylation of CpG sites [42], one may be able to show

more mixing of cell lineages due to migration in a neoplasm with

resource heterogeneity compared to neoplasms with uniform

resources which should contain contiguous regions of closely

related cells.

Interestingly, results from our model of resource heterogeneity

suggest a potential strategy for preventing or delaying cancer:

normalizing the resources available to a neoplasm, over space or

time, should tend to reduce the risk of metastasis. In fact, it has

recently been shown that restoration of neoplasm oxygenation

suppresses metastasis [43]. Our model also predicts that cycles of

anti-angiogenic drugs applied to a pre-malignant neoplasm may

select for a metastatic clone and so we should be cautious in the

application of such drugs for cancer prevention [44,45]. It has

recently been shown that a decrease in tumor vascularity is

correlated with tumor invasion in gliobalstoma patients treated

with anti-angiogenesis therapy [46]. These results are consistent

with our model results that migration increases when the vessel

density is decreased. Nevertheless, there is both theoretical and

experimental support for anti-angiogenic therapy in malignant

neoplasms [47]. In fact, constant, low doses of anti-angiogenic

drugs have been shown normalize the vascular networks within

neoplasms [48–50]. Thus, the chronic application of such drugs

may be a route to normalizing the spatial and temporal resources

of a neoplasm, thus preventing selection for cell migration and

metastasis.

In a related model, Bearer et al. studied the effects of resource

heterogeneity and competition between a low- and high-grade

clone on tumor morphology and came to a similar conclusion[51].

This model represented physical and chemical constraints, along

with cell adhesion dynamics to predict how the interface between

tumor and normal tissue changes over time. In this model, cell

migration was a cellular response to hypoxia and did not evolve. In

contrast, our model does not represent the boundary between

tumor and normal tissue, and instead focuses on the selective

effects of resource heterogeneity on cell migration within the

primary tumor. They found that resource heterogeneity was

amplified by cellular proliferation and migration, leading to

invasive tumor morphologies. From this complementary ap-

proach, they also concluded that normalization of resources

should help suppress invasion. In their case, because resource

homogeneity leads to physical constraints on tumor shape whereas

in our case, resource homogeneity suppresses natural selection for

cell motility.

We have provided a quantitative model for the evolution of cell

migration and emigration from neoplasms that provides a solution

to the puzzle of metastasis. Results from the model are consistent

with both expression signatures of metastasis in primary neoplasms

[25–29] and the observed association between hypoxia and

metastasis [9,30–32]. We propose that cell emigration from a

neoplasm is a side effect of selection for migration within a

neoplasm. The results of our model do not rely upon the exact

details of the model. Regardless of the precise parameters chosen,

the result still holds that resource heterogeneity in space and time

select for cell migration (see Figures S2 through S7). The

predictions of our model are supported by in vivo experiments

[34–36] and clinical results [9,30–32]. We hope that an

understanding of the evolutionary forces that select for metastasis

will be useful for the future prevention of metastasis.

Supporting Information

Figure S1 A flow chart outlining the decisions made by
cells and blood vessels for each time step. The labeled

parameters are defined in Table S1. Actions made by cells are

ovals, actions made by vessels are parallelograms, and decision

points are diamonds.

(PDF)

Figure S2 Scaling the granularity of the resource
dynamics (input, diffusion, cell uptake, and cell metab-
olism) had no effect on the results that temporal and
spatial heterogeneity select for increased cell migration.
Here, instead of 10 resource dynamic iterations per cell time step,

we used 100 resource iterations (ta). The expected migration

distance (A), emigrating cell number (B) and transiently unutilized,

available resources (C) are all strongly affected by both spatial and

temporal heterogeneity of the resource inputs (blood vessel

number and lifespan). The strong correlation between available

resources and both expected migration distance (D) and the

number of cells that leave the neoplasm (E) remains the same as

well.

(TIF)

Figure S3 Effect of the initial migration propensity and
the maximum migration distance phenotypes on the
evolution of migration in example runs of the model. The

random initial phenotypes (blue dotted lines show the population

average) initialize each cell with a migration propensity randomly

chosen from 0 to 0.6 and a maximum migration distance

randomly chosen from 0 to 6, with uniform probability. All cells

in the uniform initial phenotypes case (red lines show the

population average) were initialized with a migration propensity

of 0.05 and maximum migration distance of 1 patch. In all 4

panels, the neoplasm evolves to approximately the same value

indicating initial phenotypes have no impact on the outcome of the

model (t-test across runs of the average values over the last 200

time steps, p.0.05). (A) The evolution of the migration propensity,

(B) the evolution of the maximum migration distance per time

step, (C) the evolution of the expected migration distance, and (D)

the evolution of the number of migratory cells leaving the

neoplasm per time step is unaffected by the initial parameter

settings. Here, the dynamic model with variable lifespan blood

vessels used 100 blood vessels and an occlusion threshold of 20.

(TIF)

Figure S4 The relationship between blood vessel dy-
namics and available resources. In all 4 panels, the

background represents the amount of available resources. White

indicates that there are a lot of available resources, black that there

are none, and blue that there is some small amount. Yellow circles

represent the location of blood vessels. (A) When there are few

blood vessels, but they have long lifespans (e.g. 500 time steps),

natural selection leads to almost complete utilization of input

resources. In this case, only a single recently generated blood vessel

has not yet been completely exploited by the cells. (B) With few

blood vessels that are generated and occluded frequently, the cells
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do not have enough time to locate and proliferate around a blood

vessel before it disappears. This leads to large quantities of

available resources for any cell that migrates from its current

position, and so there is selection for increased cell migration. (C)

and (D) With a high density of blood vessels, cells are distributed

relatively evenly across space, though at low density for any one

patch, and new blood vessels will likely appear in regions already

occupied by cells that are supported by nearby blood vessels. This

leaves little room for the generation of unutilized resources, though

there are occasional small regions of resources generated when

those blood vessels have short lifespans (D).

(TIF)

Figure S5 Examples of the evolution of the expected
migration distance under different rates of evolution
determined by varying the migration propensity muta-
tion standard deviation and the maximum migration
distance mutation standard deviation. Dynamic model

with variable lifespan blood vessels (black line) selects for higher

levels of cell migration in all cases, compared to uniform input of

resources across space and time (red dashed line), or static blood

vessels (blue dotted line). Changing the standard deviation of the

daughter cell migration propensity by a factor of 10 (the ‘‘size’’ of

mutations) has little effect on the expected migration distance,

except in the slope of the initial trajectory in the variable lifespan

blood vessel condition (A, B). However, the standard deviation of

the maximum migration mutation does affect the expected

migration distance (C, D), though, even at the low rate (std.dev.

= 0.1; panel C), the expected migration distance continues to

increase and does not reach equilibrium by the end of the 7

simulated years.

(TIF)

Figure S6 Evolution of both migration rate and the
amount of resources required to reproduce. The plots

show sample runs of evolution of migration within neoplasms with

non-uniform cellular proliferation rate under dynamic model with

variable lifespan blood vessels, the uniform input, and the static

blood vessel models. (A) Evolution of the migration propensity. (B)
Evolution of the maximum migration distance per time step. (C)

Evolution of the expected migration distance. (D) The number of

migratory cells leaving the neoplasm per time step. Each panel

shows the results of three different forms of resource supply to the

neoplasm. In this setting, the reproduction threshold is a mutable

phenotype. If a cell gets a new mutation (mutation rate = 1022 per

cell division), the reproduction threshold of each daughter cell is

modified by drawing from a truncated normal distribution with

the parental threshold as mean and a standard deviation of 20

units. The initial reproduction threshold is set to be 240 units and

the lowest threshold is 120. The other model parameters remain

the same as in the uniform proliferation rate setting (Figure 1). For

all four outcomes (panels A–D), neoplasms with dynamic blood

vessels still evolve to the highest levels of cell migration with even

higher values of expected migration distance and emigrating cell

numbers. This demonstrates that adding more evolutionary

complexity into our model does not change the fundamental

results. (E) Neoplasms with dynamic blood vessels quickly evolved

increased proliferation ability by lowering the threshold necessary

to reproduce. Since daughter cells receive half of the parent’s

resources at cell division, and cells need to maintain an internal

resource store in order to avoid cell death, there is selection against

setting the reproduction threshold so low that daughter cells would

be on the brink of starvation.

(TIF)

Figure S7 Scaling the size of the simulated neoplasm in
the fixed lifespan blood vessel model. Due to computational

constraints, we have simulated a relatively small neoplasm. To test

how the simulation size might affect the results, we tested models

with 1024, 2116, 4096, 8100, and 16,384 patches and fixed

lifespan blood vessels. The blood vessel number was also scaled

1:41 with neoplasm size (25, 50, 100, 200 and 400) and the lifespan

of blood vessels was set to 6 time steps. The average amount of

available, unutilized resources per patch (A) and the expected

migration distance (B) appear to be approaching an asymptote.

The number of emigrating cells appears to scale linearly as the

neoplasm, and cell population size grows (C).

(TIF)

Table S1 Parameters and their values used in the
model.

(PDF)
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