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Abstract

Genetic interactions are being quantitatively characterized in a comprehensive way in several model organisms. These data
are then globally represented in terms of genetic networks. How are interaction strengths distributed in these networks?
And what type of functional organization of the underlying genomic systems is revealed by such distribution patterns?
Here, I found that weak interactions are important for the structure of genetic buffering between signaling pathways in
Caenorhabditis elegans, and that the strength of the association between two genes correlates with the number of common
interactors they exhibit. I also determined that this network includes genetic cascades balancing weak and strong links, and
that its hubs act as particularly strong genetic modifiers; both patterns also identified in Saccharomyces cerevisae networks.
In yeast, I further showed a relation, although weak, between interaction strengths and some phenotypic/evolutionary
features of the corresponding target genes. Overall, this work demonstrates a non-random organization of interaction
strengths in genetic networks, a feature common to other complex networks, and that could reflect in this context how
genetic variation is eventually influencing the phenotype.
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Introduction

The study of biological networks is beginning to expose how the

combination of basic characteristic elements brings about system-

level behaviors. These networks represent in many cases the

integration of processes very well delineated molecularly, such as

transcription [1], metabolism [2], or protein-protein interaction

[3]; processes (and networks) that should ultimately be aggregated

to properly describe cellular physiology [4].

A possible exception to this view corresponds to the specific case

of genetic interaction networks [5]. These networks are not so

much linked to a particular molecular process, but to the

conceptual idea of the genotype-to-phenotype map, and the

dependence of such map on the associated genetic background.

Both notions were initially raised in the early days of genetics,

when a number of studies started to approach the issue of how

gene interactions could influence the function and evolution of

genetic systems [6]. Such gene interactions were broadly termed

epistasis, and referred largely to the fact that the contribution of a

single locus to the genotype-to-phenotype map could depend on

the genotype at another genomic location [7].

The analysis of genetic interactions, and its systematic mapping

to establish genetic networks, benefited enormously from the

application of newly developed high-throughput experimental

technologies. These tools are based on the possibility of generating

collections of single gene mutants –both in unicellular

[8,9,10,11,12] and multicellular [13,14,15] model organisms,

and also in mammalian systems [16,17] – that are then queried

against a second large set of target gene mutations (Figure 1A and

Box 1). Genetic interactions are thus defined for those cases in

which the growth of the double mutant is different to its (expected)

growth in the absence of any relationship (expected growth is

usually quantified by the multiplicative effect of the single

mutations (see [18,19] and Materials and Methods).

What type of biological questions can we analyze with the use of

genetic networks? One could generally consider three classes. The

most direct question should be what actually represents a genetic

interaction in molecular terms, e.g., [20]. Answers to this question

were proposed already with data generated in the first systematic

studies but they could only be of limited scope, as the type of

interactions being measured (initial studies were only linked to a

particular case of negative genetic interaction termed synthetic

lethality, see Materials and Methods). Synthetic lethal interactions

were hence proposed to represent the functional dependence of

two genes acting in parallel pathways, while the number of

interactions exhibited by a particular gene helped to reveal its

position within a pathway [21]. Recent experiments are now able

to quantify a wider range of interactions, from negative to positive,

and consequently more clear patterns are expected to emerge

[22,23,24,25].

A second group of questions should be related to the integration

of bioprocesses, i.e., the functional cartography of cellular

pleiotropy [12]. Patterns of target interactions for each query

gene can be considered as valid phenotypic signatures and thus

clustered –similar patterns revealing functional association among

the corresponding query genes. This use of genetic interactions as
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a tool to uncover function improved again with the use of more

quantitative data, such as that obtained with the use of dSLAM

(diploid synthetic lethality analysis with microarrays [10]), GIM

(genetic interaction mapping [11]) and SGA (synthetic genetic

array [12]) techniques.

Finally, a third set of questions could be asking about the

structural properties of genetic networks, and how these properties

can reveal organizing principles of the underlying biomolecular

systems, e.g., [8,14]. Two main structural features are noticeable.

First, genetic networks present a number of genes with large

connectivity, or hubs, particularly enriched with chromating

remodeling functions [13,26]. This presents such genes as

modifiers of many diverse biological processes with two seemingly

contradictory consequences; their presence buffers biological

systems from a large number of gene mutations, i.e., it limits

change, while their absence could unveil otherwise hidden

variation [26], i.e., it promotes change. A second interesting

property is the poor conservation of genetic interactions in

different organisms unlike other biomolecular networks, although

the exact level of conservation is still uncertain [27,28,29].

This work belongs to the last class of questions. I specifically ask

about the distribution of interaction strengths (ISs) in genetic

networks. By analyzing several network features I observe a non-

random association between these attributes and ISs. I then discuss

the consequences of these patterns for the underlying biomolecular

systems.

Results

Weak interactions are important to preserve the
structure of functional linkages among pathways

I first analyzed the query network linked to a recent systematic

study in the nematode Caenorhabditis elegans (Materials and Methods

and Figure 1B). This network is constituted by the genetic

interactions uncovered between query genes, a set of genes

associated to six fundamental signaling pathways in metazoans (the

EGF, FGF, Notch, insulin, Wnt and TGF-b pathways [14]), that

are mutated in human diseases [13]. The presence of genetic

interactions between these genes indicates that components of

alternative pathways could be functionally buffering each other

(one gene of a given pathway rescuing the function of a different

pathway in which its associated query gene is deleted; note here

that clk2, specifically related to DNA-damage response, could be

broadly considered a signal transduction gene). Furthermore, the

fact that the query network constitutes a single-connected

component could indicate the physiological relevance of a full

association among all pathways. Which gene is then more central

to maintain this network structure? I knocked out each query gene

(by zeroing its associated connections) in the network indepen-

dently, and measured the average shortest distance between nodes

as a proxy of the (mutant) network functional connectivity; with

larger distances indicating higher pathway isolation. Intuitively,

the more central the deleted node was (as denoted by its query

network connectivity), the less functionally connected the mutant

query network became (larger average shortest distance, Spear-

man r = 0.7, p~0:018, most central nodes were bar-1, let-60, and

sem-5). Note here that centrality was a predictor of the node mean

IS in the query network (edge widths in Fig. 1B, Elocal = 0.64,

p = 0.035), but not of the number of interactions of the query

nodes with target genes (node size in Fig. 1B; r = 0.33, p = 0.31).

What about query-query interactions? Which ones could be

more important to sustain full connectivity? One might a priori

expect a relationship between query-query links with strong ISs

and their effect on connectivity when deleted. However, this was

not the case. I deleted five edges in a sliding window analysis of

increasing IS (this was the average number of deleted edges when

a single gene was knocked out). I found that edges of relatively

weak IS were instead the most relevant to network structural

stability (size of the largest connected component, Figure 2). These

edges were the ones most frequently connecting pathways (this is

quantified in graph theory by the average edge betweeness

centrality, eBC, i.e., the number of times that a particular edge

takes part in the shortest path between two nodes in a graph).

Indeed, there exists an anticorrelation between average eBC and

average IS (r = 20.62, p = 0.0034), with the former evidently

related to stability (r = 20.84, p = 2.5 10Elocal). Multiple gene

knockouts involved in weak (double mutant) interactions could

thus have a strong effect [22]. Overall, these results manifest that

weak connections are important to keep the structure of functional

linkages among signaling pathways.

Figure 1. Genetic interaction networks. A) Genetic interactions of
different strengths between query and target genes constitutes the
genetic network (red nodes represent query genes (q1,q2); white/black
nodes represent target genes interacting with one (t4,t5) or more than
one (t3) query. B) The C. elegans query network –constituted by the
interactions between query genes only– represents the functional
associations between different signaling pathways. IS is represented by
the width of the edges, while the number of interactions with target
genes other than queries (target-connectivity) is qualitatively described
by node size. Those interactions of relatively weak strength that
appeared most important to maintain the structure of functional
linkages among pathways (network as a single-connected component,
see main text) are highlighted in blue.
doi:10.1371/journal.pone.0014598.g001

Genetic Interaction Networks
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Genetic interaction patterns depend on interaction
strength

I then analyzed the global patterns of interactions between

query and target genes. These interactions act as truly phenotypic

signatures to identify functionally related genes by means, for

instance, of two-dimensional clustering of query and target genes

with similar profiles [8,14,11,12]. Here, I present a somehow

complementary study. I examined whether the structure of the

query network itself could be determining the patterns of

interactions with target genes. First, I considered pairs of

interacting query genes and asked to what extent these pairs

showed a stronger trend to interact with the same target genes, as

compared to pairs of non-interacting query genes (note that by

target genes I considered only those targets which were not query

genes too, see Figure 1A). Interacting query genes showed a

stronger tendency to act with the same target genes than expected

by chance (score S defined as the number of common targets –of a

total of 450– between query pairs; SSTint = 53, SSTran
int = 44.3,

pv0.001, non-parametric permutation test in which I took

random sets of query pairs and then measured S, 10000 times),

while the opposite was found for non-interacting pairs

(SSTnoi = 37, less number of interactions than expected by chance

SSTran
int = 44.3, pv0.001, permutation test, 10000 times). In

addition, the number of common interactions, i.e., number of

triads, established by pairs of interacting query genes correlated

with the IS of the interaction (r = 0.48, p = 0.016, Figure 3).

Moreover, I computed the mean IS of the target genes that

interacted exclusively with query genes (query-connectivity = 1),

and compared it with the mean IS of those target genes interacting

inclusively with query genes (query-connectivity w1). Inclusive

interactions showed a higher mean IS than expected by chance

(SISTinc = 3.18, SISTran
inc = 2.94, pv0.0001, where I randomized

ISs of target-query interactions 10000 times keeping network

topology), while exclusive interactions showed a lower mean IS

(SISTexc = 2.67, SISTran
inc = 2.94, lower than expected with

pv0.0001, randomization as before).

The C. elegans genetic network does not exhibit strong
genetic cascades

To further understand the distribution of ISs in the C. elegans’

network, I made use of a quantitative framework recently

proposed in studies of weighted complex networks, the network

efficiency [30,31]. To this aim, I first introduced a notion of

‘‘functional distance’’ by reinterpreting the strength of the genetic

interaction between two genes. For every genetic interaction

between two genes (A,B), I defined this distance as the inverse of

the IS, i.e., L(A,B)~1=IS(A,B). ‘‘Close’’ genes in this metric

reflect thus strong (negative) epistasis, which intuitively suggests a

proximate functional relationship [5].

I then considered the concept of efficiency. Imagine that one

measures the weighted shortest path between every pair of genes in

the network, dw. By this I mean the path connecting two genes

with the smallest sum of edge distances L (from all the possible

paths connecting them). Two genes are efficiently connected if

dw(A,B) is small. One can take now the average of all weighted

shortest paths, or rather the average of the inverse, 1/dw(A,B), to

determine network efficiency. Small shortest paths between genes

imply that their inverse is large and that the network efficiency is

equivalently large. Finally, efficiency can be normalized by its

maximum possible value that could be obtained if all genes were

connected in the network (the ideal network, Materials and

Methods). Following these definitions, I obtained a global

efficiency of the C. elegans genetic network of Eglobal = 0.21, i.e.,

21% of the ideal network. This value was always less than that

obtained in networks with same topology but randomized ISs

(mean value of 1000 randomizations Eran
global = 0.23, pv0.001).

Efficiency, in its standard application, broadly measures how

well information propagates over a network [31], with high

efficiency implying the presence of small shortest paths between

nodes. In the case of a genetic network, maximal efficiency would

imply that genes usually take part of genetic cascades of the type

Figure 2. Deletion of five interactions (edges) in a sliding
windows analysis with increasing IS. Relatively weak edges
produced the largest change on network structure (as measured by
the size of the largest connected component normalized to the
maximum, blue circles). These weak edges were the ones most
frequently connecting pathways (largest edge betweeness centrality,
eBC, normalized to maximum, red squares). Dashed and dotted lines to
help visualization.
doi:10.1371/journal.pone.0014598.g002

Figure 3. The number of triads established by pairs of
interacting query genes correlates with the strength of this
interaction. Dots represent the number of triads for each interacting
query pair, with the red line representing the regression curve with
R = 0.44, pv0.03 (IS represented by edge width; query and target genes
as red and black circles, respectively). Genes involved in the strongest
ISs are part of the fibroblast growth factor pathway: { egl-15, let-60},
{egl-15, let-756}, { sem-5, let-60}, and { sem-5, let-756}, see also Fig. 1B.
doi:10.1371/journal.pone.0014598.g003

Genetic Interaction Networks
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A–B–C–D constituted by pairwise interactions with strong IS. A

network with low efficiency, like the one observed here, suggests

otherwise absence of these cascades. While high global efficiency is

considered a positive attribute in most networks –so that global

communication in the network is optimal [30,31] –, high global

efficiency might be denoting a disturbing structural property in the

case of genetic networks, as it indicates that a single gene

inactivation leads to a number of particularly strong deleterious

cascade effects.

Specific patterns of ISs could be additionally identified with the

network local efficiency. This score represents how robust is the

connectivity between first neighbors of a chosen node, when this

node is removed, i.e., how fault tolerant is the network to node

removal (Materials and Methods) [30,31]. In the context of genetic

networks, local efficiency denotes how many genes linked to a

specific genetic modifier are also linked to alternative modifiers.

The observed local efficiency Elocal = 0.278 was bigger than the

random value, but this difference was not statistically significant

(Eran
local = 0.273, 1000 randomizations as before, p = 0.25). Interest-

ingly, when I computed the local efficiency of query genes only, I

did observe that the restricted local efficiency was significantly

larger than expected by chance (observed Elocal = 0.184, random

Eran
local = 0.169 pv0.001). This suggests that, on average, several

query genes could act as modifiers of similar target genes since the

removal of a single query changes the connectivity of its first

neighbors less than what is randomly expected (the network

structure is particularly fault tolerant).

One could understand the previous patterns by discussing four

limiting situations in a toy network (Figure 4). First, one could

imagine a network in which the ISs of some query-query and

exclusive target-query interactions are usually strong, while the

inclusive target-query ones are weak (network A, Fig. 4A). This

implies the presence of short-distance cascades crossing the graph

and hence maximal global efficiency. An alternative IS distribu-

tion could correspond to strong exclusive target-query interactions,

with the rest being weak (network B, Fig. 4B). This would generally

minimize local efficiency as the network query genes at the core

are at very large distances. The opposite situation in which only

query-query interactions are strong maximizes local efficiency

(network C, Fig. 4C). Finally, one could consider a network in

which strong ISs are mostly distributed on inclusive target-query

interactions, which minimizes global efficiency (network D,

Fig. 4D). The C. elegans network showed minimum global efficiency

which would indicate that it corresponds to the last model, i.e., a

situation with low global efficiency and weak exclusive interactions

(recall that exclusive interactions showed a weaker mean IS than

expected by chance), in combination to network C, which also

reflects the maximal local efficiently observed when knocking out

query genes.

Genetic hubs act as especially strong modifiers
Could we specifically characterize the role of strong interactions

in the architecture of these networks? I used again the previous

network measures to consider the two following scenarios. In the

first one, I deleted an increasing number of edges, based on its

strength, until I reached a core network. I obtained a contrasting

behavior depending on whether deletion started from weak or

strong edges (Figure 5). Elocal decayed faster when deleting strong

interactions because these interactions are those contributing more

to local fault tolerancy. Genes with high connectivity (query genes)

provide alternative routes to connect target nodes (i.e., mutations

on these target nodes could be buffered by different queries). As

these genes are involved, on average, in interactions with strong

IS, deletion of strong links reduces these alternative routes, i.e., the

network local fault tolerance. Weak interactions, on the other

hand, are more specific to single query genes contributing less to

the previous pattern, as indicated by the slower decay of the

network local robustness, i.e., Elocal.

In comparison, Eglobal decayed faster when deleting weak

interactions (Fig. 5). This is due to the fact that more genes get

disconnected (as weak interactions are commonly related to

exclusive query-target interactions), not contributing to the global

efficiency; indeed, the size of the largest connected component

decreases considerably when deleting weak interactions (data not

shown).

In a second scenario, I knocked out those target genes with the

largest query-connectivity (top 25 genetic hubs [13]), and

quantified the global efficiency of the mutated network. The

mutated network decreased in efficiency (E
wild-type
global ~0:209?

Emutant
global ~0:179) and this decrease was larger than expected by

chance (mean random Emutant
global ~0:199, pv0:001, considering

1000 random networks in which ISs were randomly assigned). In

sum, these analyses emphasize the interconnection among strong

ISs, inclusive interactions, and genetic hubs.

Interactions strengths are also not randomly distributed
in S. cerevisiae

Could one find the previous patterns in other genetic networks?

This might not necessarily be the case as genetic interactions do

not appear to be conserved in different organisms [27] (but see

[28,29]). To investigate this, I first used a genetic network

associated to the process of mRNA decapping in the yeast

Figure 4. Global and local efficiency in genetic networks. In this
toy network query genes, genes with inclusive target-query interactions
and genes with exclusive target-query interactions are shown as red,
black and white nodes, respectively. IS is represented by the edge
width. A) maximal global efficiency correspond to cascades of strong IS
(Eglobal~0:351,Elocal~0:403), B) minimal local efficiency corresponds to
exclusive interactions of strong IS (Eglobal~0:343,Elocal~0:394), C)
maximal local efficiency corresponds to query interactions of strong IS
(Eglobal~0:333,Elocal~0:414); this also corresponds to maximal local
efficiency of query genes only, D) minimal global efficiency correspond
to inclusive interactions of strong IS (Eglobal~0:327,Elocal~0:411). The
C. elegans and S. cerevisiae networks would be a mixture of network
models C) and D), see main text for details.
doi:10.1371/journal.pone.0014598.g004

Genetic Interaction Networks
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Saccharomyces cerevisae [11] (Materials and Methods). I obtained

again that Eglobal is smaller than expected by chance

(Eglobal = 0.061, Eran
global = 0.066, pv0.001, randomizing ISs, 1000

times). In this case, local efficiency was significantly larger than

what it was randomly observed (Elocal = 0.11, Eran
local = 0.098,

p~0.035, randomizations as before). Moreover, knocking out of

genetic hubs also led to a larger decrease in global efficiency than

expected (E
wild-type
global ~0:061?Emutant

global ~0:059, mean random

Emutant
global ~0:063, pv0:001), confirming the picture of hubs as

particularly strong genetic modifiers.

These patterns were also observed in a recent, and much larger,

yeast dataset [12]. Global efficiency was again lower than expected

by chance, with local efficiency being larger (Eglobal = 0.076,

Eran
global = 0.08 and Elocal = 0.037, Eran

local = 0.031; both cases with

pv0.002, randomizing ISs 500 times). Additionally, interacting

query genes exhibited a larger number of common target

interactors, a pattern that depended on IS (data not shown); both

results similar to those found in the C. elegans network.

Finally, I used this second dataset [12] to analyze the potential

association between ISs and the corresponding physiological and

evolutionary attributes of the genes involved. Specifically, I

computed the correlation between query-target ISs and a number

of attributes of the target genes (e.g., multi-functionality,

expression level, etc, Table 1 and Materials and Methods). I

compared these scores to those obtained after random permuta-

tion of each attribute value within each genetic connectivity class

(number of genetic interactions) of the target gene. This protocol is

aimed to control for the already known signal between target gene

connectivity and the physiological/evolutionary attributes consid-

ered, as shown in [12]. Most features showed the same tendency

observed with connectivity when IS was further considered. For

instance, pleiotropy (as measured by the multi-functionality and

phenotypic capacity attributes) and conservation (as measured by

Figure 5. Change of global and local efficiency as a function of
mean IS in mutated network. Mutated networks were obtained
after increasingly deleting interactions up to a core network. Blue,
change in Eglobal when increasingly deleting strong interactions. Black,
change in Eglobal when increasingly deleting weak interactions. Red,
change in Elocal when increasingly deleting strong interactions. Green,
change in Elocal when increasingly deleting weak interactions (lines
between points to help visualization; dark gray shading denotes
deletion starting from strong edges while light gray denotes deletion
starting from weak edges).
doi:10.1371/journal.pone.0014598.g005
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copy number volatility and dNdS) correlated positively and

negatively, respectively, with connectivity and they also did it with

IS –when genetic connectivity is controlled for– as compared to a

null. The strength of these associations was however small.

Discussion

Genetic networks are the result of a systematic strategy to map

the functional associations characterizing a biological system by

means of perturbations (Fig. 1). How are such functional

associations ultimately identified? One approach is to link each

genetic interaction to its molecular underpinnings, with the goal of

determining general patterns between classes of interactions and

what they represent, e.g., [20,21,24]. A complementary strategy is

to search for organizing principles in the genetic network itself,

and then analyze the potential implications of these principles in

the underlying biological system, e.g., [32,25]. I followed here this

second approach by focusing on understanding the distribution of

(negative) interaction strengths in genetic networks.

Using data from a C. elegans genetic network linked to a set of

conserved metazoan signaling pathways, I obtained two main

patterns associated to the strength of these interactions. I observed

first that weak interactions are important to maintain the structure

of buffering linkages among pathways (Fig. 2, these weak

interactions involved genes, such as glp-1 or sma-6, of different

pathways). I also found that the presence/absence of a genetic

interaction between two signaling genes influence the number of

common (target) interactors they exhibit. This confirms the view

that correlated interaction profiles between two genes suggest

shared function [8,14,11,12] –in this case reflected in the

presence/absence of a genetic interaction between such two

genes. Indeed, the strength of the genetic interaction acted as a

significant predictor of the number of common interactors the

corresponding signaling genes exhibit (Fig. 3, those pairwise

interactions with the strongest IS –and thus with the largest

number of common target interactors– involved query genes

which were orthologs of members of the fibroblast growth factor

pathway).

I considered two additional genetic networks characterized in

yeast, together with the nematode data, to further study the

arrangement of ISs (the molecular techniques to generate these

networks are considerable different, see Materials and Methods,

but they are ultimately produced with the same query-target

approach [5]). Adopting a framework from complex network

theory (network efficiency [30,31]), I first observed that genetic

networks did not generally show cascades constituted by strong

pairwise interactions. This indicates that in gene cascades of the

type A–B–C–D, the IS between B–C (both query genes) is loosely

linked, on average, to the IS of the interactions A–B and C–D (A,

D being exclusive target genes, Fig. 4). The strength of the

interaction between two genes can act then as a predictor of the

number of common genetic interactors, but not so much of their

interaction strengths. Moreover, this balance of interaction

strengths could reflect and underlying biological organization that

limits the propagation of deleterious effects and that resembles the

monochromatic structure of interactions in metabolism (in which

different groups of genes exhibit opposite types of epistasis in their

intra- or inter-group relations [32]).

I also found that weak interactions are important for full

network connectivity (as they are linked to exclusive query-target

links) while strong interactions are relevant for local fault tolerance

to genetic mutations (being linked to inclusive query-target

interactions, Figs. 4,5). In addition, ISs of the most inclusive

target genes (hub target genes interacting with many queries)

showed a distinct distribution of strong genetic interactions. This

distribution presents these genes –enriched in various cellular

processes [26] – as particularly strong phenotypic modifiers, i.e.,

their absence revealing a large number of hidden mutations

causing particularly strong changes in growth [13]. In yeast, I also

observed a weak association between IS and some phenotypic/

evolutionary attributes of the target genes involved (Table 1).

In sum, a non-random balance of weak and strong interactions

in genetic networks clearly emerges from this analysis –a balance

that we might well feel a nontrivial common property of complex

systems [33], as it is characteristic of other networks [32,34–36].

However, the implications of this IS distribution, and of other

patterns found in related works, for the organization of the

underlying biological systems appears sometimes obscure. I believe

this is due to three causes. First, it can be a consequence of

technical limitations derived from the the biased sampling of query

and target genes, with the number of genes acting as queries being

always considerably smaller than those acting as targets. In this

sense, the network constituted by the query genes associated to

[12] could be the best current picture of a large network in which

all potential genetic interactions between the constituent genes

were scored. Notably, both the local and global patterns

uncovered by the use of the network efficiency framework were

also observed in this yeast query network. Second, it could also be

caused by the different quantitative definitions used for genetic

interaction, e.g., [18,19]. Finally, and most importantly, it can be

originated by the intrinsic difficulty to map patterns observed in a

conceptual network, constructed on a specific perturbation

strategy of a system, to the underlying structural organization

and function of that very same system. This mapping might not

even be stable [37].

Efforts to understand these networks, further generalizations of

perturbation approaches, e.g., [22,25], and integration with

forward genetic strategies (e.g., genome-wide association studies

[38]) are nevertheless necessary if we are to understand how

genetic interactions influence the evolution of biological systems,

and, from a biomedical side, how these interactions contribute to

relevant human quantitative traits.

Materials and Methods

Caenorhabditis elegans SGI genetic network
Data from a systematic genetic interaction (SGI) analysis by

Byrne et al [14]. Query genes are hypomorphic mutants, with

reduced but not eliminated function, of genes corresponding to

signaling pathways in metazoans. Hundreds of target genes were

inactivated in each query-gene background by using RNA

interference techniques, see also [13]. The most robust network

consists of 1246 interactions among 461 genes. The distribution of

ISs in the SGI network hardly shows alleviating interactions (as

compared to the whole interaction dataset, i.e., Fig. 3 in [14]).

When assembling the interaction network, I found several cases of

pairwise interactions with two different associated IS. In these

cases, I took the mean (this implied that the only two alleviating

interactions in the SGI dataset became positive).

Saccharomyces cerevisiae GIM genetic network
Data from a genetic interaction mapping (GIM) by Decourty

et al [11]. In this study 41 different query mutations of genes

involved in several RNA metabolism pathways (Table S2 in [11])

were tested against a collection of 3812 target mutations giving rise

to approximately 140.000 double mutant deletion strains. Only

1095 deletion strains of the collections gave a significant relative

score and that is the data I analyzed (in those cases where the same
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query genes were involved in independent screens I took the mean

relative growth value). To compare with the C. elegans network I

considered only negative relative growth scores (note that this is a

conservative subset of the negative genetic interactions) and took

the absolute value so that strong interactions are the ones with the

largest value. The resulting GIM network consists of 16838

interactions among 1106 genes.

Saccharomyces cerevisiae SGA genetic network
Data from a recent genetic synthetic genetic array (SGA) study

by Costanzo et al [12]. 1712 query genes, selected randomly with

respect to function, were screened against 3885 target genes to give

approximately 170.000 interactions. I considered a filtered data set

at a defined confidence threshold for my analyses. To compare

with the other analyses I only considered negative interactions

(and took the absolute value so that strong interactions are the one

with the largest value) to obtain a network with 108414

interactions and 4434 nodes.

Defining genetic interactions
Negative interactions correspond to a more severe fitness defect

in the double mutant than expected from the fitness of single

mutants (such expected fitness can be defined in different ways, see

[18,19] and below). They are also termed enhancing, aggravating

or synergistic interactions. A limiting case of negative interaction

where double mutants are not viable is termed synthetic

interaction; the first systematic studies characterized this class

[8]. Positive interactions correspond to those cases where the

double mutant fitness is greater than expected from the single

mutant values. They are also termed alleviating interactions. See

[5] for more details and references.

Defining ISs
To quantify ISs Byrne et al [14] estimated progeny in double

mutants and controls (query RNAi in wild-type background, and

the control vector in the hypomorph background). ISs measured

average growth difference between the double mutant and the

control populations. This can be seen to represent a conservative

estimate of the possible interactions obtained following a

multiplicative model of expected fitness (see additional data file 5

in [14] for details). Costanzo et al [12] quantified ISs by estimating

fitness effect directly from double mutants colony size and then

contrasting this value with the expected multiplicative effect of

combining the two corresponding single mutant scores. Finally,

Decourty et al [11] ISs were obtained by comparing the differential

enrichment of double mutants growing in competitive culture with

two reference controls (using barcode microarrays). Reference

controls included each target mutation in one/two backgrounds of

neutral control deletions. This approach is similar to the dSLAM

[10] technique, claimed to be using a minimum definition of

expected fitness (two mutants are independent if the double

mutant has the same fitness that the less-fit single mutant). While

definitions of genetic interactions can be relevant, e.g., some could

be better than others to identify functional relationships [18], the

use of multiple definitions may still be valid to reveal complemen-

tary biological properties [19]. The analysis of this latter data

suggests that different definitions could also help identifying

common organizing principles of their corresponding genetic

networks.

Defining Efficiency
Efficiency was recently introduced as a quantitative measure to

study information transfer in weighted networks [30,31]. The

efficiency between two nodes, e(A,B), is given by the inverse of the

corresponding weighted shortest path length (the smallest sum of

distances throughout all the possible paths in the network from A
to B), i.e., e(A,B)~1=dw(A,B). The average efficiency of a

network, or graph G, with N nodes is given by

Eglobal~E(G)~

P
A=B[G

e A,Bð Þ

N N{1ð Þ ~
1

N N{1ð Þ
X

A=B[G

1

dw A,Bð Þ :

To obtain a normalized efficiency the previous score is divided

by that of the ideal graph, i.e., the network with all possible edges

(and thus information transfer is in the most efficient way). In the

ideal genetic network, I gave the minimal characteristic distance to

any two nodes not connected. To those cases where the direct

pairwise interaction between two genes had a larger distance value

that the one linked to undirected pathways, I assigned the lowest

value of the two; these choices lead to maximal efficiency. Finally,

local properties of the network can be evaluated by measuring the

efficiency associated to each gene A, i.e.,

Elocal~
1

N

X

A[G

E GAð Þ
E Gideal

A

� � ,

with GA (and Gideal
A ) being the sub-network constituted by all the

genetic interactions associated to gene A (and its corresponding

ideal genetic sub-network). Local efficiency quantifies how much

deterioration in the connectivity between the neighbors of A will

occur when A is removed, i.e., how much the system is fault

tolerant.

Genetic and evolutionary properties
I considered the following features in Table 1 (see [12] for

details): 1) Single mutant fitness defect: 1-fi, with fi being the single

mutant fitness defect derived from mutant colony size data, 2)

multi-functionality: total number of annotations across a set of

functionally distinct GO terms, 3) phenotypic capacitance: the

number of quantitatively different morphological phenotypes

linked to a specific gene, 4) chemical-genetic degree: sensitivity

to a library of drugs as well as a variety of experimental conditions,

5) PPI degree: total number of interactions in the union of four

high-throughput physical interaction datasets, 6) protein disorder:

the percent of unstructured residues, 7) expression level: average

number of mRNA copies of each transcript per cell, 8) yeast

conservation: number of species that possess an ortholog of a given

gene, when considering 23 different species of Ascomycota fungi,

9) volatility: frequency of gain (including duplication) or loss events

across the 23 species before, 10) dN=dS: dN=dS ratio for S.

cerevisiae in comparison to the sensu strictu yeast species S. paradoxus,

S. bayanus and S. mikatae.
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