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Abstract

The investigation of distributed coding across multiple neurons in the cortex remains to this date a challenge. Our current
understanding of collective encoding of information and the relevant timescales is still limited. Most results are restricted to
disparate timescales, focused on either very fast, e.g., spike-synchrony, or slow timescales, e.g., firing rate. Here, we
investigated systematically multineuronal activity patterns evolving on different timescales, spanning the whole range from
spike-synchrony to mean firing rate. Using multi-electrode recordings from cat visual cortex, we show that cortical
responses can be described as trajectories in a high-dimensional pattern space. Patterns evolve on a continuum of
coexisting timescales that strongly relate to the temporal properties of stimuli. Timescales consistent with the time
constants of neuronal membranes and fast synaptic transmission (5–20 ms) play a particularly salient role in encoding a
large amount of stimulus-related information. Thus, to faithfully encode the properties of visual stimuli the brain engages
multiple neurons into activity patterns evolving on multiple timescales.
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Introduction

Neuronal coding is a central issue in the investigation of brain

function [1,2] and has both a spatial and a temporal aspect. The

spatial aspect refers to distributed coding across multiple neurons

in the cortex, while the temporal aspect pertains to the timescale of

this process. Information coding in the brain has been mostly

investigated such that either one or the other of these two aspects

has been neglected.

Due to inherent technical difficulties, the spatial aspect of

coding was mostly ignored in early studies. These focused on

single-electrode recordings [3], neurons being probed indepen-

dently, i.e., one-by-one. Information about distributed coding was

not accessible to these techniques, such that the most salient

property of single-electrode signals was considered to be the firing

rate [3,4]. With the advent of multi-electrode recordings,

distributed coding started to be more thoroughly investigated

[5] but issues related to timescale were not systematically

explored. Most reports have focused either on a very fast

timescale (,20 ms), i.e. spike-synchrony [5–9] or have investi-

gated only a limited range of timescales. For example, in their

multivariate analysis, Friedrich and Laurent [10] used sliding

windows of 400 ms studying ensemble coding in the zebrafish

olfactory system. A similar strategy was employed by Brown and

Stopfer in the locust olfactory system [11], on timescales of 50 ms

and 100 ms. Bathellier et al. [12] used windows on the order of

40 ms and .100 ms and studied coding in the mouse olfactory

bulb.

A more systematic study of timescales relevant for coding was

undertaken by Butts et al. [13], but only for the case of single cells

in the LGN. For populations of neurons, a recent study reported

spike-timing precision in the LGN on the order of ,10 ms in

responses to natural scenes [14]. This study however did not

explicitly focus on how the encoding of stimulus features comes

about, and did not investigate how the temporal properties of

different stimuli may be reflected in the timescale of neuronal

responses.

For the case of multiple neurons we do not yet have clear and

complete characterizations of how multineuronal activity patterns

contribute to coding. Recently, the ability of computer-simulated

readout neurons to extract stimulus-related information from

distributed neuronal activity was systematically investigated for

multiple timescales [15]. Results revealed a surprising degree of

relevance of short timescales (, = 20 ms) for sequences of briefly

flashed high-contrast images. This study used only one type of

stimulus and left it open whether a similar result would be

obtained with stimuli having different temporal properties.

An exploration of multineuronal activity, systematically

covering a broad range of timescales and different types of

stimuli is still missing. Especially relevant are aspects that refer to
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the timescale of patterns evoked by stimuli with various temporal

properties and aspects that refer to the stimulus time-locking of

these patterns. One major limitation impairing such investiga-

tions is the scarcity of analysis methods able to cope with the

simultaneous behavior of multiple neurons [16,17] over multiple

timescales. Furthermore, conceptually different analysis tech-

niques are usually employed to investigate the presence of slow

and fast codes. We argue that it is necessary to investigate coding

across multiple neurons and multiple timescales in a unified

manner, by employing always a conceptually identical method. In

addition, because natural visual stimuli have a broad range of

temporal properties [13], the neuronal code may need to be

explored with a set of stimuli that exhibit a similar variety of

temporal dynamics.

Here, we matched these important requirements by recording

responses in cat primary visual areas to stimuli that changed

either with a slow rhythm (drifting sinusoidal gratings), fast

rhythm (high-contrast stimuli flashed in fast sequences; 100 ms

duration and 100 ms inter-stimulus-interval), or had a mixture of

fast and slow epochs (movies of natural scenes). We then applied

a recently introduced analysis method that is able to detect and

visualize evolution of multineuronal cortical firing patterns on an

arbitrary timescale [18]. In particular, we investigated how

multineuronal activity patterns emerged in the visual cortex with

respect to timescale and stimulus-locking, and the degree to

which the contributions of fast, intermediate, and slow coding

mechanisms changed as a function of temporal properties of

stimuli.

Results

From Neurons to Patterns
In a previous report [18] we have described a method to detect

stereotypically appearing activity patterns in a set of multineuronal

spike-trains. The method first transforms multiple spike-trains by

convolution with exponentially decaying kernels [19,20] (low-pass

filtering). Convolution enables the manipulation of the timescale of

interest through the decay (integration) time constant (t). Small

time constants (t = 1–5 ms) correspond to constellations of

coincident spikes (synchronous spikes/joint-spike events) [21],

while large time constants (t.100 ms) extract collective firing-rate

modulations.

After low-pass filtering by convolution (Figure 1A) the multiple

continuous traces were sampled [22] with a frequency of 1 kHz,

defining activity vectors that were clustered using a three-dimensional

(3D) Kohonen map [23]. The resulting clusters approximate

classes of stereotypically appearing activity vectors, which are

called model vectors [23,24] and are representative for a given

dataset. For simplicity and readability we will subsequently refer to

model vectors as patterns. We constructed model trials by replacing

the activity vectors with their corresponding model vectors

(patterns). The subsequent analyses were then based on model

trials and therefore all results on patterns refer to the properties of

model vectors (obtained after clustering). The use of an ordered

clustering algorithm, such as a 3D Kohonen map, enables also the

visualization of multineuronal activity patterns through colors,

whereby each appearing pattern is represented by a single line of a

Figure 1. From spikes to multineuronal patterns. (A) Low-pass filtering of simultaneously recorded spike trains by convolution with a decaying
exponential function. Activity vectors are obtained by sampling the resulting continuous traces at each time step. (B) Color representation of
stereotypical patterns corresponding to activity vectors from a dataset recorded with drifting sinusoidal gratings. Color sequences corresponding to
trials evoked by 4 grating stimuli are shown, grouped by the stimulus (t = 20 ms).
doi:10.1371/journal.pone.0016758.g001
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corresponding color. The succession of patterns along a trial can

then be represented by a horizontal sequence of colored lines

(color sequence) [17]. Most importantly, color sequences from

multiple trials can be shown adjacent vertically to provide an

overall picture about the repeatability of patterns. Typically, each

stimulus produces its own set of patterns (Figure 1B) [17]. If

visualization is not required (ordered mapping is not needed), any

clustering algorithm can in principle replace the 3D Kohonen

map. For the data presented here we found that results with

Kohonen clustering were very similar to those obtained with K-

Means or LBG (Linde-Buzo-Gray) [25] clustering (see Consider-

ations Regarding Clustering in Text S1, Figures S1 and S2, and

section A Collective Code on Multiple Timescales below). Next we

investigated how information was encoded by neuronal patterns

on different timescales.

Integration Constant and Time-Locking to Stimulus
We first tested whether stimulus related information carried by

patterns (i.e., stimulus specificity of patterns) depends on the choice

of the timescale at which patterns are investigated. In addition, we

tested whether the timing of patterns was locked to the timing of

the stimulus and the degree to which this locking depended on the

type of stimulus. A measure of stimulus-specificity for a pattern,

called pattern specificity, was defined as a quantity representing the

estimated probability that a pattern appears for a particular

stimulus from a set of stimuli [18]. A pattern with high specificity

for a stimulus allows one to discriminate that stimulus from other

stimuli of the set. By manipulating the integration constant and

computing the specificity of patterns, one can identify the optimal

timescale on which information is best encoded, i.e., the optimal

timescale for a given set of stimuli. Figure 2A depicts specificity of

patterns computed with two integration time constants (1 ms and

20 ms) for responses evoked with drifting sinusoidal gratings.

Patterns evolving on a timescale of 20 ms had higher stimulus

specificity than those on 1 ms, indicating that stimulus-related

information was encoded more accurately on the former than on

the latter timescale. Also, patterns with high specificity were not

precisely stimulus-locked across trials (in the millisecond range),

but stimulus locking was broad, comparable to the slow

modulation induced by the grating.

Very different results were obtained when stimuli were briefly

flashed on the screen. Our second set of responses was obtained by

flashing 49 individual graphemes for 100 ms [26,15] and

recording the activity of 20 neurons simultaneously. In the

example color sequences [18] in Figure 2B a small integration

time constant of 5 ms was sufficient for specific patterns to carry

stimulus-related information on this fast timescale. The results are

shown for three graphemes (a ‘‘Z’’, an ‘‘enlarged B’’ and a

‘‘rotated A’’). The onset-responses had a short latency (30–40 ms)

and were transient, while the offset-responses had a latency of

70 ms and were much more sustained [26,15] (Figure 2B, color

sequences). Pattern specificity was assessed by comparing respons-

es over the entire set of 49 graphemes and only the patterns with a

specificity .0.25 are shown in the middle column of Figure 2B

(Thresholded Color Sequences). [18]. This high threshold (chance

level: 1/49 = 0.02) isolates well the most specific pattern for

stimulus ‘‘Z’’. With lower specificity thresholds, gradually more

patterns can be revealed, which carry progressively less informa-

tion about stimuli. The most specific pattern for stimulus ‘‘Z’’

occurred only within a narrow temporal window of ,17 ms

(Figure 2B, Thresholded Color Sequences, top, inset) in 16 out of

50 trials. For ‘‘enlarged B’’, a specific pattern occurred in a

window ,40 ms, in 15 out of 50 trials (Figure 2B, Thresholded

Color Sequences, middle, inset). The ‘‘rotated A’’ stimulus elicited

a specific pattern in 38 out of 50 trials but in a broader temporal

window and in association with a few other patterns (Figure 2B,

Thresholded Color Sequences, bottom, inset). Relative to the

variability of cortical responses [27], the temporal precision of the

first occurrence of each pattern was rather high: The range of jitter

(min-max) across trials was ,15 ms for ‘‘Z’’, ,23 ms for

‘‘enlarged B’’, and ,21 ms for ‘‘rotated A’’. We also computed

pattern-triggered spike-raster histograms (PTSRH) [18], i.e. for

occurrences of the pattern at times ti, we summed the spike rasters

(1 = spike; 0 = no spike) corresponding to 30 ms windows before

each ti (Figure 2B, Pattern-Triggered Spike-Raster Histogram).

PTSRHs revealed that different neurons were active correspond-

ing to different patterns and that spikes contributing to patterns

frequently participated in bursts: Spikes were often preceded by

other spikes of the same neurons, at inter-spike intervals ,8 ms

[28]. PTSRHs were also consistent with the activations in the

patterns (Figure 2B, ‘‘Pattern’’ inset), showing that patterns (model

vectors) computed by the clustering algorithm reflected very

closely the real spiking constellation.

These examples in Figures 2A and 2B suggest that stimulus

specific patterns may be expressed on different timescales, may

occur at various moments in time, and the precision with which

they are locked to the stimulus may vary.

A Collective Code on Multiple Timescales
To investigate systematically the importance of timescales for

stimulus coding by patterns we applied three classification

strategies (i.e. types of classifiers), each relying on different features

of neuronal activity. All of them integrated the information

available over the entire duration of a trial and were always

trained on one half of the trials (training set; randomly chosen),

while the classification performance was tested on the other half

(testing set). The three classifiers relied on the following features,

respectively: combinations of mean firing rate (mean rate classifier),

the specificity of patterns irrespectively of where in the trial they

occur (specificity classifier), and the time-specific position of the

patterns within the trial (trajectory classifier). The specificity classifier

ignored the stimulus-locking of patterns, while the trajectory

classifier was strongly dependent on stimulus-locking (see Materials

and Methods and Classification in Text S1). The performance of

these classifiers was tested on responses to three types of stimuli:

slow sinusoidal gratings, natural movies with mixture of speeds,

and briefly flashed letter sequences (sequences of three letters, each

similar to those in Figure 2B – flashed for 100 ms with a 100 ms

inter-letter-interval; see Materials and Methods). In a first analysis,

patterns were computed only with t = 20 ms and trials were

randomly assigned 1,000 times into training and testing sets.

For drifting sinusoidal gratings, all three classifiers performed

with high accuracy (on average, .90% correct classifications),

with a slightly higher average performance of the trajectory

classifier (97% correct vs. 91% and 95% for mean rate and

specificity classifiers, respectively; Figure 3A). For stimuli with

natural scenes the trajectory classifier yielded almost perfect

discrimination between stimuli (98% correct), outperforming

considerably both the mean rate (61%) and the specificity (78%)

classifiers (Figure 3B). For flashed letter sequences (Figure 3C), the

trajectory classifier had also highest accuracy (83% correct), which

was well above that of the mean rate and specificity classifiers

(48% and 53% correct, respectively). Thus, overall, the classifier

relying on mean firing rate was the least accurate and the one

relying on trajectories the most effective for distinction between

the stimuli.

To investigate the importance of the location of patterns along

the trial, we segmented trials in 20 ms windows that were then

Timescales of Multineuronal Activity Patterns
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randomly permuted (shuffled) for each trial independently.

Kohonen maps were reconstructed and classifiers were re-applied.

As expected, classification performance was reduced only for the

trajectory classifier (Figures 3A–C, shuffled, red), in agreement

with this classifier’s sensitivity for stimulus-locked sequences of

patterns. Nevertheless, the performance stayed above chance even

for the shuffled data, and was especially high for gratings and

natural movies (Figures 3A and 3B). This result can be explained

by redundant expression of some patterns along the trials, which

are especially likely to occur during, e.g., the repeated passes of the

bars of gratings. In such cases, a permutation of two similar spiking

windows leads to little reduction in the final classification of the

permuted data.

The dependence of classification performance on the timescale

of patterns was then explored by manipulating the integration time

constant, re-computing Kohonen maps for each time constant,

Figure 3. Information content of patterns and dependence of classification on the temporal scale. (A)–(C) Classification performance of
three classifiers with t= 20 ms (blue: mean rate; green: pattern specificity; red: pattern trajectory) for datasets evoked with drifting sinusoidal gratings
(A), natural movies (B), and flashed letter sequences (C). Shown are: performance for each stimulus condition, average performance, and average
performance after shuffling the spike-trains (see text). (D)–(F) Performance is shown as a function of the integration time constant (t) for datasets with
drifting sinusoidal gratings (D), natural movies (E), and flashed letter sequences (F). Error bars represent s.d. Dashed lines mark chance levels.
doi:10.1371/journal.pone.0016758.g003

Figure 2. Pattern specificity. (A) Specificity plots at two integration time constants for responses to drifting sinusoidal gratings. Far right: color
intensity code for specificity. (B) Appearance of specific and stimulus-locked patterns with a time constant of 5 ms. Three examples (rows) are shown
from the dataset with 49 flashed graphemes. From left to right: stimulus, color sequences on 50 trials, specificity thresholded color sequences (see
text) with inset showing patterns precisely stimulus-locked across trials, pattern-triggered spike raster histograms (see text). Activation of component
neurons in the patterns is shown in the second level inset (‘‘Pattern’’) with grayscale coding (white, activation = 0; black, activation $1).
doi:10.1371/journal.pone.0016758.g002
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and reclassifying all the datasets. For drifting sinusoidal gratings,

the performance of the specificity classifier was high across the

whole range of explored time constants (Figure 3D, green line).

The trajectory classifier also exhibited high performance for most

values of t with the exception of those ,10 ms (Figure 3D, red

line). The difference between the two pattern classifiers on fast

timescales (1–5 ms) suggests that specific patterns evolving on these

timescales are not precisely time-locked to stimulus (see Classifi-

cation in Text S1). This result is consistent with results reported in

Figure 2A for the same stimuli.

For natural movies (Figure 3E), the trajectory classifier

outperformed the mean rate and the specificity classifier for all

values of t, the difference being largest for time constants of 5–

20 ms (Figure 3E). These findings indicate the locking of brain

dynamics to both fast and slow events in the stimuli, consistent

with the rich temporal structure of natural movies.

Finally, flashed letter sequences entrained stimulus-specific

responses almost exclusively on fast timescales. Both the specificity

and the mean rate classifiers performed poorly (Figure 3F) in

comparison to the trajectory classifier. The performance of the

latter peaked at time constants of 10 ms, replicating the results

obtained by applying a different analysis method to the same data

[15,26]. Hence, for flashed letter sequences, information about

stimulus identity was best encoded in the temporal sequence of

stimulus-locked, fast patterns (evolving on timescales of ,10 ms).

We reproduced the reported classification results also on

additional datasets and animals (see Figures S3 and S4 and

Consistency of Classification Results in Text S1).

Jittering tests
To test whether the timing of spikes was important on a given

timescale for patterns, we applied jittering to the original spike

trains. Each spike was jittered independently with a given amount

of noise (SD between 0–100 ms) as this is expected to interfere

with patterns evolving on timescales smaller than the jitter.

Classifications in Figure 3D–F were then recomputed for each

magnitude of jitter (Figure 4). To harvest variability due to the

jittering procedure only, for each independent jitter we computed

the average performance over multiple train/test half-splits of

trials and multiple Kohonen maps. For each jitter amplitude

variability was then estimated across average performances yielded

by different independent jitters. Because movies with natural

scenes contained both fast and slow parts, we analyzed separately

the movie parts with slow and fast dynamics (i.e., slow and fast

camera movement, respectively).

Overall, jitter affected only slightly the performance of

specificity classifiers irrespectively of the type of the stimulus

(Figure 4A–D, left). Performance decreased by a small amount

with jitter, with the exception of segments of natural movies with

slow dynamics, where a small increase in performance was

observed, for t between 1–10 ms (Figure 4B, left).

Jitter had more extensive effects on the trajectory classifiers,

especially at small timescales. Jitter increased classification

performance for slow stimuli (gratings and slow parts of natural

movies; Figure 4A,B, right) and decreased performance for fast

stimuli (fast parts of natural movies and flashed letter sequences;

Figure 4C,D, right). The results in Figure 4D are consistent with

those obtained on the same data by a different analysis technique

[15,26]. In all reported cases, effects of jitter were significant

(p,0.001, one-sample location Z-tests). The increase in perfor-

mance for slow stimuli on fast timescales can be explained by a

more uniform spread of spikes that initially formed bursts (when

bursts were artificially removed from the data the effect was no

longer present – see Figure S5). This uniform spread ensured that

information encoded on slow timescales became available also on

fast timescales (e.g., by enabling a more reliable estimate of a slow

firing rate vector in a narrow time window and thus increasing the

signal-to-noise ratio on fast timescales). In addition, the trajectory

classifier is also sensitive to stimulus time-locking of patterns

because it averages patterns at corresponding locations across

multiple train trials to obtain a model trajectory (see Eq. 13 in

Materials and Methods). Thus, at small integration time constants

(where the window used to average patterns is also small) the lack

of stimulus-locking of bursts creates more variable patterns across

the train trials at a given trial location. When spikes in bursts are

spread locally by jittering, the patterns at a given location will be

more similar across trials and this will increase signal-to-noise ratio

of the trajectory classifier at small timescales. The drop in

classification performance for fast stimuli indicated that informa-

tion was encoded largely by fast patterns, precisely locked to

stimulus (compare Figures 4D left and 4D right; see also Classifiers

Explained Intuitively in Text S1).

Effect sizes
Classification performance is a non-linear procedure that gives a

measurement of the ability of a classifier to separate samples from

a given set into their true classes, based on a particular feature

(e.g., mean rate, specificity of patterns, trajectory in pattern space).

The performance of a classifier cannot fully quantify the structure

of the feature space (e.g., distance between samples belonging to

different classes) and therefore it does not fully reflect the

robustness of a given feature in separating samples into classes.

When more samples are added to a dataset, classification

performance may degrade. One needs to therefore complement

classification by a measurement of robustness/discriminability, i.e.,

a measure that reflects the structure of the feature space. For

example, if points in the feature space can be clearly separated, a

performance of 100% is obtained, but this happens both when the

distance between classes is small and when it is large. A robustness

or discriminability measure should quantify how close in the

feature space are the points belonging to different classes.

We used a measure of effect size (see Materials and Methods) to

quantify, in a time-resolved fashion, the robustness of the

trajectory classifier. Using training trials, we first computed a

model trajectory for each stimulus. Then, given a test trial’s

trajectory, we computed, for each moment in time, t, a Euclidian

distance to the model trajectory of its corresponding true stimulus

[dT(t)] (Figure 5A, orange) and a second set of distances to the

model trajectories of other stimuli [dO(t)] (Figure 5A, magenta).

Finally, these two categories of distances were averaged separately

across the set of test trials for a given stimulus (e.g., Figure 5A, top

panel, for grating stimuli)(see Materials and Methods). A smaller

average distance to the true stimulus compared to other stimuli

[dT(t) , dO(t)] implies that patterns appearing around the

corresponding moment in time, t, are better locked and more

specific to the true stimulus and hence carry information about it.

After computing these distances, we first expressed the difference

between dT and dO relative to their trail-to-trial variability as

Cohen’s d (effect size) and then manipulated t (10, 20, 50 and

100 ms). Intuitively, a larger ‘effect size’ indicates that patterns

evoked by one stimulus are further apart from patterns evoked by

the other stimuli, at a given time point along the trial. The

measure has the advantage of being normalized to the variability

of dT and dO and therefore it can also be interpreted as a signal-to-

noise ratio when discriminating among multiple stimuli. We found

that for grating stimuli the ‘effect size’ increased monotonically

with the increase in the time constant (Figure 5A, bottom),

indicating that information was contained predominantly in slow

Timescales of Multineuronal Activity Patterns
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Figure 4. Effect of spike jitter on classification performance. Specificity classifiers (left) and trajectory classifiers (right) for: grating stimuli (A),
slow (B) and fast (C) segments of natural movies, and flashed letter sequences (D). The applied jitters are 10 ms (light green), 20 ms (yellow), 50 ms
(orange), and 100 ms (red). Original classification performance, without jittering, is shown in dark green curves. Error bars represent s.d. over
independent jitters.
doi:10.1371/journal.pone.0016758.g004
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processes (firing rate modulations), in agreement with findings in

Figure 3D. In contrast, the time constant optimal for encoding

movies dependent on the epoch. The maximum ‘effect size’ was

attained on slow timescales (t= 50–100 ms; Figure 5B) for a movie

segment with slow dynamics (slow movement of the entire scene).

For a movie segment with faster dynamics the ‘effect size’ was

largest sometimes on fast (t= 10 ms; Figure 5C, blue arrows),

intermediate (t= 50 ms; Figure 5C, yellow arrows), or slow

(t= 100 ms; Figure 5C, red arrows) timescales. These findings

were also consistent with results in Figure 3E, where classification

performance over the entire duration of the movies indicated that

both fast and slow processes were involved in coding. Finally, as

would be expected from the excellent classification performance

with short time constants when flashed letter sequences were

analyzed (Figure 3F), the highest peaks in ‘effect size’ were found

for these stimuli when t = 10 and 20 ms (Figure 5D).

Discussion

Covering the Spatial and Temporal Aspects of Coding
We have provided a novel methodology able to cope with both

the spatial and temporal aspects of coding in a unitary fashion.

The spatial aspect is covered by including the simultaneous activity

of multiple neurons. Previous limitations of binarization/binning

[6–9] were overcome by integration with exponentially decaying

kernels complemented by a clustering procedure [18] (see also

Supporting Discussions in Text S1 for issues related to clustering

and further methodological considerations). This allows for the

identification of classes of multineuronal activity patterns that

evolve on a chosen timescale. Importantly, exponentially decaying

functions mimic the shape of post-synaptic currents reasonably

well, and hence, the detected patterns resemble input currents

received by a potential post-synaptic neuron [15]. Therefore,

patterns detected by the method can be considered as instanta-

neous snapshots of post-synaptic currents converging onto a

hypothetical target neuron. In the present study we used the same

integration time constant to compute continuous activation traces

corresponding to all simultaneously recorded neurons. In the

future, more sophisticated strategies can be used if information

about the exact synaptic connectivity is known. Since techniques

allowing for partial network reconstruction are becoming

increasingly available [29–31], one might be able to group only

pre-synaptic neurons of a given target neuron, and use

exponentially decaying kernels having time constants matching

the properties of the individual corresponding synapses. This

would enable the detailed investigation of the input currents

impinging upon a target neuron, i.e. the input current patterns.

The Collective Behavior of Neurons
Our results are consistent with previous reports emphasizing the

importance of collective behavior of neurons. Interactions between

multiple cells, mediated by fast synaptic mechanisms, have been

found in the medial prefrontal cortex of rats [32]. Population

coding has been identified in many structures, including the retina

[7], motor cortex [33], and hippocampus [34]. Neuronal

ensembles were intensively discussed, from their involvement in

chaotic attractors [35] to their role in coding and in the context of

neuronal correlations [5,36–39]. Importantly, regardless of the

existence or absence of correlation in their firing (dependence or

independence), multiple neurons provide a combinatorial code

that is more efficient than a population spike count [40]. The

analyses provided here extend previous results by detecting and

quantifying generalized activity patterns that span an arbitrarily

chosen range of timescales. Results indicate that such generalized

multi-neuron activation patterns carry much stimulus-related

information, allowing a potential classifier to discriminate between

different stimulation conditions.

Relevant Timescales
Neuronal patterns can be defined in many ways, from

coincident or delayed spikes, to more general temporal relations

between bursts or even between rate fluctuations. Detecting all

possible patterns is a hard problem that unfortunately has no

general solution. Nevertheless, with the present approach, by using

a variety of integration time constants and noting that activation

patterns contain the trace of previous spikes, one can also observe

more complex relations between spiking of different neurons, e.g.

coincident or delayed spikes, bursts or fast rate fluctuations.

A possibility of sorting out relevant relations among spiking

events from the vast amount of possible combinations, is to

consider that post-synaptic neurons need to integrate their inputs

through afferent synaptic currents. These are generated both by

fast processes, e.g. supported by AMPA or GABAA transmission

(time constants ,10 ms [41,42]) and by slower ones, involving

neuromodulators or metabotropic receptors such as GABAB [43]

or NMDA (timescales .50–100 ms [44]). In addition, membrane

time constants, ranging between 5–30 ms [29,45,46], largely

determine how the afferent currents influence the dynamics of

each cell. Here, we manipulated time constants to study a whole

range of integration dynamics, from near coincident (synchronous)

spiking (,1–5 ms) to rate fluctuations (,50–500 ms) and even

mean firing rate (.1 s). In addition, we have used visual stimuli

with various temporal properties in order to cover different

possible input statistics. Results suggest that the timescale on which

informative multineuronal firing patterns evolve depends crucially

on the spatiotemporal properties of the stimulus. Similarly,

multiple timescales and response dependence on stimulus

properties have been recently reported for single neurons in the

LGN [13]. Here, however, we focused not only on various types of

stimuli and various timescales but also on multineuron firing

patterns in the visual cortex, thus extending significantly these

previous results. Multineuronal activation patterns containing

stimulus specific information evolve on a continuum of different

timescales, with time constants ranging from 1–5 ms up to

.100 ms. We propose that this flexibility with respect to the use

of different timescales allows the visual cortex to represent the

spatiotemporal dynamics of stimuli with high fidelity. For ‘slow’

stimuli, slowly depolarized neurons fire stochastically, individual

spikes being triggered by temporally dispersed neurotransmitter

release [47]. In such cases, fast patterns appear by chance (e.g. on

1–10 ms; Figure 3D, green) and they are locked to stimulus only

on a broad temporal scale that reflects the slow modulation by the

stimulus. Thus, slow rate modulations trigger a stochastic

distribution of faster patterns. In turn, the expression of these fast

Figure 5. Time of occurrence and timescale of informative patterns. (A) Trajectory analysis on drifting grating stimuli. Top inset: Average
distance from trajectories on test trials of a given stimulus to the model trajectory of the true stimulus (orange) and the model trajectories of other
stimuli (magenta). t = 20 ms. Cohen’s d between the two distance traces for different integration time constants, t, for grating stimuli (bottom inset in
(A)), slow (B) and fast (C) segments of natural movies, and a flashed letter sequence (D). Light gray bands indicate stimulus presentation periods. Error
bars on distance traces in (A) are s.e.m.
doi:10.1371/journal.pone.0016758.g005
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patterns facilitates the integration of information by post-synaptic

neurons having relatively short membrane time constants

[5,48,49]. For ‘faster’ stimuli (e.g. with abrupt changes in

luminance), patterns on short timescales are evoked and they are

stimulus-locked with higher precision. The underlying cause is

probably the rapid, transient, depolarization. The latter was

shown to produce precise spike timing, as is the case for responses

to fast flickering [50] or stochastic inputs [51], and to induce

precisely spike-synchronized responses, e.g. following saccadic eye

movements [52,53] (see also Supporting Discussions – Slow and

Fast Timescales in Text S1).

A fact frequently overlooked is that correlated activity in sensory

cortices is ubiquitous because stimuli modulate cortical activity.

Current terminology emphasizes the definition of correlation on

fast timescales, at the level of individual spikes (i.e. spike-

synchrony), but it is important to note that correlated activity

could be occurring on various timescales and hence, it is not

enough to study correlation only at the level of individual spikes.

Especially relevant are the timescales characterizing membrane

dynamics and those of synaptic currents whose correlated

fluctuations were shown to play a critical role in driving post-

synaptic cells [48,49,54,55]. Here we have found that on

timescales of 5–20 ms, consistent with the time constants of

synaptic currents and neuronal membranes, multineuronal activity

patterns carry a large amount of stimulus-related information

(Figures 2 and 3). Very high or close to maximum classification

performance was attained below a time constant of 20 ms in most

cases and for all stimulus types that were investigated here.

Importantly, these relatively fast timescales match the temporal

learning windows of neurons (,50 ms) [56], and hence, may

render spike-timing dependent synaptic plasticity operant for

learning informative activation patterns.

Neuronal Coding: Trajectories in High-Dimensional
Spaces?

Dynamic stimuli can evoke informative sequences of events that

may be described as trajectories in the neuronal ensemble space, as

shown for the olfactory system of honeybees [57], locusts [11],

mice [12], and zebrafish [10]. For the visual system, we have

shown here that it is also realistic to characterize cortical responses

to dynamic stimuli as trajectories in the multidimensional pattern

space. This is in contrast to mean spike counts over long temporal

windows, which fail to describe such cortical responses appropri-

ately (Figures 3E–F, Figure S3 and Figure S4).

It has been suggested that the brain should be explored from the

perspective of a dynamical system evolving in a high-dimensional

state-space [11,12,36,57–59]. Here, we have shown not only that

such an approach can describe well also neuronal responses in the

primary visual cortex but were also able to investigate the

timescales characterizing these multidimensional trajectories.

Importantly, we find that there is no one single relevant timescale

along the trajectory but that the coding process may use states

expressed on faster or slower timescales depending on the

temporal properties of the stimulus (Figure 5).

Implications for the Perception of Dynamic Visual Scenes
The application of various classifiers described here has revealed

that dynamic stimuli evoke informative patterns at particular

moments in time. Thus, such dynamic stimuli are best encoded by

successions of specific patterns localized at specific moments in

time. For different stimuli, similar patterns may appear at different

moments in time, yet these stimuli can be properly discriminated if

one considers both the identity of the pattern and its temporal

occurrence in relation to other patterns. Therefore, it is less likely

that a very specific activity pattern can occur exclusively for one

stimulus, thereby representing its unique neuronal fingerprint.

More likely, dynamic stimuli can only be discriminated if one

considers their temporal evolution, i.e. the sequence of activity

patterns evoked by the stimuli. These findings imply the existence

of some higher-order neuronal mechanisms, able to identify and

label different sequences of patterns. Such mechanisms must be

able to integrate pattern sequences over long temporal windows,

on the order of seconds, but at the moment it is not very clear what

these mechanisms might be. Among possibilities, we mention slow

synaptic integration based on mGlu/TRPC currents [60,61] and

reentrant connectivity [62–64]. The latter can support sustained,

reverberating activity that was related previously to working

memory [65,64] but more recently also to linking temporally-

delayed events [66]. The road from multineuronal activity patterns

to coherent perceptions of dynamic visual scenes probably involves

also processes related to visual memory such that timescales

operant for stimulus representation (,100 ms) could be bridged

with behaviorally relevant timescales (.500 ms).

Conclusions
Multiple neuron activity carries a large amount of stimulus-

related information that is expressed in multineuronal activation

patterns. These patterns evolve on multiple timescales, while the

timescale that will be expressed for a particular stimulus will

depend on the temporal dynamics of the latter. Stimuli with slow

dynamics (such as drifting gratings) elicit mostly slow patterns

(timescale .20 ms). However, these patterns can be composed of

sub-patterns evolving on faster timescales (#20 ms). The latter are

less stimulus-specific and are only weakly stimulus-locked, with a

precision comparable to that of the slow timescale (precision

.20 ms). Stimuli with fast dynamics, on the other hand, elicit fast

patterns precisely time-locked to the stimulus. In all cases patterns

evolving on relatively fast timescales (10–20 ms) may be used to

represent both slow and fast changing stimuli but the mechanism

for the emergence of these patterns may be different and needs to

be further investigated. Thus, high-dimensional firing patterns

encoding stimulus-specific information are not confined to a single

timescale but can span a broad range of timescales, ranging from

spike-synchrony to mean firing rate. The dichotomy between

spike-synchrony and mean firing rate is therefore artificial and

should be avoided, as these two represent only extreme cases of a

continuum of timescales that are expressed in cortical dynamics.

Timescales consistent with the time constants of neuronal

membranes and fast synaptic transmission appear to play a

particularly salient role in coding. Finally, cortical responses to

dynamic visual stimuli may be described as successions of activity

patterns, i.e. trajectories in a multidimensional pattern space,

reflecting the temporal characteristics of stimuli. It remains a

challenge for future studies to explore systematically both the

spatial and temporal aspects of coding and to elucidate how the

brain adjusts different timescales in order to faithfully represent the

outside world.

Materials and Methods

Ethics Statement
Experimental data were recorded from anesthetized and

paralyzed adult cats, bred in the facilities of the Max-Planck

Institute for Brain Research. All the experiments were conducted

in accordance with the European Communities Council Directive

of 24 November 1986 (86/609/EEC), according to the guidelines

of the Society for Neuroscience and the German law for the

protection of animals, overseen by a veterinarian and approved by
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the local government’s ethics committee at Regierungspräsidium

Darmstadt with the approval number ‘‘Si 1’’.

Experimental Procedures and Recording
Anesthesia was induced with ketamine (Ketanest, Parke-Davis,

10 mg kg21, intramuscular) and xylazine (Rompun, Bayer, 2 mg

kg21, intramuscular) and maintained with a mixture of 70% N2O

and 30% O2 supplemented with halothane (0.5%–1.0%). After

tracheotomy, the animals were placed in a stereotactic frame. A

craniotomy was performed, and the skull was cemented to a metal

rod. After completion of all surgical procedures, the ear and eye

bars were removed, and the halothane level was reduced to 0.4%–

0.6%. After assuring that the level of anesthesia was stable and

sufficiently deep to prevent any vegetative reactions to somatic

stimulation, the animals were paralyzed with pancuronium

bromide (Pancuronium, Organon, 0.15 mg kg21 h21). Glucose

and electrolytes were supplemented intravenously and through a

gastric catheter. The end-tidal CO2 and rectal temperature were

kept in the range of 3%–4% and 37uC–38uC, respectively. Stimuli

were presented binocularly on a 21 inch computer screen

(HITACHI CM813ET) with 100 Hz refresh rate. To obtain

binocular fusion, the optical axes of the two eyes were first

determined by mapping the borders of the respective receptive

fields and then aligned on the computer screen with adjustable

prisms placed in front of one eye. The software for visual

stimulation was a combination of custom-made programs and a

stimulation tool, ActiveSTIM (www.ActiveSTIM.com). Data were

recorded from area 17 of 6 adult cats by inserting multiple silicon-

based multi-electrode probes (16 channels per electrode) from the

Center for Neural Communication Technology at the University

of Michigan (Michigan probes). Each probe consisted of four

3 mm long shanks that were separated by 200 mm and contained

four electrode contacts each (1,250 mm2 area, 0.3–0.5 MV
impedance at 1,000 Hz, inter-contact distance 200 mm). Signals

were amplified 10,0006and filtered between 500 Hz and 3.5 kHz

and between 1 and 100 Hz for extracting multi-unit (MU) activity

and local-field potentials (LFP), respectively. The waveforms of

detected spikes were recorded for a duration of 1.2 ms, which

allowed the later application of offline spike-sorting techniques to

extract single units (SU). For spike-sorting we have used a custom

made software that first computed principal components of spike

waveforms (for each channel independently) and then applied

clustering to group waveforms of similar shapes that were further

assumed to be generated by the same neuron.

Datasets
The investigated neuronal activity was acquired in response to a

variety of visual stimuli. Recordings from 6 different cats are below

coded with dataset names to facilitate easy identification. The

dataset naming conventions are: catID-sessionID, e.g. col05-e08

(cat col05, session e08). In all datasets, stimuli were presented in a

randomized order.

Datasets with drifting sinusoidal grating stimuli (col05-

e08a, col05-e08b, col05-e06, col07-g01, and col08-

e19). Sinusoidal gratings moving in 12 directions in steps of 30u
were presented in trials of 4,800 ms duration (1,000 ms spontaneous

activity, 3,500 ms stimulus, 300 ms OFF-response). Gratings

spanned 12u of visual angle, had a spatial frequency of 2.4u per

grating cycle and were presented at a speed of 2u per second. Stimuli

were presented 20 times each. The analyses were conducted in three

different cats (col05-, col07-, and col08-), on a total of 5 datasets that

were spike-sorted and yielded different numbers of SUs with

overlapping receptive fields. Cat 1 (col05): dataset col05-e06

consisted of 46 SUs and was used in Figure S3A. Dataset col05-

e08a consisted of 26 SUs and was used in Figure 1B, Figure 2A,

Figure 3A and 3D, Figure 4A, Figure 5A, Figure S1, Figure S2, and

Figure S5. Dataset col05-e08b is the same as col05-e08a, except that

it was re-sorted using another criterion that yielded 47 SUs; it was

used in Figure S3B. Cat 2 (col07): dataset col07-g01 consisted of 32

SUs and was used in Figure S3C. Cat 3 (col08): dataset col08-e19

consisted of 26 SUs and was used in Figure S3D. Datasets with 12

directions of drifting gratings were used in several previous studies to

determine the direction preferences of neurons [67], the oscillation

frequencies of responses to different orientation preferences [68] or to

investigate the entropy and network topology of synchronized

responses [9].

Dataset with natural stimuli (cer01-a50). Three movies

with natural images were presented to the cat (one recorded by the

authors, two extracted from ‘‘The Greatest Places’’ movie

provided by the Science Museum of Minnesota). The movies

contained indoor and outdoor scenes with various image statistics

(slow moving, fast moving, dark, light, etc) and had a resolution of

8006600 pixels, spanning the entire screen. Each movie was 28

seconds long and was presented 20 times. Analyses were

performed on 22 simultaneously recorded SUs from Cat 4
(cer01). The dataset was used in Figure 3B and 3E, Figure 4B

and 4C, Figure 5B and 5C, Figure S1, Figure S2, and Figure S5.

The dataset with natural stimuli was previously used when the

visualization technique based on 3D Kohonen maps was

introduced [18].

Dataset with flashed graphemes (col10-d24a). Stimuli

consisted of 26 letters (A–Z), 8 digits (0–7), 3 small size letters (A–

C), 3 large size letters (A–C) and 9 rotated letters (A–C, rotated at

90u, 180u and 270u). Each grapheme was white on a black

background, spanning approximately 5u–7u of visual angle. Trials

were 1,200 ms long with stimuli flashed for 100 ms (between

500 ms and 600 ms). Each stimulus was presented 50 times.

Analyses were performed on 20 SUs recorded from Cat 5 (col10)

and are presented in Figure 2B.

Datasets with flashed letter sequences (col10-d24b, cer01-

a47, col13-a20). Stimuli consisted of three (‘‘A-B-C’’, ‘‘A-D-C’’,

‘‘D-B-C’’ for col10-d24b) or four letter sequences (‘‘A-B-E’’, ‘‘A,-

D-E’’, ‘‘C-B-E’’, ‘‘C-D-E’’ for cer01-a47 and col13-a20). Each

letter was flashed for 100 ms, with an inter-letter-interval of

100 ms. Trials were 1,200 ms long with stimuli presented at 500,

700 and 900 ms for three letter sequences (col10-d24b) and

3,800 ms long with stimuli presented at 500, 700, 900 and

1,100 ms for four letter sequences (cer01-a47 and col13-a20).

These stimuli typically entrain rhythmic changes [69] in firing

rates as a result of alternating on- and off-responses to the letters

appearing along the presentation sequence (see Figures 1B, 3, 4

and S7 in Nikolić et al. 2009 [15]). Stimuli were presented 50

(col10-d24b) or 300 (cer01-a47 and col13-a20) times each.

Analyses were performed on three different cats. Cat 5 (col10):
dataset col10-d24b consisted of 20 SUs and was used in Figure 3C

and 3F, Figure 4D, Figure 5D, Figure S1 and Figure S2. Cat 4
(cer01): dataset cer01-a47 consisted of 45 SUs and was used in

Figure S4A. Cat 6 (col13): dataset col13-a20 consisted of 45 SUs

and was used in Figure S4B.

Datasets with flashed graphemes and flashed letter sequences

were previously used to probe the availability of stimulus related

information in neuronal responses over time [15].

Low-pass Filtering of Spikes and Definition of Activity
Vectors

Spike trains were low-pass filtered using an exponentially

decaying kernel, using the same procedure presented elsewhere

[18]. For each neuron i, a continuous signal, called activation, ai(t)
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was obtained using the formula:

ai(t)~
ai(t{1)z1 , if neuron i has a spike at time t

ai(t{1):e{1
t, otherwise

(
ð1Þ

where, ai(t) is the activation corresponding to neuron i at time t, t is

the decay (integration) time constant.

We defined an activity vector at time t as:

AV (t)~ a1(t), a2(t), � � � ,an(t)½ � ð2Þ

where, n is the number of analyzed neurons.

Kohonen Mapping
The activity vectors of each recording session were clustered

and mapped onto a 3D space using 3D Kohonen maps (3DKM),

to also enable the visualization of patterns [18]. The extension of

3DKM over the classical 2D Kohonen map consists in using a

N6N6N lattice, instead of N6N. Each map element contained a

vector of dimension equal to the dimensionality of the input space,

termed model vector. At each step k of the learning algorithm, the

3DKM learned an activity vector (AVk) by finding its most similar

model vector in the map (best-matching units – BMU) and altering

it and its neighbors [23]. The amount of change and the radius of

the neighborhood are given by two monotonically decreasing

functions: L(k) and R(k), respectively:

L(k)~L0
:e{k:

ln
L0

LM
M ð3Þ

where, L(k) is the learning rate, modulating how much model

vectors were changed at training step k. L0 and LM are initial and

final learning rates. We used L0 = 1 and LM = 0.01. The total

number of training steps is denoted by M.

R(k)~round R0
:e

{k:
ln (R0=0:5)

(g=100) :M

 !
ð4Þ

where, round denotes the rounding to the nearest integer, R(k)

specifies the neighborhood size around the BMU within which

elements were allowed to learn at step k. R0 is the initial radius of

the neighborhood. g is the percentage of M after which R becomes

0 (only the BMU is modified for R = 0). We used R0 = N/2 and

g = 66 (66% of steps were used to establish the topology of the map

and the last 34% of the steps to fine-tune the representation of

activity vectors in the map).

Within the learning neighborhood model vectors further away

from the BMU change less than the ones closer to it, by

multiplying the learning rate with a 3D Gaussian envelope having

a standard deviation of R(k)/3:

MVk½x,y,z�~MVk{1½x,y,z�z

(AVk{MVk{1½x,y,z�):L(k):e
{

(xBMU {x)2z(yBMU {y)2z(zBMU {z)2

2: ½R(k)=3�2

ð5Þ

where, MVk[x,y,z] is a model vector, at step k of the training,

located within the neighborhood of the BMU (distance from BMU

#R(k)) at position (x,y,z) in the 3D lattice. (xBMU, yBMU, zBMU) is the

position of the BMU in the 3D lattice. AVk is the activity vector

that is learned at step k, L(k) and R(k) are, respectively, the learning

rate and the size of the neighborhood at step k.

For details regarding convergence and stopping criteria see also

our previous report [18]. Here, we used maps that included 1,000

points (clusters) in the 3D lattice (N = 10). Thus, for N = 10 there

were 1,000 patterns available to describe a dataset.

Pattern Specificity
The specificity SPp(j) of a pattern p (model vector MVp) to a

given stimulus j was computed as:

SPp(j)~
rp(j)P

c

rp(c)
; c~1,s ð6Þ

where, rp(j) is the number of occurrences of pattern p in all trials

belonging to stimulus j, rp(c) is the number of occurrences of

pattern p in all trials belonging to stimulus c, and s is the number of

stimuli.

Pattern specificity is thus a function of a stimulus set, and has a

value for each stimulus, between 0 (never occurs for that stimulus)

and 1 (occurs only for that stimulus). The sum of specificities of a

pattern across the stimulus set always amounts to 1. See also the

same concept, termed Pattern Specificity Index, explained in [18].

Classifiers
Datasets were first half-split by randomly choosing half the trials

for the training set and half for the testing set, for each stimulus

condition. After training and classification, performance was

computed as a ratio between the number of correctly classified

trials and the total number of trials that were classified. The half-

splitting procedure was repeated 1,000 times to compute the mean

and standard deviation of classification performances.

Mean rate classifier. For the training set, model firing rate

vectors were computed for each stimulus, as follows:

MRj(i)~
rj(i)

TD:Tj=2
; i~1,n j~1,s ð7Þ

where, MRj(i) is the entry corresponding to neuron i in the model

rate vector for stimulus j, rj(i) is the spike count of neuron i for all

training trials corresponding to stimulus j (Tj/2 training trials), TD

is the duration of a trial in seconds, Tj is the total number of trials

recorded for stimulus j, n is the number of neurons and s is the

number of stimuli.

For a trial l, from the testing set, a mean firing rate vector (RVl)

was first computed:

RVl(i)~
rl(i)

TD
; i~1,n ð8Þ

where, RVl(i) is the entry corresponding to neuron i in the mean

rate vector for trial l.

Finally, the trial l to be classified was assigned to a stimulus

condition SCl by finding the closest model rate vector (MRj) in

Euclidean distance:

SCl~j RVl{MRj

�� ��~ min
�� ð9Þ

The mean rate classifier is similar to a Maximum Likelihood

classifier. See also Classifiers Explained Intuitively in Text S1.
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Specificity classifier. This classifier takes into account the

specificity of patterns appearing in a test trial l and builds

specificity scores corresponding to each stimulus condition j:

SCOREl(j)~
X

p

SPp(j):rl(p); p[trial l ð10Þ

where, SCOREl(j) is the score corresponding to stimulus j,

computed for trial l, and SPp(j) is the specificity of pattern p for

stimulus j computed only on the train trials, rl(p) is the number of

occurrences of pattern p in trial l, and p spans all patterns

expressed in trial l.

The test trial l is assigned to stimulus condition SCl that has the

highest corresponding specificity score:

SCl~j SCOREl(j)~ maxj ð11Þ

Since this classifier considers all patterns in a trial and disregards

their position in the trial, it does not take into account the

dynamics of the cortex in response to the dynamics of the stimulus

and hence it does not consider stimulus-locking. The specificity

classifier is similar, although not equivalent, to a Naı̈ve Bayesian

classifier in that it classifies a trial based on probabilities that a

pattern is evoked by a given stimulus (pattern specificities).

However, unlike the Bayesian classifier, we use a sum of weighted

probabilities (specificities) to avoid the problems caused when a

pattern is not expressed at all in a given condition (the Bayesian

product of probabilities would be zero). See also Classifiers

Explained Intuitively in Text S1.

Trajectory classifier. The trajectory in the

multidimensional pattern space was defined by first segmenting

each trial into non-overlapping windows of size equal to the

integration time constant (t) that was used to compute the

patterns. After segmentation of trial l, an average pattern MVAl(w)

was computed for each window w of size t bins, by taking the

average of patterns p appearing in the respective window:

MVAl(w)~

P
p

MVp

t
; p[window w oftrial l ð12Þ

where, MVp is the model vector of pattern p.

A trajectory of a trial l was thus represented as a sequence of

average model vectors [MVAl(1), MVAl(2), …, MVAl(Nw)], where

Nw is the total number of windows resulted after the segmentation

of the trial. Using the training trials, a set of model trajectories

(MTj) was computed for each stimulus j, by averaging trajectories

corresponding to training trials that belong to the same stimulus:

MTj~

P
l

MVAl(1)

Tj=2
,

P
l

MVAl(2)

Tj=2
, . . . ,

P
l

MVAl(Nw)

Tj=2

2
4

3
5;

for all train trials l[stimulus j ð13Þ

where, MTj is the model trajectory for stimulus j, MVAl(w) are the

average model vectors corresponding each window w, Tj is the

total number of trials recorded for stimulus j. Sums run over the

Tj/2 trials belonging to the training set for stimulus j.

For a new test trial l to be classified, the distance DTl(j) between

the trajectory of the trial and each model trajectory j was

computed by summing up Euclidean distances for all windows w:

DTl(j)~
X

w

MVAl(w){MTj(w)
�� �� ; w~1,Nw ð14Þ

where, DTl(j) is the distance between the trajectory corresponding

to trial l and the model trajectory corresponding to stimulus j,

MVAl(w) are the average model vectors corresponding each

window w, and Nw is the total number of windows resulted after

the segmentation of the trial.

The test trial l is assigned to stimulus condition SCl that yields

the lowest distance between its corresponding model trajectory

and the trajectory of the trial:

SCl~j DTl(j)~ minj ð15Þ

The trajectory classifier is also a Maximum Likelihood classifier.

It accumulates point by point distances between the test trajectory

and model trajectories (computed as averages for each stimulus) to

estimate the stimulus inducing the most similar temporal structure

to the test trial. See also Classifiers Explained Intuitively in Text

S1.

Time Resolved Distances and ‘Effect Size’ for Trajectories
in the Pattern Space

To identify where informative patterns were located in time, we

computed, for trajectory classifiers, two time resolved distances, as

follows: For all test trials l of a given stimulus ts, we computed the

average time-resolved distance to the model of that stimulus (dTts
)

and the average time-resolved distance to the models of other

stimuli (dOts
):

dTl,ts
(t)~ MVAl(wt){MTts(wt)k k; l[test(ts) ð16Þ

dTts (t)~

P
l[test(ts)

dTl,ts
(t)

Tts=2
ð17Þ

SD dTts (t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l[test(ts)

½dTl,ts
(t){dTts (t)�2

Tts=2{1

vuuut ð18Þ

where, dTts
(t)is the average distance, from the trajectory

MVAl(wt) of a test trial, belonging to stimulus ts, to the model

trajectory MTts(wt) of stimulus ts at time t (window wt centered at

time t); SD dTts
(t) is the standard deviation of dTl

(t) over test trials

l[test(ts); test(ts) is the set of test trials for stimulus ts; Tts is the

number of trials recorded for stimulus ts.

dOl,ts
(t)~

P
j=ts

MVAl(wt){MTj(wt)
�� ��

s{1
; l[test(ts) ð19Þ

dOts (t)~

P
l[test(ts)

dOl,ts
(t)

Tts=2
ð20Þ
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SD dOts (t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l[test(ts)

½dOl,ts
(t){dOts (t)�2

Tts=2{1

vuuut ð21Þ

where, dOts (t)is the average distance, from the trajectory

MVAl(wt) of a test trial, belonging to stimulus ts, to the model

trajectories MTj(wt) of other stimuli j? ts, at time t (window wt

centered at time t); SD dOts (t) is the standard deviation of dOl
(t)

over test trials l[test(ts); test(ts) is the set of test trials for stimulus ts;

Tts is the number of trials recorded for stimulus ts; s is the total

number of stimuli.

The two time-resolved distances dTts
(t)and dOts

(t) show, for

each instant in time, how close is on average, a trajectory

corresponding to a test trial of a stimulus ts to its true model

trajectory, and to the model trajectories of other stimuli,

respectively. At moments t in time where dTts
(t)vdOts

(t), the

trajectory of the test trial is closer to the model of its corresponding

true stimulus ts than to models of other stimuli, and, hence, it

contains specific information about stimulus ts. As compared to the

trajectory classifier described in Equations 12–15, here the window

w was always slid with at most a 5 ms step such as to yield a good

temporal resolution in identifying zones with high information

content. Note that classification performance plots (Figure 3,

Figure S3 and Figure S4) remain unchanged even if windows are

overlapping and slid with a 5 ms resolution.

To quantify how much closer is a test trial to the model of its

true stimulus compared to the models of other stimuli, we

computed a time-resolved measure of Cohen’s d ‘effect size’ by

considering the two time-resolved distances mentioned above:

Cohens dts(t)~
dOts (t){dTts (t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½SD dOts (t)2zSD dTts (t)2�=2

q ð22Þ

A large, positive value of Cohens_dts(t) for a given moment t in

time means that the trajectory of a test trial belonging to stimulus ts

is reliably closer to the model of its true stimulus as compared to

the models of other stimuli, for that moment in time t. The effect

size is normalized with respect to the standard deviations of

distances. Therefore it represents not only how much closer are

patterns, around time t, on average to the patterns of the true

stimulus, but also how closer they are with respect to the variability

across trials. This ‘effect size’ measure can also be interpreted as

the variability-normalized width of the separatrix between

different pattern classes in multidimensional space.

Supporting Information

Text S1 Supporting Information text.

(PDF)

Figure S1 Classification performance of the trajectory classifier

applied on data clustered with 3D Kohonen maps (red) and on

unclustered data (blue). Error bars represent s.d.

(TIF)

Figure S2 Classification performance of the specificity and

trajectory classifiers applied on data clustered with 3D Kohonen

maps (red) and with K-Means (blue). Error bars represent s.d.

(TIF)

Figure S3 Reproduction of classification results for datasets

evoked by drifting sinusoidal gratings. (A) and (B), Classification

results for two datasets recorded from the same cat as in Figure 3D.

The example in (B) is the same dataset as in Figure 3D but

resorted according to different criteria. (C) and (D), Reproduction

of classification results in two additional cats. Error bars represent

s.d.

(TIF)

Figure S4 Reproduction of classification results from Figure 3F.

(A) and (B), Results on datasets recorded in response to flashed

letter sequences, from two additional cats. Error bars represent s.d.

(TIF)

Figure S5 Effect of jitter on datasets with slow stimuli after

bursts have been eliminated by keeping only the first spike in each

burst. Error bars represent s.d. over independent jitters.

(TIF)
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S.P. Paşca, and N-H. Chen for useful comments and assistance.

Author Contributions

Conceived and designed the experiments: DN RCM. Performed the

experiments: DN SY MNH. Analyzed the data: OFJ RCM. Contributed

reagents/materials/analysis tools: OFJ RCM. Wrote the paper: RCM OFJ

DN WS.

References

1. Perkel D, Bullock TH (1968) Neural coding. Neurosci Res Prog Bulletin 6:

221–348.

2. Eggermont JJ (1998) Is there a neural code? Neurosci Biobehav Rev 22:

355–370.

3. Adrian ED (1928) The basis of sensation: the action of the sense organs. New

York: W.W. Norton & Co.

4. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. J Physiol 160: 106–154.

5. Singer W (1999) Neuronal synchrony: a versatile code for the definition of

relations? Neuron 24: 49–65, 111-25.

6. Grün S, Diesmann M, Aertsen A (2002) Unitary events in multiple single-neuron

spiking activity: I. Detection and significance. Neural Comput 14: 43–80.

7. Puchalla JL, Schneidman E, Harris RA, Berry MJ (2005) Redundancy in the

population code of the retina. Neuron 46: 493–504.

8. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply

strongly correlated network states in a neural population. Nature 440: 1007–1012.

9. Yu S, Huang D, Singer W, Nikolić D (2008) A small world of neuronal
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59. Radons G, Becker JD, Dülfer B, Krüger J (1994) Analysis, classification, and
coding of multielectrode spike trains with hidden Markov models. Biol Cybern

71: 359–373.

60. Petersson M (2010) Beyond AMPA and NMDA: Slow synaptic mGlu/TRPC

currents. Implications for dendritic integration. Licentiate Thesis, Stockholm
2010.

61. Yoshida M, Fransén E, Hasselmo ME (2008) mglur-dependent persistent firing

in entorhinal cortex layer iii neurons. Eur J Neurosci 28: 1116–1126.

62. Li WC, Soffe SR, Wolf E, Roberts A (2006) Persistent responses to brief stimuli:

feedback excitation among brainstem neurons. J Neurosci 26: 4026–4035.

63. Muresan RC, Savin C (2007) Resonance or integration? self-sustained dynamics
and excitability of neural microcircuits. J Neurophysiol 97: 1911–1930.

64. Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent

activity. Trends Neurosci 24: 455–463.

65. Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual

space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:
331–349.

66. Seo H, Lee D (2009) Neuroscience: Persistent feedback. Nature 461: 50–51.

67. Biederlack J, Castelo-Branco M, Neuenschwander S, Wheeler DW, Singer W,

et al. (2006) Brightness induction: rate enhancement and neuronal synchroni-
zation as complementary codes. Neuron 52: 1073–1083.

68. Feng W, Havenith MN, Wang P, Singer W, Nikolić D (2010) Frequencies of
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