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Abstract

In a companion paper [1], we have presented a generic approach for inferring how subjects make optimal decisions under
uncertainty. From a Bayesian decision theoretic perspective, uncertain representations correspond to ‘‘posterior’’ beliefs,
which result from integrating (sensory) information with subjective ‘‘prior’’ beliefs. Preferences and goals are encoded
through a ‘‘loss’’ (or ‘‘utility’’) function, which measures the cost incurred by making any admissible decision for any given
(hidden or unknown) state of the world. By assuming that subjects make optimal decisions on the basis of updated
(posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of observed behaviour. In this paper, we
describe a concrete implementation of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic
predictions) and demonstrate its utility by applying it to both simulated and empirical reaction time data from an
associative learning task. Here, inter-trial variability in reaction times is modelled as reflecting the dynamics of the subjects’
internal recognition process, i.e. the updating of representations (posterior densities) of hidden states over trials while
subjects learn probabilistic audio-visual associations. We use this paradigm to demonstrate that our meta-Bayesian
framework allows for (i) probabilistic inference on the dynamics of the subject’s representation of environmental states, and
for (ii) model selection to disambiguate between alternative preferences (loss functions) human subjects could employ
when dealing with trade-offs, such as between speed and accuracy. Finally, we illustrate how our approach can be used to
quantify subjective beliefs and preferences that underlie inter-individual differences in behaviour.
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Introduction

How can we infer subjects’ beliefs and preferences from their

observed decisions? Or in other terms, can we identify the internal

mechanisms that led subjects to act, as a response to experimen-

tally controlled stimuli? Numerous experimental and theoretical

studies imply that subjective prior beliefs, acquired over previous

experience, strongly impact on perception, learning and decision-

making ([2–6]). We also know that preferences and goals can

impact subjects’ decisions in a fashion which is highly context-

dependent and which subjects may be unaware of ([7–8]). But how

can we estimate and disentangle the relative contributions of these

components to observed behaviour? This is the nature of the so-

called Inverse Bayesian Decision Theory (IBDT) problem, which

has been a difficult challenge for analytical treatments.

In a companion paper [1], we have described a variational

Bayesian framework for approximating the solution to the IBDT

problem in the context of perception, learning and decision-

making studies. Subjects are assumed to act as Bayesian observers,

whose recognition of the hidden causes of their sensory inputs

depends on the inversion of a perceptual model with subject-specific

priors. The Bayesian inversion of this perceptual model derives

from a variational formulation, through the minimization of

sensory surprise (in a statistical sense). More precisely, the

variational Bayesian approach minimizes the so-called ‘‘free

energy’’, which is a lower bound on (statistical) surprise about

the sensory inputs. The ensuing probabilistic subjective represen-

tation of hidden states (the posterior belief) then enters a response

model of measured behavioural responses. Critically, decisions are

thought to minimize expected loss or risk, given the posterior belief

and the subject-specific loss (or utility) function that encodes the

subject’s preferences. The response model thus provides a

complete mechanistic mapping from experimental stimuli to

observed behaviour. Over time or trials, the response model has

the form of a state-space model (e.g., [9]), with two components: (i)

an evolution function that models perception and learning through

surprise minimization and (ii) an observation function that models

decision making through risk minimization.

Solving the IBDT problem, or observing the observer, then reduces

to inverting this state-space response model, given experimentally

measured behaviour. This meta-Bayesian approach (experiment-

ers make Bayesian inferences about subject’s Bayesian inferences)

provides an approximate solution to the IBDT problem in that it

enables comparisons of competing (perceptual and response)

models and inferences on the parameters of those models. This is

important, since evaluating the evidence of, for example, different

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15555



response models in the light of behavioural responses means we

can distinguish between different loss functions (and thus

preferences) subjects might have.

This paper complements the theoretical account in the

companion paper by demonstrating the practical applicability of

our framework. Here, we use it to investigate what computational

mechanisms operate during learning-induced motor facilitation.

While it has often been found that (correct) expectations about

sensory stimuli speed up responses to those stimuli (e.g. [10–11]),

explaining this acceleration of reaction times in computationally

mechanistic terms is not trivial. We argue that such an explanation

must take into account the dynamics of subjective representations,

such as posterior beliefs about the causes that generate stimuli, and

their uncertainty, as learning unfolds over trials. Throughout the

text, ‘‘representation’’ refers to posterior densities of states or

parameters. We investigate these issues in the context of an audio-

visual associative learning task [12], where subjects have to

categorize visual stimuli as quickly as possible. We use this task as a

paradigmatic example of what sort of statistical inference our

model-based approach can provide. As explained in detail below,

this task poses two interesting explananda for computational

approaches: (i) it relies upon a hierarchical structure of causes in

the world: visual stimuli depend probabilistically on preceding

auditory cues whose predictive properties change over time (i.e., a

volatile environment), and (ii) it introduces a conflict in decision

making, i.e. a speed-accuracy trade-off.

We construct two Bayesian decision theoretic (BDT) response

models based upon the same speed-accuracy trade-off (c.f. [13] or

[14]), but differing in their underlying perceptual model. These two

perceptual models induce different learning rules, and thus different

predictions, leading to qualitatively different trial-by-trial variations

in reaction times. We have chosen to focus on reaction time data to

highlight the important role of the response model and to show that

optimal responses are not just limited to categorical choices.

Of course, the validity of a model cannot be fully established by

application to empirical data whose underlying mechanisms or

‘‘ground truth’’ are never known with certainty. However, by

ensuring that only one of the competing models was fully consistent

with the information given to the subjects, we established a

reference point against which our model selection results could be

compared, allowing us to assess the construct validity of our

approach. Furthermore, we also performed a simulation study,

assessing the veracity of parameter estimation and model compar-

ison using synthetic data for which the ground truth was known.

Methods

How does learning modulate reaction times? In this section, we

first describe the associative learning task, and then the perceptual

and response models we have derived to model the reaction time

data. We then recall briefly the elements of the variational

Bayesian framework which is described in the companion paper in

detail and which we use to invert the response model given

reaction time data. Next, we describe the Monte-Carlo simulation

series we have performed to demonstrate the validity of the

approach. Finally, we summarize the analysis of real reaction time

data, illustrating the sort of inference that can be derived from the

scheme, and establishing the construct validity of the approach.

The associative learning task
The experimental data and procedures have been reported

previously as part of a functional magnetic resonance imaging

study of audio-visual associative learning [12]. We briefly

summarize the main points. Healthy volunteers were presented

visual stimuli (faces or houses) following an auditory cue. The

subjects performed a speeded discrimination task on the visual

stimuli. On each trial, one of two possible auditory cues was

presented (simple tones of different frequencies; C1 and C2), each

predicting the subsequent visual cue with a different probability.

The subjects were told that the relationship between auditory and

visual stimuli was probabilistic and would change over time but

that these changes were random and not related to any underlying

rule. The reaction-time (from onset of visual cue to button press)

was measured on each trial.

The probability of a given visual outcome or response cue, say

face, given C1 was always the same as the probability of the

alternative (house) given C2: p faceDC1ð Þ~1{p faceDC2ð Þ. Moreover,

since the two auditory cues occurred with equal frequency, the

marginal probability of a face (or house) on any given trial was

always 50%. This ensured that subjects could not be biased by a

priori expectations about the outcome. In the original regression

analyses in [12] no differences were found between high and low

tone cues, nor any interactions between cue type and other

experimental factors; here, we therefore consider the trials cued by

C1 and C2 as two separate (intermingled, but non-interacting)

sequences. This allows us to treat the two sequences as replications

of the experiment, under two different auditory cues. We hoped to

see that the results were consistent under the high and low tone cues.

A critical manipulation of the experiment was that the

probabilistic cue-outcome association pseudorandomly varied over

blocks of trials, from strong p faceDCð Þ~0:9, and moderate

p faceDCð Þ~0:7, to random p faceDCð Þ~0:5. Our subjects were

informed about the existence of this volatility without specifying

the structure of these changes (timing and probability levels). We

prevented any explicit search for systematic relationships by

varying the length of the blocks and by presenting predictive and

random blocks in alternation. In one session, each block lasted for

28–40 trials, within which the order of auditory cues was

randomized. Each of five sessions lasted approximately seven

minutes. On each trial, an auditory cue was presented for 300 ms,

followed by a brief (150 ms) presentation of the visual outcome. In

order to prevent anticipatory responses or guesses, both the inter-

trial interval (20006650 ms) and visual stimulus onset latency

(150650 ms) were jittered randomly.

The conventional analysis of variance (ANOVA) of the

behavioural measures presented in [12] demonstrated that subjects

learned the cue-outcome association: reaction times to the visual

stimuli decreased significantly with increasing predictive strengths

of the auditory cues. In what follows, we try to better understand

the nature of this learning and the implicit perceptual models the

subjects were using.

Perceptual and response models
The first step is to define the candidate response models that we

wish to consider. In what follows, we will restrict ourselves to two

qualitatively different perceptual models, which rest on different

prior beliefs and lead to different learning rules (i.e. posterior belief

update rules or recognition processes). To establish the validity of

our meta-Bayesian framework, the two models used for the

analysis of the empirical data were deliberately chosen such that

one of them was considerably less plausible than the other:

whereas a ‘‘dynamic’’ model exploited the information given to

the subjects about the task, the other (‘‘static’’) model ignored this

information. This established a reference point for our model

comparisons (akin to the ‘‘ground truth’’ scenario used for

validating models by simulated data). These perceptual models

were combined with a loss-function embodying the task instruc-

tions to form a complete BDT response model. This loss-function
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had two opposing terms, representing categorization errors and

the decision time, respectively, and thus inducing the speed-

accuracy trade-off of the task. We now describe the form of these

probabilistic models and their inversion.

Perceptual models. The sensory signals (visual outcomes) u

presented to the subjects were random samples from two sets of

images, composed of eight different faces and eight different

houses, respectively. A two-dimensional projection of these images

onto their two first principal eigenvectors clearly shows how faces

and houses cluster around two centres that can be thought of as an

‘‘average’’ face and house, respectively (see Figure 1). We therefore

assumed the sensory inputs u to be as a univariate variable

(following some appropriate dimension reduction), whose

expectation depends upon the hidden state (face or house). This

can be expressed as a likelihood that is a mixture of Gaussians:

p uk Dx
(1)
k

� �
~ N g1,a2

� �� �x(1)
k N g2,a2

� �� �1{x
(1)
k ð1Þ

Here g1,g2ð Þ are the expected sensory signals caused by houses

and faces (the ‘‘average’’ face and house images), k is a trial index,

x
(1)
k [ 0,1f g is an indicator state that signals the category (x

(1)
k ~1:

house, x
(1)
k ~0: face), and a is the standard deviation of visual

outcomes around the average face/house images. During

perceptual categorization, subjects have to recognize x
(1)
k , given

all the sensory information to date. As faces and houses are well-

known objects for whose categorisation subjects have a life-long

experience, it is reasonable to assume that g1,g2ð Þ and a are

known to the subjects. The hidden category states x
(1)
k have a prior

Bernoulli distribution conditioned on the cue-outcome associative

strength x
(2)
k :

p x
(1)
k x

(2)
k

���� �
~Bernoulli s x

(2)
k

� �� �

~s x
(2)
k

� �x
(1)
k 1{s x

(2)
k

� �� �1{x
(1)
k

s : x?
exp xð Þ

1zexp xð Þ

ð2Þ

Figure 1. 2D projection of the visual stimuli that were presented to the subjects (two sets of eight face images and eight house
images, respectively). X-axis: first principal component, y-axis: second principal component. On this 2D projection, house and face images clearly
cluster (green and blue ellipses) around ‘‘average’’ face and house (green and blue stars), respectively. One might argue that these ellipses
approximate the relative ranges of variations of faces and houses, as perceived by the visual system.
doi:10.1371/journal.pone.0015555.g001
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The sigmoid function s x
(2)
k

� �
~p x

(1)
k ~1DCi

� �
maps the

associative strength x
(2)
k to the probability of seeing a house given

the present auditory cue Ci i[ 1,2f gð Þ. Figure 2 summarises the

general structure of the perceptual models of associative learning

in this paper.

We considered two perceptual models that differed only in

terms of prior beliefs about the associative strength. Although both

models have a prior expectation of zero for the associative

strength, they differ profoundly in their predictions about how that

associative strength changes over time. This is reflected by the

different roles of the perceptual parameter q in the two models:

N The static perceptual model, m
(p)
1 : Subjects were assumed to ignore

the possibility of changes in associative strength and treat it as

stationary. Under this model, subjects assume that the

associative strength has a constant value, x
(2)
0 , across trials

and is sampled from a Gaussian prior; i.e.:

x
(2)
k ~x

(2)
0 : Vk

pq x
(2)
0

� �
~N 0,q{1

� � ð3Þ

where q is its (fixed) prior precision. Here, the perceptual parameter

q effectively acts as an (unknown) initial condition for the state-space

formulation of the problem (see Equation 13 below).

N The dynamic perceptual model m
(p)
2 : Subjects assumed a priori that the

associative strength x
(2)
k varied smoothly over time, according to

Figure 2. Conditional dependencies in perceptual models of associative learning. Left: cascade of events leading to the sensory
outcomes. A Gaussian prior (with variance q) is defined at the level of the cue-outcome association x(2). Passed through a sigmoid mapping, this
determines the probability of getting a house (x(1)~1) or a face (x(1)~0). Finally, this determines the visual outcome u within the natural range of
variation (a) of house/face images. Right: Equivalent graphical model.
doi:10.1371/journal.pone.0015555.g002
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a first-order Markov process. This is modelled as a random walk

with a Gaussian transition density:

x
(2)
0 ~0

pq x
(2)
kz1jx

(2)
k

� �
~N x

(2)
k ,q{1

� � ð4Þ

Here, q is the precision hyperparameter which represents the

roughness (inverse smoothness) of changes in associative strength

(i.e., its volatility).

Note that the task information given to subjects did highlight the

possibility of changes in cue strength. Therefore, from the point of

view of the experimenter, it is more likely that the subjects relied

upon the dynamic model to form their prior predictions. The

choice of these two models was deliberate as it allowed for a clear

prediction: we hoped to see that model comparison would show a

pronounced superiority of the dynamic model (see section

‘Inverting the response model below’).

Recognition: the variational Bayesian inversion of the

perceptual model. Given the perceptual models described

above, we can now specify the recognition process in terms of their

variational Bayesian inversion. The generic derivation of the

recognition process is detailed in the companion paper [1]. In

brief, subjects update their belief on-line, using successive stimuli

to optimise lk~ m(1)
k ,m(2)

k ,s(2)
k

n o
, the sufficient statistics of the

posterior density on the k-th trial. Under a mean-field/Laplace

approximation to the joint posterior, these sufficient statistics are (i)

m(1), the first-order moment of the Bernoulli posterior q x
(1)
k

� �
about the outcome category x(1), and (ii) m(2),s(2)

� �
, the first- and

second- order moments of the Gaussian posterior q x
(2)
k

� �
about

the associative strength x(2). The recognition process derives from

the minimization of the surprise conveyed by sensory stimuli at

each trial. Within a variational Bayesian framework, negative

surprise is measured (or, more precisely, lower-bounded) via the

so-called perceptual free-energy F
(p)
k [15]:

F
(p)
k ~E ln p uk x

(1)
k

���� �
zln p x

(1)
k x

(2)
k

���� �
zln p x

(2)
k

� �h i
zS q x

(1)
k

� �� �
zS q x

(2)
k

� �� �
~{

1

2a2
m

(1)
k uk{g1ð Þ2z 1{m

(1)
k

� �
uk{g1ð Þ2

� �
{lna{

1

2
ln2p

zm(2)
k m(1)

k {1
� �

zln s m(1)
k

� �
z

1

2
s m(2)

k

� �2

{s m(2)
k

� �	 

s(2)

k

{
1

2s
(2)
0

m
(2)
k {m

(2)
k{1

� �2

zs
(2)
k

	 

{

1

2
ln s

(2)
0 {

1

2
ln 2p

{m(1)
k lnm(1)

k { 1{m(1)
k

� �
ln 1{m(1)

k

� �
z

1

2
ln s(2)

k z
1

2
ln 2pe

ð5Þ

where the expectation is taken under the approximate posterior

densities (representations) q x
(1)
k

� �
and q x

(2)
k

� �
and S :ð Þ denotes

the Shannon entropy. Note that the variance parameter s
(2)
0

depends on the perceptual model; i.e.

s(2)
0 ~s(2)

k{1 for the static model

s
(2)
0 ~s

(2)
k{1zq for the dynamic model:

ð6Þ

Note also that the perceptual free energy F
(p)
k of the k-th trial

depends on the representation of associative strength at the

previous trial, through the sufficient statistics m
(2)
k{1 and s

(2)
k{1.

Therefore, these affect the current optimal sufficient statistics lk

(including that of the outcome category), allowing learning to be

expressed over trials. Optimizing the perceptual free energy F
(p)
k

with respect to q x
(1)
k

� �
and q x

(2)
k

� �
yields the updated posterior

densities of both the outcome category (face or house)

q x
(1)
k

� �
~Bernouilli m

(1)
k

� �
m(1)

k ~
p1

p1zp2

p1~exp {
1

2a2
uk{g1

� �2
zln s m(2)

k

� �	

z s m
(2)
k

� �2

{s m
(2)
k

� �	 

s

(2)
k




p2~exp {
1

2a2
u1

k{g2

� �2
zln 1{s m

(2)
k

� �� �
{m

(2)
k

	

z s m(2)
k

� �2

{s m(2)
k

� �	 

s(2)

k




ð7Þ

and of the associative strength

q x
(2)
k

� �
~N m

(2)
k ,s

(2)
k

� �

m
(2)
k ~ arg max

x
I xð Þ

s(2)
k ~{

L2I

Lx2

����
m

(2)
k

2
4

3
5{1

~ s(2)
0 zs m(2)

k

� �
{s m(2)

k

� �2
� �{1

I xð Þ~ln s xð Þzx m
(1)
k {1

� �
{

1

2s(2)
0

x{m
(2)
k

� �2

ð8Þ

Note that functional form of the sufficient statistics above

depends upon the perceptual model, through the variance

parameter s
(2)
0 , which in turn depends upon the precision

parameter q (see Equation 6). This dependence is important,

since it strongly affects the recognition process. Under the static

perceptual model, equation 8 tells us that the subject’s posterior

variance s
(2)
k about the associative strength is a monotonically

decreasing function of trial index k. This means that observed cue-

outcome stimuli will have less and less influence onto the

associative strength representation, which will quickly converge.

Under the dynamic perceptual model however, q scales the

influence the past representation has onto the current one. In

other words, it determines the subject’s speed of forgetting

(discounting): the more volatile the environment, the less weight

is assigned to the previous belief (and thus past stimuli) in the

current representation. The key difference between the two

perceptual models thus reduces to their effective memory.

We (experimentally) estimate the parameter q through inversion

of the response model m(r), as summarized in the next section.

This means the optimisation of perceptual representations has to

be repeated for every value of q that is considered when observing

the observer, i.e. during inversion of the response model. This is an

important operational aspect of meta-Bayesian inference, where

ð5Þ
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inversion of the response model entails a nested inversion of the

perceptual model.

Response model: deciding when to decide. Following the

description of the perceptual models, we now define the BDT

mapping from representations to behaviour. We assume that

subjects decide on the basis of an implicit cost that ranks possible

decisions in terms of what decision is taken and when it is made.

This cost is encoded by a loss-function

‘h x(1),c,t
� �

~ x(1){c
� �2

zh1t ð9Þ

where c[ 0,1f g is the subject’s choice (face or house) and t[Rz is the

decision time. The first term makes a categorisation error costly,

whereas the second penalizes decision time. This loss-function

creates a speed-accuracy conflict, whose optimal solution depends

on the loss parameter h1. Since the categorization error is binary,

the loss parameter h1 can be understood as the number of errors

subjects are willing to trade against one second delay. It is formally

an error rate that controls the subject-dependent speed-accuracy

trade-off. This can lead to an interaction between observed

reaction times and choices, of the sort that explains why people

make mistakes when in a hurry (see below).

This loss function is critical for defining optimal decisions:

‘h x(1),c,t
� �

returns the cost incurred by making choice c at time t
while the outcome category is x(1). Because subjects experience

perceptual uncertainty about the outcome category, the optimal

decision c � ,t�ð Þ minimizes the expected loss, which is also referred

to as posterior riskQh (this is discussed in more detail in the

companion paper):

c � ,t�ð Þ~arg min
c,t

Qh c,tð Þ

Qh c,tð Þ~
ð
‘h x(1),c,t
� �

q x(1)
� �

dx(1)
ð10Þ

Note that because the expectation is taken with regard to the

posterior density on the hidden states (i.e., the belief about stimulus

identity), optimal decisions (concerning both choice c and response

time t) do not only depend on the loss-function ‘, but also on the

perceptual model m(p).

To derive how posterior risk evolves over time within a trial, we

make the representation of outcome category a function of within-

trial peristimulus time t (dropping the trial-specific subscript k for

clarity): m(1)?m(1) tð Þ. We can motivate the form of m(1) tð Þ by

assuming that the within-trial recognition dynamics derive from a

gradient ascent on the perceptual free-energy F
(p)
k . This has been

recently suggested as a neurophysiologically plausible implemen-

tation of the variational Bayesian approach to perception

([3,16;17]). Put simply, this means that we account for the fact

that optimizing the perceptual surprise with respect to the

representation takes time.

At each trial, the subject’s representation is initialized at her

prior prediction m
(1)
0 :m(1) 0ð Þ, and asymptotically converges to the

optimum perceptual free energy m(1)
?: lim

t??
m(1) tð Þ. (Note that the

prior prediction at the beginning of a trial, m(1)
0 , changes over trials

due to learning the predictive properties of the auditory cue; see

Equations 5–8 above). It turns out (see Appendix S1) that, the

posterior risk in Equation 10 can be rewritten as a function of

within-trial peristimulus time t and the difference Dm(1)
0 ~

m(1)
? {m(1)

0 between the posterior representation and the prior

prediction of the outcome category (which can thus be thought of

as a post-hoc prediction error):

Qh c,tð Þ~ 1{2cð Þm(1)
0 z 1{2cð ÞDm(1)

0 1{exp {2h2tð Þð Þ

zczh1 t:
ð11Þ

where the second response parameter h2 is an unknown scaling

factor that controls the sensitivity to post-hoc prediction error.

Note that in the present experimental context, the sensory

evidence in favour of the outcome category is very strong. Hence,

at convergence of the recognition process, there is almost no

perceptual uncertainty about the outcome (m(1)
?&x(1)). Thus,

regardless of the prior prediction m
(1)
0 , the post-hoc prediction error

Dm(1)
0 is always positive when a house is presented (x(1)~1) and

always negative when a face is shown (x(1)~0). This means that

categorization errors occur if: (C1) Dm
(1)
0 v0 and c~1, or (C2)

Dm(1)
0 w0 and c~0. These conditions can be unified by rewriting

them as Dm(1)
0 2c{1ð Þv0 (see the Appendix for further mathe-

matical details). An interesting consequence is that categorization

errors can be interpreted as reflecting optimal decision-making:

they occur whenever the (learned) prior prediction of the visual

outcome is incorrect (e.g. m(1)
0 &0 despite x(1)~1) and the delay

cost is high enough. In other words, categorization errors are

optimal decisions if the risk of committing an error quickly is

smaller than responding correctly after a longer period.

Note that when Dm
(1)
0 2c{1ð Þw0 (no categorization error), the

posterior risk given in equation 11 is a convex function of decision

time t. The shape of this convex function is controlled by both the

error rate parameter h1 and the sensitivity h2 to post-hoc prediction

error. Finally, Equation 11 yields the optimal reaction time:

t l,h,cð Þ~ arg min
t

Qh c,tð Þ

~

1

2h2
ln

2h2Dm(1)
0 2c{1ð Þ
h1

if
2h2Dm(1)

0 2c{1ð Þ
h1

w1

0 otherwise

8><
>: ,

ð12Þ

Note that this equation has two major implications. First, as one

would intuit, optimal reaction times and post-hoc prediction error

show inverse behaviour: as the latter decreases, the former

increases. Second, and perhaps less intuitive, the optimal reaction

time when committing perceptual categorization errors is zero,

because in this case the post-hoc prediction error is such that:

Dm
(1)
0 2c{1ð Þv0. The reader may wonder at this stage whether

predicted RTs of zero are at all sensible. It should be noted that

this prediction arises from the deterministic nature of Equation 12.

When combined with a forward model accounting for random

processes like motor noise (see Equation 13 below), non-zero

predicted RTs result. Put simply, Equation 12 states that the cost

of an error is reduced, if the decision time is very short.

Inverting the response model
Together with equations 7 and 8, equations 11 and 12 specify

the state-space form of our response model m(r):

yk~t lk,h,cð Þzek

lk~arg max F
(p)
k lk{1,q,ukð Þ

(
, ð13Þ

where yk is the observed reaction time at trial k and the residuals

ek*N 0,Uð Þ, with precision U{1~h3, account for (i.i.d. Gaussian)

random variability in behavioural responses (e.g. motor noise). The
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second (evolution) equation models recognition through the minimi-

zation of perceptual free energy (or negative sensory surprise) and the

first (observation) equation models decision making through the

minimization of posterior risk. The functional form of the optimal

decision time is given in equation 12 (evaluating the post-hoc prediction

error Dm(1)
0 at the current trial) and that of the perceptual free energy

is given in equation 5 (recall that learning effects are modulated by the

perceptual parameter q). Equation 13 basically implies that the

current reaction time yk is a nonlinear function of both the response

parameters h and the perceptual parameter q, through the history of

representations l1,l2,:::,lk. The trial-to-trial variation of reaction

times y1,y2,:::,yk therefore informs us about both the hidden loss and

the belief structures of the observer.

The complete formulation of the probabilistic response model

involves the definition of the likelihood function (directly derived from

equation 13) and the prior density over the unknown model

parameters q,hð Þ. Here, we use weakly informative log-normal priors

(see [18]) on the perceptual parameter q and the response parameters

h1,h2f g to enforce positivity. These are given in table 1. In addition,

the variational Bayesian inversion of the response model makes use of

a mean field approximation p h,qDy,m(r)
� �

&r h1,h2,qð Þr h3ð Þ that

separates the noise precision parameter h3 from the remaining

parameters. Lastly, we relied on a Laplace approximation to the

marginal posterior r h1,h2,qð Þ. This reduces the Bayesian inversion to

finding the first- and second-order moments of the marginal posterior

(see equations 13 and 14 in the companion paper [1] for a complete

treatment).

The algorithmic implementation of the variational Bayesian

inversion of the response model is formally identical to that of a

Dynamic Causal Model (DCM, see e.g. [19] for a recent review). The

variational Bayesian scheme furnishes the approximate marginal

posteriors and a lower bound on the response model evidence (via the

response free energy F (r)&p yDm(r)
� �

), which is used for model

comparison. One can also recover the representations since these are a

function of the perceptual parameter q, for which we obtain a posterior

density r qð Þ (see equations 12 and 14 in the companion paper [1]):

q̂q x1
� �

&Binom m̂m(1)
� �

m̂m(1)~m(1)
��
q̂q

q̂q x2
� �

&N m̂m(2),ŝs(2)
� �

m̂m(2)~m(2)
��
q̂q

ŝs(2)~s(2)
��
q̂q
z

Lm(2)

Lq

����
q̂q

Var q yj½ �Lm(2)

Lq

����
q̂q

T

ð14Þ

where all sufficient statistics and gradients are evaluated at the mode

q̂q:
Ð

q r qð Þdq of the approximate posterior r qð Þ and Var q yj½ �:Ð
q{q̂q
� �2

r qð Þdq is the experimenter’s posterior variance about the

perceptual parameter.

Results

In what follows, we first apply our approach to simulated data in

order to establish the face validity of the scheme, both in terms of

model comparison and parameter estimation. We then present an

analysis of the empirical reaction-time data from the audio-visual

associative learning task in [12].

Monte-Carlo evaluation of model comparison and
parameter estimation

We conducted two series of Monte-Carlo simulations (sample size

= 50), under the static (series A) and dynamic perceptual models

(series B). In each series, the (log) perceptual parameters were

sampled from the intervals 0,3½ � for series A and {2,2½ � for series B.

For both series, the first two (log) response parameters were sampled

from the interval {2,2½ �. As an additional and orthogonal

manipulation, we systematically varied the noise on reaction times

across several orders of magnitude: h3[ 1,10{2,10{4

 �

. Each

simulated experiment comprised a hundred trials and the sequence

of stimuli was identical to that used in the real audio-visual

associative learning study. We chose the parameters a,mð Þ of the

perceptual likelihood such that that the discrimination ratio

(a=Dm1{m2D&10) was approximately similar to that of the natural

images (see Figure 1). We did not simulate any categorization error.

For each synthetic data set, we used both static and dynamic

perceptual models for inversion of the response model and evaluated

the relative evidence of the perceptual models. Since we knew the

ground truth (i.e., which model had generated the data) this allowed

us to assess the veracity of model comparison.

Figure 3 shows a single example of simulated recognition, in

terms of the subject’s belief about both the stimulus and the cue-

outcome association. For this simulation, the volatility of the

association was set to log q~{2 (emulating a subject who

assumes a low volatile environment), both for generating stimuli

and recognition. We found that the variational Bayesian

recognition recovers the stimulus categories perfectly (see blue

line in upper-right panel of figure 3) and the cue-outcome

association strength well (see lower-left panel and green lines in

upper-right panels). This demonstrates that variational recognition

is a close approximation to optimal Bayesian inference.

Figure 4 shows the inversion of the response model, given the

synthetic reaction time data in Figure 3 which were corrupted with

unit noise (h3~1). Adding this observation noise yielded a very low

signal-to-noise ratio (SNR = 0 dB, see Figure 4), where by

definition: SNR~10 log10StT2
�
U. We deliberately used this high

noise level because it corresponded roughly to that seen in the

empirical data reported below. Table 1 lists the priors we placed

on the parameters for this example and for all subsequent

inversions with the dynamic perceptual model. Despite the low

SNR of the synthetic data, the posterior estimates of the response

parameters (grey bars) were very close to the true values (green

circles), albeit with a slight overconfidence (upper left panel in

Figure 4). Furthermore, the posterior correlation matrix shows

that the perceptual and the response parameters are identifiable

and separable (upper centre panel). The non-diagonal elements in

the posterior covariance matrix measure the degree to which any

pair of parameters is non-identifiable (see appendix in the

companion paper [1]. Note that the model fit looks rather poor

Table 1. First and second order moments of the prior density
over perceptual and response parameters (under both static
and dynamical perceptual models).

parameter prior mean prior variance

log q (dynamic perceptual model)
(static perceptual model)

0
2

102

102

log h1:2 0 0½ �T 102 I2

h3 104 106

Note that we used log-normal priors for q and h1:2 , and a Gamma prior for the
residuals’ precision h3 .
doi:10.1371/journal.pone.0015555.t001
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and gives the impression that the RT data are systematically

‘‘under-fitted’’ (lower right and lower centre panels of Fig. 4). This,

however, is simply due to the high levels of observation noise: In

contrast, the estimation of the true subjective beliefs is precise and

accurate (see upper right and lower left panels of Fig. 4). This

means that the variational Bayesian model inversion has

accurately separated the ‘‘observed’’ reaction time data into noise

and signal components. In other words, the estimation of the

deterministic trial-by-trial variations of reaction times is not

confounded by high levels of observation noise. This result (using

simulated data) is important because it lends confidence to

subsequent analyses of empirical reaction time data.

Figure 5 shows the results of the model comparison based on

series A and B. This figure shows the Monte-Carlo empirical

distribution of the response free-energy differences F
(r)
static{F

(r)
dynamic,

where F
(r)
static (respectively F

(r)
dynamic) is the approximate log-evidence

for the response model under the static (respectively dynamic)

perceptual model. This relative log-evidence is the approximate log-

Bayes factor or log odds ratio of the two models. It can be seen from

the graphs in Figure 5 that model comparison identifies the correct

perceptual model with only few exceptions for the static model (left

panel) and always for the dynamic model (note that a log-evidence

difference of zero corresponds to identical evidence for both models).

Table 2 provides the average free-energy differences over simulations

as a function of the true model (simulation series) and SNR.

It is interesting that the free-energy differences are two orders of

magnitude larger for series B, relative to series A. In other words,

when the data-generating model is the dynamic one, it is easier to

identify the true model from reaction times than when the static

model generated the data. This might be due to the fact that the

Figure 3. Variational Bayesian recognition of visual stimuli: Upper Left: time series of sensory cues, sampled from the generative model
summarized in Figure 2. Note that the discrimination ratio (a=Dm1{m2D) is approximately similar to that of the natural images (see Figure 2). Upper
Right: Subject’s posterior belief, as obtained using the inversion of the perceptual model given observed sensory cues (green: cue-outcome
association, blue: visual stimulus category; solid line: posterior mean m(2), shaded area: 99% posterior confidence interval, dots: sampled hidden
states). Note that on each trial, the category of the visual stimuli was recognized perfectly. Lower Left: scatter plot comparing the simulated
(sampled, x-axis) versus perceived (estimated, y-axis) cue-outcome associative strength. Lower right: simulated reaction times.
doi:10.1371/journal.pone.0015555.g003
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static model is a limiting case of the dynamic model; i.e. when the

volatility q tends to zero the dynamical perceptual model can

account for the variability in reaction times generated using the

static model. However, note that this difference in model

complexity does not distort or bias our model comparisons since

the free energy approximation to the model evidence accounts for

such differences in complexity [20].

As expected there is also a clear effect of noise: the higher the

SNR, the larger the relative log-evidences. This means that model

comparison will disambiguate models more easily the more precise

the experimental data.

We next characterised the accuracy of parameter estimation

under the best (correct) model, using the sum of squared error

(SSE), in relation to the true values. We computed the Monte-

Carlo empirical distribution of the SSE for each set of (perceptual

and response) parameters, for each simulation series (A and B) and

SNR. Figure 6 shows these distributions and Table 3 provides the

Monte-Carlo averages.

Quantitatively, the parameters are estimated reasonably

accurately, except for the perceptual parameter (prior precision

on associative strength) of the static model. This reflects the fact

that the prior on association strength has little impact on the long-

term behaviour of beliefs, and hence on reaction times. This is

because within the static perceptual model, q acts as an initial

condition for the dynamics of the representation l, which are

driven by a fixed point attractor that is asymptotically independent

of q. Thus, only the first trials are sensitive to q. The ensuing weak

identifiability of q expressed itself as a high estimation error (high

SSE). Again, there is a clear effect of noise, such that the

estimation becomes more accurate when SNR increases. Also,

consistent with the model comparison results above, parameter

estimates are more precise for the dynamic model than for the

static one.

Application to empirical reaction times
The Monte-Carlo simulations above demonstrate the face

validity of the method, in the sense that one obtains veridical

model comparisons and parameter estimates, given reaction time

data with realistic SNR. We now apply the same analysis to

empirical reaction times from nineteen subjects [12]. Specifically,

Figure 4. Observing the observer: follow-up example from Figure 3. Upper left: Comparison between the estimated (grey bars) and actual
(green dots) perceptual and response parameters. Note that simulated and estimated parameters are shown in log-space. Upper centre: posterior
joint correlation matrix of the perceptual and response parameters (the green rectangles depict the correlation between the perceptual parameter q
and the response parameters h1:2). Upper Right: scatter plot comparing the simulated (x-axis) and estimated (y-axis) sufficient statistics l of the
approximate subject’s posterior. Lower left: time series of estimated (solid lines) and simulated (dotted lines) sufficient statistics l of the
approximate subject’s posterior (blue: cue identity, green: expected association, red: posterior variance of the associative strength). Lower centre:
time series of the simulated (black dots) and predicted (solid line: posterior expectation, shaded area: 99% confidence interval) reaction times. Lower
right: scatter plot comparing the simulated (y-axis) versus predicted (x-axis) reaction times.
doi:10.1371/journal.pone.0015555.g004
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we hoped to show two things to provide evidence for the construct

validity of our approach: first, that the dynamic model (which was

consistent with the information given to the subjects) would have

higher evidence than the static model (which was not), and

secondly, that our results would generalise over both auditory cues,

both in terms of model comparison and parameter estimates (as

explained above, we treated reaction times for the two cues as

separate sequences).

We conducted a hierarchical (two-level) analysis of the data

from the nineteen subjects. Note that the original study by [12]

contained twenty subjects. For experimental reasons, one of these

subjects experienced a different stimulus sequence than the rest of

the group. Even though it would have been perfectly possible to

analyze this subject with the present approach, we decided, for

reasons of homogeneity in the inter-subject comparison, to focus

on subjects with identical stimulus sequence. In a first-level

analysis, we inverted both dynamic and static models on both type

I cues (high pitch tones) and type II cues (low pitched tones)

separately, for each subject. As in the simulations above, the

parameters a,mð Þ of the perceptual likelihood (equation 1) were

chosen such that stimulus discriminability (a=Dm1{m2D&10) was

similar to that of the natural images (see Figure 1). Also,

categorization errors were assigned a response time of zero (see

histograms in upper right panels of Figs. 12–13) and a very low

precision U, relative to the other trials. This allowed us to

effectively remove these trials from the data without affecting the

trial-to-trial learning effects.

Figure 7 summarizes the model comparison results for each

subject, showing the difference in log-evidence for both auditory

cues. A log-evidence difference of three (and higher) is commonly

considered as providing strong evidence for the superiority of one

model over another [21]. Using this conventional threshold, we

found that in 13 subjects out of 19 the competing perceptual

models could be disambiguated clearly for at least one cue type. It

can be seen that for all of these subjects except one the dynamic

perceptual model was favoured. Also, it was reassuring to find that

the variability of response model evidences across cue types was

much lower than its variability across subjects. In particular, in 10

out of the 13 subjects where the perceptual models could be

distinguished clearly, the model evidences were consistent across

cue types.

In a second step, we performed a Bayesian group-level random

effect analysis of model evidences [20]. Assuming that each subject

might have randomly chosen any of the two perceptual models,

but consistently so for both cues, we used the sum of the subject-

specific log-evidences over both cues for model comparison at the

group level. Figure 8 shows the ensuing posterior Dirichlet

distribution of the probability qdynamic of the dynamic perceptual

model across the group, given all datasets. Its posterior expectation

was approximately E qdynamic Dy
� �

&0:82. This indicates how

Figure 5. Monte-Carlo empirical distributions of model log-evidence differences (F (r)
static{F (r)

dynamic). Blue: SNR = 40 dB, green: SNR = 20 dB,
red: SNR = 0 dB. Left: Monte-Carlo simulation series A (under the static perceptual model). Right: Monte-Carlo simulation series B (under the
dynamic perceptual model).
doi:10.1371/journal.pone.0015555.g005

Table 2. Monte-Carlo averages of log-evidence differences as
a function of simulation series (A: static and B: dynamic) and
SNR.

Series A (static)

F (r)
static{F (r)

dynamic

Series B (dynamic)

F (r)
dynamic{F (r)

static

h3~10{4[SNR~40dB 7.52 752.9

h3~10{2[SNR~20dB 3.22 320.7

h3~1[SNR~0dB 1.86 28.6

doi:10.1371/journal.pone.0015555.t002
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frequently the dynamic model won the model comparison within

the group, taking into account how discernable these models were.

We also report the so-called ‘‘exceedance probability’’ of the

dynamic model being more likely than the static model, given all

datasets: P qdynamic§qstatic Dy
� �

~0:999. This measures the overall

strength of evidence in favour of the dynamic perceptual model, at

the group level. This is a pleasing result because, as described

above, the dynamic model (where subjects assume a priori that the

cue-outcome association is varying in time) was consistent with the

information delivered to the subjects (whereas the static model was

not).

Having established the dynamic model as the more likely model

of reaction time data at the group level, we now focus on the actual

estimates of both response and perceptual parameters. First, we

tested for the reliability of the parameter estimates, that is, we

asked whether the subject-dependent posterior densities r h,qð Þ of

the perceptual and response parameters were reproducible across

both types of cues. Specifically, we hoped to see that the variability

across both types of cues was smaller than the variability across

subjects. For the three parameters q,h1,h2½ �, figures 9, 10 and 11

display the variability of the posterior densities across both cues

and all subjects, taking into account the posterior uncertainty

Var h,qDy½ � (see equation 14). First, it can be seen that there is a

consistent relationship between cue-dependent parameter esti-

mates. Second, there is a comparatively higher dispersion of

parameter estimates across subjects than across cues. Taken

together, this demonstrates the reliability of parameter estimates in

Figure 6. Monte-Carlo empirical distributions of the parameter estimation error (SSE score). Blue: SNR = 40 dB, green: SNR = 20 dB, red:
SNR = 0 dB. Upper left: response model parameters, Monte-Carlo simulation series A. Upper right: response model parameters, Monte-Carlo
simulation series B. Lower left: perceptual model parameters, Monte-Carlo simulation series A. Lower right: perceptual model parameters, Monte-
Carlo simulation series B. Note that the SSE score was evaluated in log-space.
doi:10.1371/journal.pone.0015555.g006

Table 3. Monte-Carlo averages of the SSE as a function of
simulation series (A or B) and SNR, for perceptual and
response parameters.

Series A (Static) Series B (Dynamic)

perceptual
parameters

SNR~40dB 7.8 103 6.0 1024

SNR~20dB 8.4 103 6.1 1022

SNR~0dB 8.2 103 1.09

response
parameters

SNR~40dB 2.20 2.0 1024

SNR~20dB 3.39 2.1 1022

SNR~0dB 2.38 3.5 1021

doi:10.1371/journal.pone.0015555.t003
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the context of empirically measured behavioural data with low

SNR (i,e., reaction times). This implies that one can obtain robust

and subject-specific inferences with our approach.

Such inferences concern both subject-specific a priori beliefs

(e.g., about the stability of the environment; see equations 3 and 4)

and preferences (as encoded by their individual loss function; see

equation 9). To demonstrate the potential of our approach for

characterizing inter-individual differences in beliefs and prefer-

ences, we present a subject-specific summary of the inverted

response model (under the dynamic perceptual model) for two

individuals (subjects 5 and 12). These results are summarized by

Figures 12 and 13.

First, we would like to stress that, as for the group as a whole,

the SNR of empirical data from these two subjects is similar to the

SNR of the Monte Carlo simulation series described above

(around 0 dB; see Figure 4). It is therefore not surprising that the

model fit to the empirical looks similarly bad as in our simulations

(compare upper left panels in Figs. 12-13 with lower right panel in

Fig. 4). Note, however, that our simulations demonstrated that

despite this poor fit the model parameters were estimated with

high accuracy and precision; this instils confidence in the analysis

of the empirical data.

Even though the two histograms of reaction time data from

these two subjects were almost identical (compare upper right

panels in figures 12 and 13), the trial-to-trial variations of reaction

time data allowed us to identify rather different subject-specific

structures of beliefs and preferences (loss functions). Concerning

the beliefs of these two individuals, the parameter estimates

indicated that, a priori, subject 5 assumed a much more stable

environment (i.e., had a much lower prior volatility q) than subject

12; as a consequence, the dynamics of her estimates of the

associative strength m(2) are considerably smoother across trials

(compare lower left panels in figures 12 and 13). In other words,

she averaged over more past cue-outcome samples when updating

her posterior belief or representation than subject 12. Another

consequence of this is the fact that subject 5 uncertainty s(2) about

the associative strength is much smaller and less ‘‘spiky’’ than

subject 12’s. This has an intuitive interpretation: since subject 12

assumes a volatile environment, a series of predicted visual

outcomes (approaching a nearly deterministic association) is highly

surprising to her. This causes high perceptual uncertainty about

the tracked associative strength whenever its trial-to-trial differ-

ence approaches zero.

As for the preferences (loss functions) that guided the actions of

these two subjects, subject 12 displays a greater variability in her

optimal decision times for very small post-hoc prediction errors

(m(1)
? {m

(1)
0 , see equation 12). As a consequence, her optimal

decision time is greater than that of subject 5, for any given

magnitude of the post-hoc prediction error (compare lower right

panels in Figures 12 and 13). This is because both subject 12’s

error rate (i.e., h1) and sensitivity to post-hoc prediction error (i.e.,

h2) is smaller than subject 5’s.

In summary, subject 12 is assuming a more variable associative

strength. This means that, when compared to subject 5, she

Figure 7. Subject-level model comparison. The graph is a bar plot of the difference in model evidence for the static model versus the dynamic
model (F (r)

static{F
(r)
dynamic), for each subject (along the x-axis) and each cue (green: type I cue, red: type II cue).

doi:10.1371/journal.pone.0015555.g007
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discards information about past cue-outcome associations more

quickly and has more uncertain (prior) predictions about the next

outcome. However, she is willing to make more categorization

errors per second delay than subject 5. This is important, since she

effectively needs more time to update her uncertain (i.e. potentially

inaccurate) prior prediction to arrive at a correct representation.

In contrast, subject 5 is more confident about her prior predictions

and is more willing to risk categorization errors in order to gain

time.

Discussion

In a companion paper [1], we have described a variational

Bayesian framework for approximating the solution to the Inverse

Bayesian Decision Theory (IBDT) problem in the context of

perception, learning and decision-making studies. We propose a

generic statistical framework for (i) comparing different combina-

tions of perceptual and response models and (ii) estimating the

posterior distributions of their parameters. Effectively, our

approach represents a meta-Bayesian procedure which allows for

Bayesian inferences about subject’s Bayesian inferences. In this

paper, we have demonstrated this approach by applying it to a

simple perceptual categorization task that drew on audio-visual

associative learning. We have focused on the problem of ‘deciding

when to decide’, i.e. we have modelled reaction time data as

arising from subjective beliefs and preferences under the constraint

of a speed-accuracy trade-off. This model is novel and quite

different from classical evidence accumulation and ‘race’ models

(e.g. [22,23,10]), in two ways. First, a reaction time is understood

in terms of the convergence speed of an optimization process, i.e.

perceptual recognition. This is because it takes time for a

(variational) Bayesian observer to arrive at an optimal represen-

tation or belief. In this paper, the within-trial (peri-stimulus time)

dynamics of the recognition process emerged from a gradient-

ascent on the free-energy, where free-energy is a proxy for

(negative) perceptual surprise under a given perceptual model.

The resulting form of the response model is analytically tractable

and easy to interpret. Second, the variability of reaction times

across subjects is assumed to depend on individual differences in

prior beliefs (e.g., about the stability of the environment) and

preferences (i.e., loss or utility functions). Our approach thus

provides insights into both within-trial mechanisms of perception

as about inter-individual differences in beliefs and preferences.

In this work, we have chosen to focus on modelling reaction

time data and have deliberately ignored categorization errors. This

is because considering both reaction time and choice data at the

same time would have required an extension of the response

likelihood. The difficulty here is purely technical: the ensuing

bivariate distribution is Bernoulli-Gaussian, whose sufficient

statistics follow from the posterior risk (equation 11). Although

Figure 8. Group-level model comparison. Dirichlet posterior distribution of the frequency (within the group of subjects) qdynamic of the dynamic
model, given all subjects data p qdynamic Dy

� �
. The grey area depicts the exceedance probability P qdynamic§qstatic Dy

� �
, i.e. the probability that the

dynamic model is more likely (within the group) that the static one.
doi:10.1371/journal.pone.0015555.g008
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Figure 10. Plot of the reliability of response parameter estimates ĥh1. See legend to Fig. 9 for explanations.
doi:10.1371/journal.pone.0015555.g010

Figure 9. Plot of the reliability of perceptual parameter estimates q̂q across cue types. The perceptual parameter estimate q̂q~E qDy½ � and its
posterior variance Var qDy½ � are plotted as a function of cue types (on the x and y axis) and shown as an ellipse for each subject. The centre of the
ellipse represents q̂q for each cue, and its vertical and horizontal axis show one posterior standard deviation around it. The red line shows the ideal
positions of the parameter estimates (the centre of the ellipses) if there was perfect reliability (i.e. no variability across cue types).
doi:10.1371/journal.pone.0015555.g009
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feasible, deriving this extended response model would have

significantly increased its complexity. Since the focus of this article

was to provide a straightforward demonstration of our theoretical

framework (described in the companion paper), we decided not to

include choice data in the response model. Clearly, this is a

limitation as we are not fully exploiting the potential information

about underlying beliefs and preferences that is provided by

observed categorization errors. This extension will be considered

in future work.

In our model, categorization errors arise when incorrect prior

predictions coincide with high delay costs (see equations 11 and

12). One might think that there is an irreconcilable difference

between this deterministic scheme and stochastic diffusion models

of binary decisions ([24]; see also [25], for a related Bayesian

treatment). However, there are several ways in which our scheme

and stochastic diffusion models can be reconciled. For example,

the trial-wise deterministic nature of our scheme can be obtained

by choosing the initial condition of the stochastic process such that

the probability of reaching the upper or lower decision threshold is

systematically biased in a trial-by-trial fashion. Also, delay costs

can be modelled by letting the distance between lower and upper

diffusion bounds shrink over time. Alternatively, one could

motivate the form of stochastic diffusion models by assuming that

the brain performs a stochastic (ensemble) gradient ascent on the

free energy. This would relate the frequency of categorization

errors to task difficulty; for example, when a stimulus is highly

ambiguous or uncertain, the perceptual free energy landscape is

flat (perceptual uncertainty is related to the local curvature of

perceptual free energy; see equations 5 and 6 of the companion

paper). In summary, there are several ways in which our approach

and stochastic diffusion models could be formally related. The

utility of such hybrid models for explaining speed-accuracy trade-

offs (cf. [26]) will be explored in future work.

We initially evaluated the method using Monte-Carlo simula-

tions under different noise levels, focusing on model inversion

given synthetic data and on how well alternative models could be

disambiguated. This enabled us to assess both the efficiency of

parameter estimation and veracity of model comparison as a

function of SNR. Importantly, we found that even under very high

noise levels (SNR = 0dB, comparable to the SNR of our empirical

data), and therefore poor model fit, the model nevertheless (i)

yielded efficient estimates of parameters, enabling us to infer and

track the trial-to-trial dynamics of subjective beliefs from reaction

time data, and (ii) robustly disambiguated correct and wrong

models. We then applied the approach to empirical reaction times

from 19 subjects performing an associative learning task,

demonstrating that both model selection results and parameter

estimates could be replicated across different cue types. Reassur-

ingly, the model selection results were consistent with the

information available to the subjects. In addition, we have shown

that subject-to-subject variability in reaction times can be captured

by significant differences in parameter estimates (consistently again

across cue types) where these parameters encode the prior beliefs

and preferences (loss functions) of subjects,

Together, the simulations and empirical analyses establish the

construct validity of our approach and illustrate the type of

inference that can be made about subjects’ priors and loss-

functions. Our results suggest that the approach may be fairly

efficient when it comes to comparing and identifying models of

learning and decision-making on the basis of (noisy) behavioural

data such as reaction times.

Some readers may wonder why we have used a relatively

complicated criterion to evaluate the relative goodness of

competing models; i.e., an approximation to the log-evidence,

instead of simply comparing their relative fit. Generally, pure

model fit indices are not appropriate for comparing models and

should be avoided (cf. [27-29]). There are many reasons why a

perfectly reasonable model may fit a particular data set poorly; for

example, independent observation noise (see Figure 4 for an

example). On the other hand, it is easy to construct complex

Figure 11. Plot of the reliability of response parameter estimates ĥh2. See legend to Fig. 9 for explanations.
doi:10.1371/journal.pone.0015555.g011
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models with excellent or even perfect fit, which are mechanistically

meaningless and do not generalize (i.e., ‘‘over-fitting’’). In brief,

competing models cannot be compared on the basis of their fit

alone; instead, their relative complexity must also be taken into

account. This is exactly what is furnished by the (log) model

evidence, which reports the balance between model fit and

complexity (and can be approximated efficiently by the variational

techniques used in this paper). This allows us to compare models

of different complexity in an unbiased fashion. Crucially, our

Bayesian model selection method does not require models to be

nested and does not impose any other constraints on the sorts of

model that can be compared ([30,20]). For example, alternative

models compared within our framework could differ with regard

to the mathematical form of the perceptual or the response model,

the priors or the loss function – or any combination thereof. In

principle, this makes it possible to investigate the relative

plausibility of different explanations: For example, whether

individual differences in behaviour are more likely to result from

individual differences in the perceptual or the response model. For

clarity, however, the empirical example shown in this paper dealt

with a very simple case, in which the perceptual model was varied

while the response model was kept fixed.

As with all inverse problems, the identifiability of the BDT

model parameters depends upon both the form of the model and

the experimental design. In our example, we estimated only one

parameter of the perceptual models we considered. One might

argue that rather than fixing the sensory precision (a, see Equation

1) with infinitely precise priors, we should have tried to estimate it

from the reaction time data. It turns out, however, that estimating

q,að Þ and h1,h2ð Þ together represents a badly conditioned

problem; i.e. the parameters are not jointly identifiable because

of posterior correlations among the estimates. This speaks to the

utility of generative models for decision-making: the impact that

their form and parameterisation has on posterior correlations can

be identified before any data are acquired. Put simply, if two

parameters affect the prediction of data in a similar way, their

Figure 12. Results of inverting the response model for subject 5. Upper-left: predicted (x-axis) versus observed (y-axis) reaction time data.
The red line indicates perfect agreement between the model and the data. Upper-right: observed reaction times empirical histogram. Note that
incorrect decisions were assigned a response time of zero and did not influence model fit; see main text for details. Lower-left: time series (trial-by-
trial) of the sufficient statistics of subject 5’s representations of both the outcome category (m(1)) and associative strength (m(2) and s(2)). See main text
for the precise meaning of these variables. Lower-right: posterior risk as a function of post-hoc prediction error (y-axis), i.e. the difference between
posterior and prior expectations, and decision time (x-axis). The posterior risk is evaluated at subject 5’s response parameters estimate ĥh for ‘house’
decisisions (i.e. c~1); it can be symmetrically derived for c~0. The white line shows the optimal decision time t cð Þ for each level of post-hoc
prediction error (see Equation 12 in the main text). Note that t cð Þ is identically zero for all negative post-hoc prediction error. This signals a perceptual
categorization error (Dm

(1)
0 2c{1ð Þw0, see Equation 11 in main text), which is emitted (at the limit) instantaneously.

doi:10.1371/journal.pone.0015555.g012
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unique estimation will be less efficient. In our particular example,

there is no critical need to estimate a from the data. This is

because faces and houses are well-known objects for whose

categorisation subjects have a life-long experience. It is therefore

reasonable to assume that a is known to the subjects, and its value

can be chosen in correspondence with the statistics of the visual

stimuli (see above). However, pronounced inter-individual differ-

ences can be observed empirically in face-house discrimination

tasks, and this may result from differences in the individuals’

history of exposure to faces throughout life. A limitation of our

model is that it does not account for such inter-subject variability

but assumes that a is fixed across subjects.

In contrast to a, which can (and should) be treated as a fixed

parameter, it is necessary to estimate the perceptual parameter q.

Note that from the subject’s perspective, q (similar to a) is quasi-

fixed (i.e., with nearly infinite precision) as this prior has been

learnt throughout life. From the experimenter’s perspective,

however, q is an unknown parameter which has to be inferred

from the subject’s behaviour. Estimating this parameter is critical

for the experimenter as its value determines the subject’s learning

rate. This is best explained by highlighting the link between

‘learning rates’, as employed by reinforcement learning models,

and Bayesian priors, or more precisely prior precision parameters. In

the ‘dynamic’ perceptual model, the learning rule effectively

replaces the past history of sensory signals with a summary based

on the previous representation (see Eq. 8). In turn, the perceptual

representation discounts past sensory signals with an exponential

weighting function, whose half-life is an affine transformation of

the prior volatility q. The link between q and the subject’s learning

rate can be seen by considering the solution to equation 8 (at

convergence):

LI

Lx
D
m

(2)
k

~0 [ m(2)
k {m(2)

k{1! s(2)
k zq

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

effective
learning rate

m(1)
k {s m(2)

k

� �� �
ð15Þ

where m
(1)
k is the belief about the auditory outcome category (face/

house) and s m(2)
k

� �
is its posterior prediction based on the past

history of sensory signals. Equation 15 gives the effective update

rule for the perceived associative strength m
(2)
k when the perceptual

free energy has been optimized. Note that the form of Eq. 15

corresponds to the Rescorla-Wagner learning rule [31], in which

the change in associative strength m(2)
k {m(2)

k{1 is proportional to the

prediction error, i.e. d~m
(2)
k {s m

(2)
k

� �
.

Figure 13. Results of inverting the response model for subject 12. See legend to Fig. 12 for details.
doi:10.1371/journal.pone.0015555.g013
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In summary, for the model in the present paper, the subject’s

learning rate depends on the prior volatility q of cue-outcome

associations. Note, however, that there may not always be a

quantitative relation between prior precision parameters and

learning rates because this depends on the specificities of the

perceptual model. There is a general qualitative relationship

between the two quantities, however, because the prior precision

of hidden causes within hierarchical perceptual models controls

the relative weight of upcoming sensory information and prior

(past) beliefs in forming the actual posterior representation. In

short, this means the learning rate itself (and thus any ‘forgetting’

effect) emerges from optimal Bayesian recognition (see e.g., [32]

for a nice example). A full treatment of these issues will be

presented in forthcoming work [33].

Another analogy concerns the optimal decision time derived

from the speed-accuracy trade-off given in Equation 12 which is

similar in form to Hick’s law. This law relates the reaction times to

the amount of extracted information (c.f. [34]). In its simplest

form, Hick’s law is given by: RT~azb log(n), where RT is the

expected reaction time and n is the number of choice alternatives.

Here, log (n) is the perceptual uncertainty (as measured by

Shannon entropy). It turns out that when no categorization error is

made, Equation 12 could be rewritten as RT~azb logDDm0D,
where Dm0 is the post-hoc prediction error, i.e. posterior minus prior

expectation. Put simply, logDDm0D measures incoming information.

There are obvious formal (information theoretic) differences

between Equation 12 and Hick’s law, but they capture similar

intuitions about the mechanisms causing variations in reaction

times.

This paper has demonstrated the practical application of the

meta-Bayesian framework described in the companion paper,

using empirical reaction time data from an audio-visual associative

learning task reported in [12]. Authors presented several analyses

of these data, including a formal comparison of alternative

learning models. The results provided in the present article finesse

the original comparisons and take us substantially beyond the

previous report. First, the paper [12] did not provide any decision

theoretic explanation for (learning induced) motor facilitation. In

that paper, the behavioural comparison of different learning

models was a precursor to using prediction error estimates in a

model of fMRI data. It therefore only used a very simple response

model assuming that (inverse) reaction times scale linearly with

prediction error. In contrast, we have proposed a response model

that is fully grounded in decision theory and does not assume a

specific (e.g., logarithmic) relationship between prediction errors

and motor facilitation. Second, we conducted a full two-level

analysis of the reaction time data, in order to assess inter-

individual differences. This was made possible because, as opposed

to the work in [12], we allowed for inter-individual differences in

both the perceptual and response parameters (see above).

Finally, we wish to emphasize that the ‘‘observing the observer’’

(OTO) approach for inference on hidden states and parameters

can be obtained in a subject-specific fashion, as demonstrated by

our empirical analyses in this paper (see Figs. 9-13). This allows for

analyses of inter-individual differences in the mechanisms that

generate observed behaviour. Such quantitative inference on

subject-specific mechanisms is not only crucial for characterizing

inter-individual differences, an important theme in psychology and

economics in general, but also holds promise for clinical

applications. This is because spectrum diseases in psychiatry, such

as schizophrenia or depression, display profound heterogeneity

with regard to the underlying pathophysiological mechanisms,

requiring the development of models that can infer subject-specific

mechanisms from neurophysiological and/or behavioural data

[35]. In this context, the approach presented in this paper can be

seen as a complement to DCM: OTO may be useful for inference

on subject-specific mechanisms expressed through behaviour, in a

similar way as DCM is being used for inference on subject-specific

mechanisms underlying neurophysiology.

Supporting Information

Appendix S1 Appendix S1 (‘deciding when to decide’) is included as

‘supplementary material’. It summarizes the mathematical deri-

vation of the optimal reaction times (as given in equation 12) from

first principles, within the framework of Bayesian Decision

Theory.
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