
Social Transmission of Fear in Rats: The Role of 22-kHz
Ultrasonic Distress Vocalization
Eun Joo Kim1, Earnest S. Kim1, Ellen Covey1,2, Jeansok J. Kim1,2*

1 Department of Psychology, University of Washington, Seattle, Washington, United States of America, 2 Program in Neurobiology and Behavior, University of

Washington, Seattle, Washington, United States of America

Abstract

Background: Social alarm calls alert animals to potential danger and thereby promote group survival. Adult laboratory rats
in distress emit 22-kHz ultrasonic vocalization (USV) calls, but the question of whether these USV calls directly elicit
defensive behavior in conspecifics is unresolved.

Methodology/Principal Findings: The present study investigated, in pair-housed male rats, whether and how the
conditioned fear-induced 22-kHz USVs emitted by the ‘sender’ animal affect the behavior of its partner, the ‘receiver’ animal,
when both are placed together in a novel chamber. The sender rats’ conditioned fear responses evoked significant freezing
(an overt evidence of fear) in receiver rats that had previously experienced an aversive event but not in naı̈ve receiver rats.
Permanent lesions and reversible inactivations of the medial geniculate nucleus (MGN) of the thalamus effectively blocked
the receivers’ freeezing response to the senders’ conditioned fear responses, and this occurred in absence of lesions/
inactivations impeding the receiver animals’ ability to freeze and emit 22-kHz USVs to the aversive event per se.

Conclusions/Significance: These results—that prior experience of fear and intact auditory system are required for receiver
rats to respond to their conspecifics’ conditioned fear responses—indicate that the 22-kHz USV is the main factor for social
transmission of fear and that learning plays a crucial role in the development of social signaling of danger by USVs.
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Introduction

Social signaling of imminent danger plays an adaptive

(antipredatory) role in many species. For instance, ants use

chemical signals to communicate threat to their colony [1];

chickens emit alarm calls that evoke escape responses in cohorts

[2]; ground squirrels produce predator alarm calls to warn nearby

conspecifics [3]; and monkeys vocalize predator-specific alarm

calls that provoke threat-specific defensive behavior in group

members [4]. It is generally believed that social distress signals

increase group fitness and promote survival of the species [5].

Social signalling of danger (or fear) has also been investigated in

laboratory rats (Rattus norvegicus). Since John W. Anderson’s

discovery in 1954 that adult rats emit a range of ultrasonic

vocalizations (USV) [6], the 22-kHz USV has been found to be

associated with various distress states [7,8,9,10,11,12]. For instance,

rats produce 22-kHz USV calls when subjected to stress and as a

conditioned response (CR) following fear conditioning. Production

of 22-kHz vocalizations is blocked by amygdalar lesions or

inactivation [8,13,14,15]. Chemical (e.g., carbachol) stimulation of

the anterior hypothalamic-preoptic area also evokes 22-kHz

vocalizations which are sonographically similar to USVs triggered

via acoustic, tactile and footshock stimuli [16,17]. Subsequent

studies found that USV playback and artificial 22-kHz sine waves

increase cell activities in the amygdala, the hypothalamus, the

periaqueductal grey matter and the perirhinal cortex [18,19,20],

brain structures implicated in defensive behavior.

Several studies have investigated whether 22-kHz USVs

function as a social alarm call that can directly influence the

behavior of conspecific rats. One of the earlier studies examined

behaviors of a small group of rats living in seminatural visible

burrow systems when confronted with a cat predator [21,22]. In

response to a cat, rats fled from the open space into the burrow

system and emitted 22-kHz USVs that persisted ,30 min after the

cat was removed. However, when rats were individually

confronted with the cat in visible burrow systems, they did not

produce 22-kHz alarm calls, suggesting that 22-kHz USV

production only emerges in the presence of familiar conspecifics

or in a social setting (but see [23]). Other studies broadcasted the

recorded 22-kHz USVs (in the absence of other stimuli) to

individual rats and found conflicting results; one study reported

that both onset and offset of USV playback decreased locomotor

activity in conspecifics [24], but another study found that only the

discontinuation of USV affected the conspecifics’ behavior [16].

Thus, while these studies suggest that 22-kHz USV occurs under

social situations, the specific role of 22-kHz USV as a social signal

of danger remains unclear. Perhaps, the utilization of ultrasound

playback to individual rats or the assessment of rats’ behavior
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while they reside in separate burrows might not provide ideal

conditions for detecting social transmission of fear in rats.

The present study employed pair-housed rats to directly test

whether the conditioned fear-induced 22-kHz USVs emitted by

the ‘SENDER’ rat produce fear behavior in its partner, the ‘RECEIVER’

rat (Fig. 1). Specifically, we considered the possibility that the

sender rat’s USVs influence the receiver rat’s behavior differently

according to the partner animal’s history of fear experience. Then,

to verify whether 22-kHz USVs (and not other sensory factors)

influence the partner’s behavior, lesion and reversible inactivation

techniques were applied on the auditory thalamus of the receiver

rat to interrupt the primary auditory stream.

Materials and Methods

Ethics statement
All experiments were conducted in strict compliance to federal

guidelines and as approved by the University of Washington

Institutional Animal Care and Use Committee (animal assurance

number A3464-01; protocol 4040-01, originally approved on

06.12.2008 – latest annual renewal approved 05.28.2010).

Subjects
Experimentally naı̈ve male Charles River Sprague-Dawley rats

(initially weighing 275–300 gm) were pair-housed in our animal

care facility (accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care) and maintained on a

reverse 12-hr light-dark cycle (lights on at 19.00 hr) with free

access to food and water. After 7 or 21 days of acclimation,

animals were tested during the dark phase of the cycle.

Medial geniculate nucleus (MGN) lesions and inactivation
Under anesthesia (30 mg/kg ketamine and 2.5 mg/kg xylazine,

i.p.), rats were mounted in a stereotaxic instrument (Stoelting, Wood

Dale, IL). Bilateral MGN lesions were made in receiver rats by

passing constant current (1 mA, 15 sec; Ugo Basile, Comerio, Italy)

through a stainless steel insect pin (#00) that was insulated with

epoxy, except for ,0.5 mm at the tip (coordinates from bregma: AP

-5.3, ML 63.4, DV -6.3 and AP -6.1, ML 63.3, DV -6.5) [25,26].

The partner sender rats received sham lesion surgery to match the

postoperative recovery period (14 days). Guide cannulae (26 gauge;

Plastics One, Roanoke, VA) were implanted bilaterally in the MGN

(coordinates from bregma: AP -5.8, ML 63.4, DV -5.6) of receiver-

sender pair animals. Lidocaine (Sigma-Aldrich, St. Louis, MO),

dissolved in artificial CSF (4%, pH ,7.4) was microinfused into the

MGN (bilaterally) by backloading the drug up a 33 gauge infusion

cannula into polyethylene (PE 20) tubing connected to 10 ml

Hamilton microsyringes (Hamilton Company, Reno, NV). The

infusion cannulae protruded 1 mm beyond the guide cannula. An

infusion volume of 1 ml (per side) was delivered using a Harvard

PHD2000 syringe pump (Harvard Apparatus, South Natick, MA)

over the course of 1 min (at a rate of 1 ml/min) [27,28].

Fear conditioning apparatus
Fear conditioning and pair-testing took place in two modular

operant test chambers, each equipped with speaker modules and

located in a sound-attenuating chest (Coulbourn Instruments,

Allentown, PA). Fear conditioning chamber A was octagonal

(26.5 cm diameter 625 cm height) with all eight walls constructed

of clear Plexiglas; the grid floor was composed of 17 stainless steel

bars (5 mm diameter) spaced 15 mm center-to center, wired to a

Coulbourn precision-regulated animal shocker and wiped with 5%

ammonium hydroxide solution at the beginning of each trial. Pair-

testing chamber B was rectangular (27 cm width 628 cm length

630.5 cm height) with front and back walls made of clear

Plexiglas and two side walls made of metal plates; the floor was

made of smooth Plexiglas and wiped with 1% acetic acid solution

at the beginning of each trial.

Figure 1. Social transmission of fear—experimental designs. (A) The sender (S) rats underwent 10 presentations of tone-footshock pairings
(fear conditioned, SFC) while receiver (R) rats experienced either no footshock (naı̈ve, RN) or 3 unsignaled footshocks (fear-experienced, RFE). Social
transmission of fear was assessed by placing S and R rats together in a novel chamber and presenting the tone CS. (B) 22-kHz USV calls and
spectrogram from a SFC rat.
doi:10.1371/journal.pone.0015077.g001
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Behavioral procedures
Animals were divided into one of the following five paired

groups: (i) SENDER-FEAR CONDITIONED and RECEIVER-NAı̈VE, SFC-

RN; (ii) SENDER-FEAR CONDITIONED and RECEIVER-FEAR EXPERI-

ENCED, SFC-RFE; (iii) SENDER-NAı̈VE and RECEIVER-FEAR EXPERI-

ENCED, SN-RFE; (iv) SENDER-FEAR CONDITIONED and RECEIVER

MGN LESIONED-FEAR EXPERIENCED, SFC-RMGN(LS)-FE; and (v) SEND-

ER-FEAR CONDITIONED and RECEIVER MGN LIDOCAINE-FEAR EXPERI-

ENCED, SFC-RMGN(LI)-FE.

SFC-RN. On day 1, SFC animals were placed in fear

conditioning chamber A. After 2 min, they were presented with

10 tone conditioned stimuli (CS: 2.9 kHz, 82 dB, 20 sec) that

began 19 sec before the footshock unconditioned stimulus (US:

2 mA, 1 sec), and terminated at the same time as the US. CS-US

pairings were presented with 2 minute inter-trial intervals (ITIs).

Animals were removed 2 min after the last shock and returned to

their home cages. This fear conditioning procedure produced

robust postshock USV and conditioned USV to the tone CS in all

animals. While SFC rats were undergoing tone fear conditioning,

the partner RN rats remained in their home cages. On day 2, the

paired SFC and RN animals were placed together in testing

chamber B, where 1 min of baseline was followed by 8 minutes of

continuous tone CS.

SFC-RFE. On day 1, SFC rats underwent tone fear

conditioning as described above. The partner RFE rats were

placed in chamber A where after 3 min, 3 unsignaled footshocks

(1 mA, 1 sec, 60 sec apart) were presented to produce a moderate

fear experience [29]. One minute after the last shock, RFE rats

were returned to their home cages. On day 2, the paired SFC and

RFE animals were tested in chamber B.

SN-RFE. On day 1, RFE animals experienced 3 unsignaled

footshocks in chamber A (described above), while SN animals

remained in their home cages. On day 2, SN-RFE rat pairs were

tested in chamber B.

SFC-RMGN(LS)-FE. These animal pairs underwent the same

fear conditioning (day 1) and pair-testing (day 2) as the SFC-RFE

animals.

SFC-RMGN(LI)-FE. On day 1 (in chamber A), SFC rats

underwent tone fear conditioning as previously described (no

drug infusions), while RMGN(LI)-FE animals received lidocaine

infusions into their MGN just prior to experiencing 3 unsignaled

footshocks. On day 2, the paired SFC-RMGN(LI)-FE rat pairs were

tested in chamber B (no drug infusions). On day 3, SFC animals

received lidocaine infusions into their MGN prior to testing alone

in chamber B. On day 4, SFC animals were retested in chamber B

without drug infusions.

Histology
At the completion of behavioral testing, the RMGN(LS)-FE and

RMGN(LI)-FE animals were overdosed with a ketamine-xylazine

cocktail and perfused intracardially with 0.9% saline followed by

10% buffered formalin. The brains were removed and stored in

10% formalin overnight and then kept in 30% sucrose solution

until they sank. Transverse sections (50 mm) were taken through

the extent of the lesion, mounted on gelatin-coated slides, and

stained with cresyl violet and Prussian blue dyes.

Freezing and USV data collection and analyses
The CS and US presentations were controlled by a PC

equipped with the Coulbourn LabLinc Habitest Universal Linc

System. The automated collection of USV and freezing data has

been previously described in detail [15]. Each session was also

recorded for video and audio off-line analysis (for pair-testing)

using an infrared light source and miniature video camera (CB-21;

Circuit Specialists, Inc., Mesa, AZ).

During fear conditioning, a 24 cell infrared activity monitor

(mounted on top of the chamber) that detects the movement of the

emitted infrared (1300 nm) body-heat image from the animals in

the x-, y-, and z-axes was used to assess freezing behavior. In brief,

the total time of inactivity exhibited by each animal was measured

using a computer program, and freezing was defined as continuous

inactivity lasting $3 sec. Any behavior that yielded an inactivity

period of ,3 sec was recorded as general activity. During pair-

testing, a custom-written computer-assisted scoring program (in C

language) was used by an uninformed observer to score the duration

of freezing displayed by each animal by manual keystrokes on the

computer keyboard. The sender and receiver rats were distin-

guished by Sharpie markings on their fur. Freezing was defined as

the absence of any visible movement of the body and vibrissae

except for movement necessitated by respiration [30], and filtered

by the C program with 3-sec threshold as used in the infrared

activity analysis. The percent freezing was computed as ((total

duration of freezing7total duration of observation) 6100.

A heterodyne bat detector (Mini-3; Noldus Information

Technology, Wageninge, The Netherlands) was used to transform

high-frequency (2265 kHz) ultrasonic vocalizations into the

audible range. The output of the bat detector was fed through

an audio amplitude filter (Noldus), which filtered out signals falling

below an amplitude range that was individually adjusted for each

animal. The resulting signal was then sent to an IBM PC equipped

with Noldus UltraVox vocalization analysis software. The software

converted the signal into vocalization onset and offset times

according to the following specifications: an onset was recorded if

the duration of sound was $30 msec, and an offset was recorded if

the onset of the ensuing episode was $40 msec later. If the interval

was ,40 msec, the two bouts were counted as a single episode.

The percent USV was computed as ((total duration of USV7total

duration of observation) 6100. Note that during the S-R pair-

testing, the total USV detected technically cannot be separated

into sounds produced by sender vs. receiver rats. D980 Ultrasound

Detector and BatSound Pro (version 3.3) real-time spectrogram

software (Pettersson Elektronik AB, Uppsala, Sweden) were used

to show sample conditioned fear-induced USV calls.

Statistical analyses
The freezing and USV data collected during 10 tone-footshock

fear conditioning (day 1), 3 unsignaled footshock fear experiences

(day 1) and the sender-receiver pair-testing (day 2) were analyzed

by ANOVA followed by Bonferroni post hoc test. The pair-testing

data were further analyzed from the first 3 min of the tone when

the fear responses were maximal. Data from 1- and 3-week pair-

housed groups were compared by Independent t-test. The

comparison between SFC rats’ drug conditions (with and without

lidocaine injection) was conducted by one-sample t-test. Pearson’s

correlation coefficient was calculated to assess the relationship

between the fear-experienced receiver rats’ USV onset latency

during 3 unsignaled footshocks and their percent freezing during

pair-testing.

Results

Effects of sender rats’ fear responses on naı̈ve receiver
rats

Sender rats (SFC) robustly acquired conditioned fear, as assessed

by freezing and 22-kHz USV, when presented with 10 pairings of

a tone conditioned stimulus (CS: 2.9 kHz, 82 dB, 20 sec) that

coterminated with a footshock unconditioned stimulus (US: 2 mA,

Social Transmission of Fear
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1 sec) (Fig. S1A and B). A day later, when the sender rat and its

naı̈ve receiver (RN) partner were placed together in a novel

chamber, both initially exhibited exploratory behavior. However,

when the tone CS came on, the SFC rats immediately displayed

freezing and USV that persisted through the entire 8 min of

testing (Fig. 2A). During this time, the RN rats continued their

exploratory behavior and exhibited no sign of freezing. This was

true whether the animals were pair-housed for 1 or 3 weeks; the

sender rats’ robust conditioned fear responses of freezing and USV

had virtually no effects on the naive receiver rats’ ongoing

behavior (Fig. S2).

Effects of sender rats’ fear responses on fear-experienced
receiver rats

The sender rats (SFC) were trained in the same manner as

described above, whereas the receiver rats underwent an episode

of fear experience (RFE) consisting of 3 unsignaled footshocks

(1 mA, 1 sec, 60 sec apart) in the absence of any other rats (Fig.

S1C and D). When the SFC and the RFE rats were placed together

in the novel chamber the next day, both displayed exploratory

behavior. When the tone CS came on, the SFC again promptly

froze and emitted USV (Fig. 2B). In response to the sender rats’

fear behavior, the RFE rats also exhibited freezing, which was

virtually absent in RN rats. The total amount of USV in this pair

was high throughout the session because the freezing receiver rats

also emitted USVs; the bat detector cannot discriminate USVs

from SFC and RFE animals and therefore accumulated collectively.

However, at least during the first 3-min period of the tone

presentation, the USV levels were comparable between SFC-RN

and SFC-RFE pairs (Fig. 2D).

It is unclear, however, whether the freezing displayed by the

RFE rats was a result of the SFC rats’ fear responses or a sensitized

reaction to the novel tone stimulus. The latter possibility is unlikely

because RFE rats did not freeze in response to the tone stimulus if

the sender rats did not demonstrate fear responses (SN; Fig. 2C).

The fact that RFE rats rarely froze during the whole pair-testing

session—the initial exploration and the tone presentations in the

novel chamber—also excludes the possibility of generalized

anxiety (due to the unsignaled shock experience on the previous

day) influencing the RFE rats’ behavior. Thus, during the S-R pair-

testing, the sender rats’ CRs to the tone CS (and not the tone

stimulus per se) caused freezing in fear-experienced receiver rats

(first 3-min data: Fig. 2D and E).

Additionally, the amount of freezing displayed by the RFE rats

during the entire S-R pair-testing session was positively correlated

with the magnitude of USV the RFE rats emitted during the

episode of fear experience (Fig. 2F). Specifically, their USV onset

latencies on day 1 fear experience were significantly correlated

with the freezing levels on day 2 pair-testing (r = 2.779, P = .02).

Effects of sender rats’ fear responses on receiver rats with
MGN lesions

To definitively identify the crucial feature of SFC rats’ behavior

that produces freezing in fear-experienced receiver rats, the

Figure 2. Results from three groups of sender-receiver pairs (n = 16 rats/pair). fear-conditioned sender and naı̈ve receiver (SFC-RN); fear-
conditioned sender and fear-experienced receiver (SFC-RFE); and naı̈ve sender and fear-experienced receiver (SN-RFE). (A–C) Mean (6 SEM) percentage
time spent emitting USV and displaying freezing by S and R rats during baseline and 8 min tone CS presentation. (D, E) Group differences in USV
(F2,23 = 28.583, P,.0001) and freezing (F5,47 = 52.743, P,.0001) during the first 3-min period of the pair-testing (grey sections, A through C). *, ** and
*** denote P,.05, P,.001 and P,.0001, respectively, Bonferroni test. (F) A significant correlation between RFE animals’ USV onset latencies during 3
unsignaled footshocks on day 1 and the RFE animals’ freezing levels during SFC-RFE pair-testing on day 2 (r = 2.779, P = .02).
doi:10.1371/journal.pone.0015077.g002
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primary auditory pathway was disrupted in receiver rats via

bilateral lesions of the MGN of the thalamus (Fig. 3A). The MGN

lesions selectively prevent auditory information flow to the

forebrain, while leaving the brainstem auditory reflex pathways

intact, and without altering other sensory information systems.

The MGN-lesioned receiver (RMGN(LS)-FE) rats demonstrated

postshock freezing to 3 unsignaled footshocks which was

comparable to intact rats (i.e., RFE rats paired with SFC rats,

RFE rats paired with SN rats) (Text S1). When the SFC and the

RMGN(LS)-FE rats were placed in a novel chamber, both displayed

exploratory behavior during the baseline period. As before, the

tone CS promptly evoked freezing and USV in the SFC rats (Fig. 3

B and C). However, unlike the intact RFE rats, the RMGN(LS)-FE rats

failed to freeze in the presence of the sender rats’ fear responses.

Although the RMGN(LS)-FE-SFC pairs and the intact RFE-SFC pairs

produced similar levels of USV (Fig. 3F), the freezing behavior was

virtually absent in the RMGN(LS)-FE animals (Fig. 3G, P,.05).

Because the RMGN(LS)-FE rat’s forebrain could not process USV

due to the MGN lesions, this indicates that the critical factor that

evokes fear response in the receiver rat was not the visible freezing

or the odor produced by the sender rat, but rather the sender’s

USV.

USV effects on receiver rats with MGN inactivation during
fear experience

To understand the significance of a positive correlation

between the onset latency of USVs emitted by the receiver rats

during an episode of fear experience on Day 1 and their freezing

Figure 3. MGN lesion, MGN inactivation and social transmission of fear. (A) Photomicrograph and histological reconstruction of MGN lesions
(solid and gray represent minimum and maximum extent of the lesions, respectively) and cannulae implantation (each dot represents the injection site
in the MGN of the SFC (grey) - RMGN(LI)-FE (black) pair). (B, C) Mean percentage USV and freezing from SFC (n = 8) and MGN-lesioned receiver (RMGN(LS)-FE,
n = 8) rats during the pair-testing. (D, E) Mean percentage USV and freezing from SFC (n = 7) and MGN-lidocaine receiver (RMGN(LI)-FE, n = 7) rats during the
pair-testing. (F, G) Group differences in USV between SFC-RFE, SN-RFE, SFC-RMGN(LS)-FE, and SFC-RMGN(LI)-FE pairs (F3,30 = 24.681, P,.0001) and freezing
between fear-experienced receiver groups (F3,30 = 5.770, P,.01) during the first 3-min period of the pair-testing (grey sections, B through E). * denotes
P,.05 (Bonferroni test); ** denotes P,.001 compared to the other three pairs (Bonferroni test).
doi:10.1371/journal.pone.0015077.g003
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levels during the pair-testing on Day 2 (Fig. 2F), sender and

receiver rats were implanted with guide cannulae aimed at the

MGN bilaterally (Fig. 3A). The sender (SFC) rats were trained in

the same manner as before (Fig. S1A and B), whereas the receiver

rats (RMGN(LI)-FE) received intra-MGN infusions of lidocaine just

prior to undergoing an episode of fear experience. During the 3

unsignaled footshocks, intra-MGN lidocaine affected neither

postshock freezing nor USV responses of the RMGN(LI)-FE rats

(Fig. S1C and D). During the pair-testing, both the SFC and the

RMGN(LI)-FE rats (sans lidocaine) initially displayed exploratory

behavior in the novel chamber. When the tone CS came on, the

SFC rats exhibited conditioned freezing and USV responses

(Fig. 3D and E). However, the RMGN(LI)-FE rats displayed

significantly impaired freezing in response to the sender rats’

fear behavior (Fig. 3G, P,.05). Thus, the receiver rats’ ability to

process their own USVs (emitted during the 3 unsignaled

footshocks) somehow seems to be crucial for responding to their

conspecifics’ USVs in a different context.

>The intra-MGN lidocaine temporarily interfered with audito-

ry information flow to the forebrain because the SFC rats displayed

significantly attenuated freezing and no USVs to the tone CS

when their MGNs were inactivated with lidocaine (Text S1 and

Fig. S3A and B). Once the MGN returned to the normal state

(next day), the SFC rats displayed considerable freezing and USVs

to the CS during re-testing, though which may have resulted in

extinction.

Discussion

Our findings indicate that classically conditioned fear-induced

22-kHz USV calls emitted by sender rats convey fear-eliciting

information to receiver rats that previously experienced an

aversive event, but not to naı̈ve receiver rats. Specifically, fear

experienced rats displayed freezing (an index of fear) in response to

their partner’s USVs. Because the rats were pair-housed, the

experimental design minimized extraneous factors such as novelty

and aggression associated with testing unfamiliar rats together. In

naı̈ve S-R pairs, despite the fact that the sender rat displayed

robust freezing and USV to the tone CS, the naı̈ve receiver rat’s

ongoing behavior in the novel chamber continued unaltered.

Conversely, the naı̈ve receiver rat’s exploratory behavior had no

effect on the sender’s freezing and USV, even when the receiver

rat stepped over and attempted to burrow under the sender rat. It

appears then that, though rats are predisposed to respond to USV

[31], some prior knowledge of fear experience on the part of the

receiver rat is required for the sender rat’s fear response to

effectively trigger fear in the receiver rat. Consistent with this view,

a recent study also found that previous experience of avoidance

learning is required for the social transmission of avoidance

behavior in rats [32].

The freezing (fear) response displayed by the previously fear-

experienced receiver rats during the pair-testing was produced by

the sender rats’ fear responses to the tone stimulus. This

conclusion is supported by control experiments, which indicate

that the fear-experienced receiver rats did not freeze to the novel

tone (presented in a novel chamber) if the sender rats did not

demonstrate fear responses, hence excluding the possibilities of a

sensitized reaction and carry-over generalized anxiety (from the

previous day’s unsignaled footshock experience) to novelty stimuli.

The observation that MGN-lesioned receiver rats showed no

fear response in the company of sender rats that displayed robust

freezing and 22-kHz USV indicates that the receiver rats are

responding directly to the sender rats’ USV calls. With no MGN

to process USVs, the sender rats’ freezing and other fear

responses, such as odor (but see [33] and [34]), do not influence

the receiver rats. Hence, the 22-kHz USV is a crucial feature of

social transmission of fear in rats. The fear-evoking properties of

USV in rats appear to require processing in the primary auditory

system at or above the level of the thalamus, although the possible

contribution of the MGN projections to the auditory brain stem

cannot be ruled out. A recent study has shown that fear

conditioning to a 22-kHz USV CS in rats requires higher cortical

(i.e., the perirhinal cortex) projections to the amygdala [35], unlike

fear conditioning to a pure tone CS which can be fully supported

by either cortical projections to the amygdala or direct projections

from the medial division of MGN to the amgydala [25,26,36]. The

finding that USV also induces c-fos expression in auditory and

perirhinal cortices [20] further suggests that rats’ responses to USV

[31] are mediated upstream from the MGN.

What is the basis, then, for the sender’s USV affecting the

behavior of fear-experienced, but not naı̈ve, receiver rats? In fear-

experienced receivers, the USVs that they emitted during 3

unsignaled footshocks seem to prime them to experience fear

during the sender-receiver pair-testing the next day (Fig. 2F).

Specifically, their USV onset latencies during fear experience on

day 1 were significantly correlated with the freezing levels on day

2 pair-testing. This suggests an intriguing possibility that the

receiver rat’s reflexively emitted USVs (to unsignaled footshocks)

served as an internally-generated CS that formed ‘auto-

conditioning’ with the subject’s fear state (Fig. 4). If that were

the case, then the receiver rats that emitted USVs early on,

starting with the first footshock, would acquire a stronger fear

association than those that emitted USVs after the second or

third footshock (Fig. S4A), based on the traditional view of CS-US

contingency in the classical conditioning [37]. Indeed, during the

pair-testing, the receiver rats that started to emit USVs prior to

the second or last shock on day 1 froze significantly more than

those that started to emit USVs after the last shock (Fig. S4B).

The USV-footshock auto-conditioning is likely to occur in the

amygdala, a structure implicated in acquisition and expression of

conditioned fear response [13,15], or via auditory thalamus

which has been also considered as a site of plasticity for auditory

fear conditioning [38,39]. Later, during the pair-testing, the

sender’s conditioned USV response (emitted to the tone CS)

would serve as an effective surrogate CS [35] to evoke the

representation of previous USV-fear association in the receiver

animal, via the MGN-mediated amygdalar activation. In support

of this notion is the finding that temporarily inactivating the

MGN of receiver rats (via targeted infusions of lidocaine, a

voltage-gated Na+ channel blocker) during 3 unsignaled foot-

shocks, did not affect their ability to display postshock freezing

and USV but did prevent the sender’s USV from affecting their

behavior in the paired experiments. Presumably this was because

lidocaine prevented the transmission of USV information at or

above the level of the thalamus, so that the USV-fear association

was not formed. Consequently, even with fully functional MGNs

during the pair-testing, the receiver rats did not freeze to the

sender rats’ USV emission. Obviously, manipulations that can

selectively inhibit USVs without altering other postshock fear

responses (currently unavailable) will be required to further test

this notion of auto-conditioning, perhaps analogous to auditory

mirroring hypothesized in birds [40].

As mentioned above, there was no evidence of social

transmission of fear when naı̈ve rats were tested with fear

conditioned partner rats; the naı̈ve rats did not freeze when

placed in a novel chamber and presented with a novel tone nor did

they freeze when the partner rats displayed robust freezing and

USV responses. However, a recent study reported that 10 minutes
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of social interaction with recently fear conditioned rats in the

home cage enhanced the naı̈ve partner rats’ subsequent fear

conditioning, suggesting that social transfer or modulation of fear

transpired during brief social interaction [41]; see also [42]. In our

study, a relatively prolonged ,3 hours of interaction with recently

fear conditioned sender rats in the homecage did not enhance the

receiver rats’ conditioned freezing to the 3 unsignaled footshocks

when compared to receivers that interacted with naı̈ve senders

(Fig. S1C). The social transfer of fear was evident only when USV

calls were emitted by the partner sender rats during the paired

testing. Whether brief versus prolonged social interaction between

recently fear conditioned rats and partner rats about to undergo

fear conditioning is a pivotal factor in social transfer of fear

requires further investigation.

In summary, the present findings provide direct evidence that

conditioned fear-induced 22 kHz USV emitted by one rat evokes

fear behavior in a partner rat, provided that the receiver rat had

previously experienced fear. Hence, experience-dependent fear

responses to the USV in pair-housed laboratory rats might serve

as a useful animal model towards understanding the neurobio-

logical basis of normal and aberrant social fear learning in

humans [43].

Supporting Information

Figure S1 Mean percentage (6 SEM) freezing (A) and USV (B)

displayed by SFC rats during auditory fear conditioning (10 tone-

footshock pairings), and mean percentage freezing (C) and USV

(D) by RFE rats during fear experience (3 unsignaled footshocks.

(TIF)

Figure S2 Mean percentage (6 SEM) freezing during pair-

testing by SFC and RN rats that were pair-housed for either 1 week

or 3 weeks prior to the experiment. There was no effect of the

duration of pair-housing.

(TIF)

Figure S3 Mean percentage (6 SEM) freezing (A) and USV (B)

displayed during first 3-min period of the tone testing on day 3 by

SFC animals injected with lidocaine in their MGNs (SFC-LI) and

when re-tested in drug-free state (SFC-no drug) on day 4.

(TIF)

Figure S4 The time course of USV emitted by individual

receiver rats during three unsignaled shocks (represented by filled

triangles) and their subsequent freezing level during the pair-

testing (A). Eight rats were divided into USV-footshock ‘paired’

and USV-footshock ‘unpaired’ groups depending on whether their

USV preceded and overlapped with footshock(s). (B) Mean

percentage (6 SEM) freezing displayed during pair-testing by

‘paired’ and ‘unpaired’ RFE groups.

(TIF)

Text S1 Supporting Text.

(DOC)
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