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Abstract

We apply our recently developed information-theoretic measures for the characterisation and comparison of protein–
protein interaction networks. These measures are used to quantify topological network features via macroscopic statistical
properties. Network differences are assessed based on these macroscopic properties as opposed to microscopic overlap,
homology information or motif occurrences. We present the results of a large–scale analysis of protein–protein interaction
networks. Precise null models are used in our analyses, allowing for reliable interpretation of the results. By quantifying the
methodological biases of the experimental data, we can define an information threshold above which networks may be
deemed to comprise consistent macroscopic topological properties, despite their small microscopic overlaps. Based on this
rationale, data from yeast–two–hybrid methods are sufficiently consistent to allow for intra–species comparisons (between
different experiments) and inter–species comparisons, while data from affinity–purification mass–spectrometry methods
show large differences even within intra–species comparisons.
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Introduction

Comparative genomics has revolutionised the study of biology

by shifting its focus from component characterisation to the study

of systemic properties. We envisage that in the near future the

comparison of interactomes of different species might drive a

similar, if not even more powerful transformation [1,2]. Interac-

tion maps (otherwise here named interactomes, referring to the

entire set of molecular interactions in the cell) can reveal important

mechanistic principles that may guide further progress in the

understanding of cellular function, and of dysfunction leading to

disease [3–5]. One would expect that the availability of

interactome maps for several organisms could give new insights

into how biological diversity is embedded in the networks’

functionality [6]. In contrast to genomic data, however, the

available interactome data are still far from complete and of

limited reproducibility [7,8]. One can compare protein-protein

interaction network (PPIN) datasets by simply counting the

fraction of common interactions, referred to as ‘overlap’.

However, the overlap values found are typically small, which

prohibits a meaningful comparison [9]. Alternative approaches

have therefore been proposed. Some focus on identifying

conserved ‘modules’ or recurrent geometrically defined motifs,

envisaged to capture biological and functional properties of the

underlying networks [10,11] or common functional cores of

ancestral origin [12,13]. Others employ alignment strategies where

phylogenetic information is derived by the identification of

paralogues [14,15]. These studies illustrate the additional

information provided by comparative interactomics, beyond

comparative genomics, and the benefit of intra-species comparison

[16].

However, to progress further in comparative interactomics, a

serious problem needs to be resolved. Recent analyses of PPINs

sparked a debate about the influence of the experimental method

on the quality and biological relevance of the interaction data [17].

Current experimental techniques, such as yeast two-hybrid (Y2H)

and co–affinity purification combined with mass spectrometry

(AP–MS), sample subsets of the interaction data space [18]. These

subsets show very limited overlap [7]. Moreover, AP–MS

interaction data are non-binary by nature for any multi-

component complex; their conversion to binary pair-interactions

is non–trivial and relies on processing protocols that may

introduce further biases in the final screening output [17,19]. It

is vital that we understand to what extent observed discrepancies

between different networks reflect sampling biases of their

experimental methods, as opposed to topological features due to

biological functionality.

In information-theoretic terms overlap is not a good measure of

the similarity between two sampled networks, just as the size in bits

of a file does not give its true information content. It is therefore

natural to explore the potential of information-theoretic measures

for comparing interaction networks. These require a systematic

characterisation of network topologies, which is a general

prerequisite in network science [20], and formulations in terms

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e12083



of network sample probabilities, based on macroscopic topological

features. One is thus led to study the relationship between

structured random graph ensembles and real biological signalling

networks. The rationale is that PPIN data should be regarded as

noisy samples of a true underlying network, and that the family of

such samples is best described and studied statistically as a

structured random graph ensemble with controlled macroscopic

topological features. If the control parameters of the random

graph ensemble can be derived from sufficiently accurate and

complete network data, it is in principle possible to calculate

(asymptotically) explicit formulae for entropies and complexities,

and for information-theoretic distances between network families.

In recent years there have been efforts to define and generate

random graphs whose topological features can be controlled and

tailored to experimentally observed networks. In Perez-Vicente

and Coolen [21] a parameterised random graph ensemble was

defined where graphs have not only a prescribed degree

distribution but also prescribed degree correlations. We have

recently been able to show [22] that this graph ensemble

(described in [21]) can be tailored asymptotically to the generation

of graphs with any prescribed degree distribution and any

prescribed degree correlation function. Moreover, for this

ensemble the combinatorial problem of calculating the network

complexities and information-theoretic distances between network

families can be solved analytically. The result is a novel, practical

and precise mathematical framework, that allows for the large-

scale analysis and unbiased comparison of PPINs from different

species and measured with different techniques. Here we apply

this formalism to an extensive range of PPINs, and show that it

provides a quantitative window on interactome data. The

topological network distance is applied here to cluster network

data and to estimate intra-species similarity for differently detected

interaction data and inter-species distances within and between

experimental methods. In particular, the presence of methodolog-

ical data biases and the topological similarity between networks

with small microscopic overlap can be detected clearly and at low

computational cost.

Results

The PPIN data taken from literature
In the table of Fig. 1 we give a comprehensive table of all the

PPIN data that are used in the analysis presented in this paper,

colour coded according to the experimental method that was used.

The table lists for each PPIN dataset various simple quantitative

characteristics, such as the number of nodes (NP), interactions

(NI), protein coding genes (PCG) and the average (AD) and

maximum (kmax) degree k, which is defined as the number of

interaction partners of a node.

Macroscopic characterisation: degree statistics and
degree–degree correlations

We characterise each PPIN by its degree distribution p(k) and

its normalised degree–degree correlations (DDCs) P(k, k’) (the

latter quantity gives the likelihood that two proteins with degrees k
and k’ interact, relative to what would be found in random

networks with the same degree distribution but uncorrelated

degrees). The precise definitions are given in the Methods section.

A value P(k, k’)w1 indicates that protein pairs with degrees

(k, k’) interact more than what one would expect on the basis of

their degree values, whereas if P(k, k’)v1 they interact less than

expected; either case would signal topological information beyond

that encoded in the degree statistics alone. We applied a weak

Gaussian smoothening to these functions, to prevent probabilities

from being strictly zero. The resulting numerical differences in the

macroscopic quantities are irrelevant for the presented data.

Various quantities have been proposed in the past for characteris-

ing the structure of networks. One reason for choosing the

macroscopic features p(k) and P(k, k’) is that many of the

previously proposed quantities are either similar or equivalent to

(or expressible in terms of) p(k) and P(k, k’). Examples are degree

sequences [23], degree distributions [24], degree correlations [25],

and assortativity [26]. Some authors, however, used measures that

are qualitatively different, such as clustering coefficients [27] and

so-called community structures [28].

Before embarking upon an information-theoretic analysis of our

PPIN datasets, based on the macroscopic topological features

captured by p(k) and P(k, k’), we first verify that for these

datasets the function P(k, k’) actually contains topological

information, i.e. deviates significantly from the value one. It would

also be useful to know how these topological features may have

evolved; one would expect that closely related species should also

have PPINs with more similar topological features.

In Fig. 2 we show the normalised DDCs for the bacterial species

in our dataset collection in heat map representation, with a colour

scale ranging from black (P(k, k’) close to zero) to white (P(k, k’)
very large). Since P(k, k’) is a symmetric function, the plots are

always symmetric around the main diagonal. The figure reveals

that generally the normalised DDCs deviate significantly from

those of random networks with the same degree statistics, where

one would have found P(k, k’)~1 throughout (modulo small

fluctuations). Apparently there is significant topological informa-

tion contained in the degree correlations, and this is seen to give

rise to quite diverse patterns for the different bacterial species.

Some species (e.g. Synechocystis) appear to exhibit normalised DDCs

mostly higher than the random level, some (e.g. C. jejuni) exhibit

normalised DDCs that are mostly lower, whereas for e.g. T.

pallidum one observes strong deviations from the random level in

either direction. The most closely related bacterial species in our

datasets are H. pylori and C. jejuni, which both belong to the

Campylobacterales genus, yet this is not reflected in their DDC

patterns. On the contrary, the H. pylori network exhibits only

minor DDC deviations from the random level, unlike C. jejuni.

Similarly, comparison of the networks of C. jejuni, T. pallidum and

H. pylori, which all belong to the Proteobacteria phylum family

(comprising the majority of gram-negative bacteria), does not

reveal any conserved pattern.

Even more strikingly and worryingly, consistent DDC finger-

prints are not even observed for plots that refer to datasets of the

same species. In Fig. 3 we show the normalised DDCs for yeast,

which has been the focus of most of the large-scale PPIN

determinations so far. The plots in Fig. 3, displayed in order of

experimental determination and date, do not suggest conservation

of the macroscopic topological PPIN features.

A hint at a possible explanation emerges if one compares only

plots that refer to the same experimental technique. The DDC

patterns then appear more similar, differing mostly in terms of the

strengths of the deviations from the random level, which increase

roughly with the time of publication of the PPIN dataset. Compare

for example S. cerevisiae II (core) to S. cerevisiae XII (both obtained

via Y2H), and S. cerevisiae VIII to S. cerevisiae X (both obtained via

AP–MS). The interactions reported on the S. cerevisiae X dataset

were in fact derived from the raw purification data of two AP-MS

datasets (S. cerevisiae VIII and S. cerevisiae IX), but these data were

processed using a different scoring and clustering protocol. A

strong positive correlation is observed along the diagonal for this

latter dataset, indicating an enhancement of interactions between

nodes of similar degree. In general, the AP-MS datasets show

Information Theory of PPINs
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stronger DDC patterns than the Y2H datasets (this we also

observed for the H. sapiens datasets) although the regions where the

main deviations from the random level occur are quite different.

Assortativity
The assortativity of a network is a quantity that measures in a

single number the extent to which the degrees of connected nodes

are correlated with each other; it can be expressed in terms of p(k)
and P(k, k’) via a simple formula.

Positive assortativity indicates positive correlation between the

degrees of connected nodes (implying that nodes prefer to interact

with other nodes of similar degree) while the contrary is true for

negative assortativity (here high degree nodes prefer to interact

with low degree nodes). We can therefore view and use the

assortativity as a single parameter that summarises part of the full

information provided in our DDC plots. To assess the relevance

of any observed topological feature in a network, it must be

compared to its frequency of observation in appropriate null

models. These are benchmark networks, generated randomly and

with uniform probabilities from the set of all networks that share

specified features with the network under study. In this paper we

choose as null models random networks that share with our

biological PPINs the degree distribution p(k). Many properties of

these null models can be calculated analytically if the number of

nodes is sufficiently large; for instance, lacking further topological

structure, our null models would have P(k, k’)~1 for all (k, k’),
and zero assortativity. In this section we compare our

observations for each dataset to null models that have been

generated via numerical simulations (by careful re-shuffling of the

network under study; see the Methods section for a detailed

description of the randomisation algorithm), to capture also finite

size effects.

Figure 1. Table of all 25 experimental PPIN datasets analysed in this study, corresponding to 11 different species. These included nine
eukaryotic organisms (Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Plasmodium falciparum and Saccharomyces cerevisiae), and six
bacterial species (Campylobacter jejuni, Escherichia coli, Helicobacter pylori, Mesorhizobium loti, Synechocystis and Treponema pallidum). Abbreviations
stand for: NP, Number of Proteins; NI, Number of Interactions; PCG, Number of Protein Coding Genes; AD, Average Degree; kmax), Maximum Degree;
Ref, References. Most datasets were derived from high–throughput experiments detected by either Y2H [29,46–55] or AP-MS [56–62]; we also
included a recent PCA dataset [63]. In addition we analysed a series of consolidated datasets that include both high-throughput experiments and
literature-mined small-scale studies [64,65]. The Ito et al. (2001) [47] dataset was divided into two sets: a high confidence set defined as the ‘core’ set
and a low confidence set, as suggested by the authors. The Collins et al. (2007) [58] dataset consists of the raw purifications identified by the Krogan
et al. (2006) [59] and Gavin et al. (2002) [56] studies, but re-analysed by a different scoring and clustering algorithm. Lastly, for completeness we have
also included two commonly used yeast datasets: the Dong et al. (2004) [66] network, which is a consolidated dataset referred to in the literature as
the ‘Filtered Yeast Interactome’ (comprising experimentally determined and in silico predicted interactions), and the von Mering et al. (2002) [67]
dataset, which has been assembled from two catalogues of yeast protein complexes (the MIPS catalogue and the Yeast Protein Database catalogue).
doi:10.1371/journal.pone.0012083.g001
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In Fig. 4 we plot in black the assortativities of our PPIN datasets

(Original), together with those of their randomisations (null

models) in green (Reshuffled). Most sets are seen to have slightly

negative assortativity values, indicating a weak preference for

interactions between nodes with different degrees. The main

deviants from this trend are S. cerevisiae X, S. cerevisiae V and S.

cerevisiae VII, with strong positive assortativity. This is consistent

with Fig. 3, where the S. cerevisiae X dataset is indeed distinguished

by the presence of consistently high values of P(k, k’) along the

main diagonal, signalling a strong preference for interactions

between nodes with similar degrees. The assortativities of the null

models (in green) are expected to be closer to zero than those of

the real PPINs. This is indeed true for most cases, although for

some networks (e.g. M. loti, P. falciparum, E. coli, and S. cerevisiae VIII)

the assortativity differences between the original networks and

their null models are negligible. In sufficiently large networks, all

correctly generated null models would exhibit zero assortativity, so

any deviation of the green line from zero in Fig. 4 must reflect

finite size effects or effects caused by slow relaxation (see

‘Definition and generation of null models’ in the Methods) during

the randomisation process (or both). In Fig. 4 the deviations are

most likely due to finite size effects; this can be concluded upon

measuring the Hamming distances between the original networks

and their null models (which measure the extent of microscopic

dissimilarity between the two, see Fig. S1), which show no

evidence for insufficient relaxation in the null model generation.

Degree complexity and wiring complexity
We now turn to information-theoretic quantifiers of PPIN

structure, applying the methods developed in Annibale et al. [22].

One of these is the network complexity, which (modulo finite size

effects) measures the amount of topological information contained

in a network’s degree statistics and DDCs. It consists of two

contributions, both of which can be expressed explicitly in terms of

the functions p(k) and P(k, k’). The first is the degree complexity,

measuring the information revealed by knowledge of p(k) alone.

The second is the wiring complexity, measuring the information

revealed by subsequent knowledge of P(k, k’). See the Methods

section for precise definitions. In Fig. 5A we plot the wiring

complexities, as black bars, for our experimental datasets

(Original), together with those of their randomisations (null

models) in grey (Reshuffled). In panel (a) the network complexity

is computed ‘per node’ as given in equation 2 (Methods) and it

takes into account the average degree of the network, while the

complexity ‘per link’ in panel (b) is independent of the average

degree. For our dataset it appears more appropriate to use the ‘per

link’ complexity, because the relative differences between Y2H

and AP–MSS. cerevisiae networks are smaller. The AP–MS

networks tend to have higher wiring complexities than the Y2H

ones, although less so in the ‘per link’ plot, except for C. jeuni and

T. pallidum. The latter, however, are special in that around 80% of

their predicted encoded proteins have at least one assigned

interaction (this percentage can be seen as an approximation of the

‘coverage’ of the network), which is the highest value among all

datasets studied; this may explain differences between these two

networks and other Y2H datasets. Similarly to what was observed

for assortativities, S. cerevisiae X is again seen to stand out with an

extremely high wiring complexity, consistent with the strong

degree correlations observed earlier in Fig. 3.

Information-theoretic clustering
A second information-theoretic tool derived in Annibale et al.

[22] is a transparent formula for an information-theoretic

‘distance’ between any two networks, once more expressed

explicitly in terms of the functions p(k) and P(k, k’) of the

networks concerned. This network distance is the symmetrised

Kullback-Leibler divergence of the maximum entropy graph

distributions with degree distributions and degree correlations

identical to those of the two networks. We can use this mutual

distance measure to cluster our PPIN datasets, and construct

dendrograms analogous to phylogenetic trees. In Fig. 6A we show

the resulting information-theoretic dendrogram for the full

collection of all our PPIN data sets. The pariwise distance

matrices of the AP-MS and Y2H data sets are provided in Tables

S1 and S2, respectively. In Fig. 6B we limit our analysis to single-

technique S. cerevisiae data sets only (excluding S. cerevisiae V and S.

cerevisiae VII, which are the result of integrating datasets detected

by a variety of different techniques). The results of these analyses

are quite revealing. Those data sets which were most strongly

criticised in the past for having worryingly small overlaps [29], for

example the Y2H data sets S. cerevisiae I versus II and H. sapiens I

versus II, are now unambiguously found to be topologically similar

after all.

We also observe that the full collection of PPINs group

primarily by detection method, so at least for the presently

available PPIN datasets, any biological similarities (whether or not

based on evolutionary relationship) are overshadowed by meth-

odological biases. This is particularly evident in the central

subgroup (central pink leaves) in Fig. 6A, which clusters almost

exclusively Y2H datasets and comprises a wide range of species.

The methodological biases are also obvious in the intra-species

comparison of S. cerevisiae depicted in Fig. 6B. The largest sub–

group distance within this S. cerevisiae tree is the one between two

AP–MS datasets that have been post–processed differently (the top

two within the green box). Also, the single PCA network is

separated from the AP–MS and Y2H subgroups. We can now

summarise the two, in our view, most important observations:

N PPINs of the same species and measured via the same

experimental method are statistically similar, and more similar

than networks measured via the same method but for different

species. Apparently, the former exhibit similar macroscopic

topological features, despite the small microscopic overlap of

the individual PPINs. The information-theoretic network

distance is therefore a useful macroscopic descriptor of

similarity.

N PPINs measured via the same experimental method cluster

together, revealing a bias introduced by the methods that is

seen to overrule species-specific information. Although meth-

odological biases have been acknowledged in the literature, we

are now in a position to quantify their impact: the bias is

proportional to the excess distances between the S. cerevisiae

Figure 2. Heat map representations of the normalised DDC function P(k, k’) of bacterial PPINs. For each combination of k and k’,
P(k, k’) gives the likelihood that two proteins with degrees k and k’ interact, relative to what would be found in appropriate null models (random
networks with the same degree distribution but uncorrelated degrees). The degree axes k and k’ were truncated to the value kmax~40. White
regions indicate strongly enhanced propensity for protein-protein interaction (values of P(k, k’) larger than expected on the basis of degree
information alone) while dark regions indicate reduced protein-protein interaction (values of P(k, k’) smaller than expected on the basis of the
degree distribution alone).
doi:10.1371/journal.pone.0012083.g002
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networks measured by AP-MS compared to those measured by

Y2H (Fig. 6B).

Therefore, a species tree based on data from two different

experimental methods yields an inconsistent picture (see Fig. 6A),

in which the wanted contributions of the ‘species distance’ are

modulated with the unwanted contributions of the ‘methodolog-

ical distance’ originating from sampling biases.

A clearer picture is obtained when trees based on data from a

single experimental method are constructed. Since the Y2H data

appear less biased than the AP-MS data, a multi-species tree of

Y2H networks is shown in Fig. 7A juxtaposed to a reference tree

(Fig. 7B). Comparison of the trees reveals that the network

distance measure correctly assigns short distances between H.

sapiens, C. elegans and S. cerevisiae, but misassigns short distances

between these species and M. loti or Synechocystis. Therefore one

may deduce that the ‘biological signal’ captured by the network

complexity difference is indeed strong enough for some of the

networks in our data set to place them correctly on the tree, while

others would require more data completeness to reach a

comparable signal. For example, the two correctly placed bacteria

C. jejuni and T. pallidum show a relatively high complexity (Fig. 5B).

Finally, in order to separate the contributions of the degree

distribution and the DDCs to the distance information in

generating the dendrograms shown in Fig. 6, we have also

performed the same computations on the basis of a simplified

information-theoretic distance measure for PPINs, which would

have been the result of characterising all PPINs by their degree

distributions alone. The result is shown in Fig. S2.

Network size effects
The mathematical framework operates on statistical grounds

and the precision of the results depends on the sample size. We

have already pointed out finite size effects in the assortativity of

some reshuffled networks. To assess the robustness of the

macroscopic network properties versus the variation of the sampled

data and the sample size, we have performed a sub-sampling

experiment. Each network was modified by randomly removing a

Figure 4. Assortativities as calculated for both the biological PPINs (black line) and their randomised versions (or ‘null models’,
green line). The randomised networks have degree distributions identical to their biological counterparts, but are otherwise fully random (the
randomisation seeks to remove any DDCs initially present). A positive assortativity implies that nodes prefer to interact with other nodes of similar
degree, whereas a negative assortativity implies that high degree nodes prefer to interact with low degree nodes.
doi:10.1371/journal.pone.0012083.g004

Figure 3. Heat map representations of the normalised DDC function P(k, k’) of yeast PPINs. Definitions and conventions are identical to
those of Fig. 2.
doi:10.1371/journal.pone.0012083.g003
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certain fraction of its nodes (from 10 to 90% in 10% increments)

and the distance between the modified (sub-sampled) and the

original network was plotted as a function of the degree of node

removal (Fig. 8). The plot shows an exemplary collection of

networks. The sensitivity of the networks towards the sample size is

correlated with their complexity. Sub-sampled networks with high

complexity yield larger distances to their original versions than

those with low complexity. This is not surprising, as the distance is

a measure of the complexity difference. However, the particular

curve shapes in Fig. 8 are related to the distribution of node links.

For example, the extreme behaviour of S. cerevisiae X is owing to its

large number of hub-hub links (see Fig. 3), while the S. cerevisiae XI

network with a flatter DDC distribution is relatively robust to node

removal.

The effects of sub-sampling, random and non-random, on the

network statistics have been explored by others [8,30], but without

consideration of DDCs. The curves in Fig. 8 provide an error

estimate for the sub–sampling effects on the information-theoretic

properties discussed in this paper. This regards the DDC plots in

Figs. 2,3, the network complexities in Fig. 5 and the trees in

Figs. 6,7.

Discussion

In this paper we investigated the potential of recently

introduced mathematical framework for quantifying and compar-

ing the topologies of PPINs by systematic application to publicly

available PPIN datasets. This framework provides exact and

explicit measures of network complexity and information-theoretic

distances between any two networks. In addition, in benchmarking

empirical measurements on PPINs we used null models generated

via recently developed rigorously unbiased algorithms.

Our methods involve a macroscopic characterisation of PPINs

by their degree statistics and DDCs. Degree correlation properties

Figure 6. Network comparison by clustering using the full information-theoretic distance measure of equation 9 (see Methods) [22].
This distance is expressed explicitly in terms of the degree statistics and normalised DDC functions of the networks concerned. Panel A: Dendrogram
calculated for an extensive collection of PPINs, covering a wide range of species. Panel B: Dendrogram for PPINs of the same species, viz. S. cerevisiae.
Both trees were constructed using our proposed distance metric in a hierarchical clustering routine (see Methods). In both panels we decorated the
clusters using the same colour scheme used throughout this paper to indicate the different experimental detection techniques (see bottom legend of
the figure). The data integration datasets (S. cerevisiae V and S. cerevisiae VII) were excluded from panel b, since they are composed of interactions
detected by a variety of different techniques.
doi:10.1371/journal.pone.0012083.g006

Figure 5. Wiring complexities as calculated for both the biological PPINs (black bars) and their randomised versions (or ‘null
models’, grey bars). The randomised networks have degree distributions identical to their biological counterparts, but are otherwise fully random.
The wiring complexity measures the topological information contained in a network’s normalised DDC function P(k, k’), beyond that in its degree
statistics p(k). (A) The network complexity is computed per network node. The average degree of each network contributes to its complexity value.
(B) The network complexity is computed per link, which removes the dependency on the average degree and reduces complexity value (note the
different ordinate scales (A) and (B)).
doi:10.1371/journal.pone.0012083.g005
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have been used in the past to highlight topological features of

networks and to suggest general principles governing functional

mechanisms in the interactome [31–35]. These particular studies

focused on regularities in interactions between high versus low

degree nodes; unfortunately they did not agree on the nature and

interpretation of such regularities, in particular on the role of

high–degree (hub) proteins. Maslov and Sneppen (2002) [31]

argued that suppression of hub–hub interactions is a ‘universal

feature’ of robust molecular networks, that reflects compartmen-

talisation and modularity, characteristics of cellular processes. In

contrast, Batada et al. (2006) [32] and Ivanic et al. (2008) [35] did

not observe hub–hub interaction suppression, but suggested

instead that hub–hub interactions play an important role in the

underlying biological processes. An intermediate position was

taken by Friedel and Zimmer (2007) [33], who generated artificial

versions of biological networks and argued that neither type of

degree–weighted behaviour is favoured.

We find that degree-degree correlations provide important and

consistent information on PPIN topologies, but it is crucial that

they are normalised correctly and that one uses robust and

systematic methods for extracting this information. Normalisation

of DDCs is usually based on comparison against appropriate

randomised networks (null models). The unbiased generation of

such null models, however, is nontrivial. Popular randomisation

protocols such as ‘edge-swapping’ are now known to carry the risk

of biased sampling, see [36]. The reason why we avoided the

inconsistencies of previous studies [31–35] appears to be that,

rather than normalising DDCs via numerical randomisation, we

use an exact mathematical formula for the DDCs of large

unbiased random graphs. Our normalised DDCs are by definition

unbiased, and not subject to numerical normalisation noise.

Where we employ null models for reasons other than normalisa-

tion, we use exact algorithms for generating unbiased null models

that have only recently become available. Under these improved

conditions one does detect reproducible DDC patterns, with an

overall preference for high–low degree interactions. However, the

variation of DDC patterns, even within the same species and

detection method, precludes general conclusions about their origin

in the underlying biological mechanisms. This type of inference

would require improved (in terms of completeness and error rate)

interaction data for several related networks.

The first information-theoretic tool we applied to the PPIN

datasets was the formula for a network’s complexity recently

derived in Annibale et al. [22]. It has two contributions: a term

representing the complexity embedded in the degree statistics (the

degree complexity), and a second term representing the complex-

ity embedded in the DDCs (the wiring complexity). The wiring

complexity quantifies the extent to which DDCs are prominent in

a network, similar to the assortativity measuring the nature of the

lowest order correlations (if present). The two quantities provide

complementary information. One can easily imagine higher order

DDCs in PPINs (e.g. nonlinear relationships between the degrees of

preferred protein partners) that could not be picked up by the

assortativity but would still be detected by the wiring complexity.

In fact this is already visible in the presently analysed PPIN data.

Comparison of Fig. 4 to Fig. 5A shows that, while those datasets

with nontrivial assortativities also have high wiring complexities,

there are several further PPINs with a high wiring complexity but

only a relatively modest assortativity.

The second information-theoretic tool we applied was a formula

for an information-theoretic distance between networks. Like the

complexity, the formula is expressed explicitly in terms of the

Figure 7. Network comparison by clustering. A: Y2H network cluster using the information-theoretic distance measure. B: Reference species
tree provided by the NCBI taxonomy common tree service.
doi:10.1371/journal.pone.0012083.g007
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networks’ degree statistics and DDCs, and, based on macroscopic

statistical features, it avoids the problems with the more primitive

overlap-based network dissimilarity measures. Application of this

second tool to our datasets resulted in a pairwise distance table,

which we used to cluster the PPINs. The results, summarised in a

dendrogram, are very revealing. Those data sets which were most

strongly criticised in the past for having small overlaps, for

example the Y2H data sets of S. cerevisiae, are now unambiguously

found to be topologically similar. Furthermore, our method shows

clearly that the PPINs group primarily by detection method, so

biological similarities based on evolutionary relationship are

presently overshadowed by methodological biases. These biases

have been the centre of an active debate in recent years; the

problems which they generate and methods to overcome these

have been described recently, e.g. [9,17,37,38].

In particular, an often overlooked aspect of data derived from

AP–MS experiments is the influence of the post-processing

protocol on the final binary interaction map. This crucial aspect

is now starting to be addressed by different groups [39–41], and

we expect more accurate data to emerge in the near future. Our

information-theoretic tools are thus very timely: they provide the

required resolution and precision in the assessment and compar-

ison of new PPIN data, and in evaluating the progress of the

experimental methods. Being able to quantify biases accurately is a

prerequisite for their systematic removal.

One should keep in mind that biological systems are not

necessarily perfect, and that the presence in PPINs of non-selected,

non-functional PPIs is to be expected [42]; the interpretation of

interactome data will therefore always have to take account of

noise. This again suggests that information-theoretic methods,

with their rigorous probabilistic basis, should be seen as the

appropriate tools in PPIN analysis. One could also envisage these

methods being used to guide experimental efforts aimed at

remedying the present under-sampling of PPINs, by predicting on

statistical grounds the properties of missing network nodes and

interactions.

In conclusion, we believe to have succeeded in

N supplying the biological and bio-informatics communities with

a new generation of precise and user-friendly computational

tools with which to quantify PPIN topologies and test new

protocols for the removal of experimental biases from PPIN

datasets, and

N demonstrating by a systematic application of these tools to

publicly available datasets that the present protein network

data are strongly biased by their experimental methods, while

still exhibiting species–specific similarity and reproducibility.

We hope and anticipate that in the near future the accuracy and

sensitivity of experiments will improve substantially, alongside a

Figure 8. The effect of random sub-sampling on the network topology. Networks were modified by random removal of nodes to various
degrees, given as fraction of nodes in the original network in the range from 10 to 90% in 10% increments. The information-theoretic distance
between the original network and the sub-sampled network is plotted over the degree of node removal. A selection of typical curves is shown.
Networks with high complexity show a large distance to the original network.
doi:10.1371/journal.pone.0012083.g008
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further sharpening of the mathematical and computational tools

for their analysis, allowing for meaningful comparisons of

interactomes.

Materials and Methods

The following section gives a complete reference of the formulae

used in this study. The central equations 2, 7 and 9 have been

published in a recent work by the authors [22] in the context of

parametrised random graph ensembles. They are repeated here in

commented form to aid the reader.

Mathematical definitions
Degree distribution. Given a protein-protein interaction

network with N nodes, we label its proteins by Roman indices

i,j~1 . . . N, and represent the microscopic interaction

information as a symmetric matrix c with entries cij , where

cij~1 if i interacts with j, and cij~0 otherwise (with cii~0 for all

i). The degree of a node i is then defined as ki(c)~
P

j cij , and the

degree distribution of the PPIN is defined as

p(k)~
1

N

X
i

dk,ki (c) ð1Þ

(here dnm~1 if n~m and dnm~0 if n=m).

Degree–degree correlation (DDC). The average degree in

the PPIN is given by k~N{1
P

i ki(c)~
P

k p(k)k. The

normalised DDC function P(k, k’) of the network is defined as

the ratio between the probability that two randomly picked nodes

in c with degrees (k, k’) are found to be connected, divided by

what this probability would have been in large random networks

with the same degree distribution as c. The probabilities for large

random networks can be calculated analytically, see e.g. [43]. This

results in the following definition:

P(k, k’)~

P
ij cijdk,ki (c)dk’,kj (c)

½p(k){N{1d
kk
0 �p(k’)

k

Nkk’
(1{

1

N
) ð2Þ

This quantity was plotted for our PPIN datasets in heat-map form

in Figs. 2 and 3. Any statistically significant deviation from

P(k, k’)~1 signals the presence of non-trivial DDCs. Both p(k)
and P(k, k’) are macroscopic quantities that can be measured

directly and at low computation cost.

Assortativity. The assortativity a (as plotted in Fig. 4 for our

PPIN datasets) is defined [26] as the magnitude of the normalised

correlations for the joint probability W (k, k’) of finding a

randomly drawn interaction in the graph c connecting nodes

with degrees k and k’ respectively, viz.

W (k, k’)~
1

Nk

X
ij

cijdk,ki (c)dk’,kj (c) ð3Þ

Upon defining averages over this measure as Sf (k, k
0
)T~P

kk’ W (k, k’)f (k, k’), and using the symmetry of W (k, k’) as

well as the relation
P

k’ W (k, k’)~p(k)k=k, one has

a~
Skk’T{SkT2

Sk2T{SkT2
~

1

Nk

X
ij

cijki(c)kj(c){(
1

Nk

X
i
k2

i (c))2

1

Nk

X
i
k3

i (c){(
1

Nk

X
i
k2

i (c))2
ð4Þ

The relation between W (k, k’) and P(k, k’) is

W (k, k’)~P(k, k’)p(k)p(k’)kk’=k
2 ð5Þ

which is why the assortativity can be written as a function of p(k)

and P(k, k’):

a~

P
kk’ p(k)p(k’)½P(k, k’){1�(kk’)2

k
P

k p(k)k3{(
P

k p(k)k2)2
ð6Þ

Hamming distance. The Hamming distance is defined as

D~(Nk){1P
ivj Dcij{c’ij D, where the binary interaction variables

cij define the original PPIN and the variables c’ij represent its

randomisation.

Information-theoretic tools
Degree complexity and wiring complexity. Using methods

from random graph theory and statistical mechanics the following

explicit formula was derived for the information-theoretic complexity

C½p,P� per node of non-directed networks (such as PPINs) with degree

distribution p(k) and normalised degree-degree correlations P(k, k’):

C½p,P�~
X

k

p(k)log½p(k)=p(k)�

z
1

2k

X
kk’

p(k)p(k’)kk’P(k, k’)logP(k, k’)
ð7Þ

where p(k) is the Poissonian distribution with average degree k:

p(k)~e{kk
k
=k! ð8Þ

The first term in (7) is called the degree complexity; the second term,

which would be zero in our null models, is called the wiring complexity.

This latter quantity was plotted in Fig. 5A.

Network distance. Similar calculations led also to an explicit

formula for an information-theoretic distance DAB between any

two non–directed networks A and B (such as PPINs), characterised

by the structure functions fpA, PAg and fpB, PBg, respectively:

DAB~
1

2

X
k

pA(k)log
pA(k)

pB(k)

� �
z

1

2

X
k

pB(k)log
pB(k)

pA(k)

� �

z
X
kk’

pA(k)pA(k’)kk’

4kA

PA(k, k’)log
PA(k, k’)
PB(k, k’)

� �

z
X
kk’

pB(k)pB(k’)kk’

4kB

PB(k, k’)log
PB(k, k’)
PA(k, k’)

� �
ð9Þ

with kA~
P

k pA(k)k and kB~
P

k pB(k)k. The distance (9) was

used to calculate the dendrogram of Fig. 6. A simplified distance

that no longer takes DDC information into account is obtained

upon removing the last two lines from (9), leaving an expression

that involves only the two degree distributions pA(k) and pB(k);
this simplified distance definition was used to calculate the

dendrogram of Fig. 7.

Definition and generation of null models
Given an observed N-node PPIN with degree distribution p(k),

we define its associated null model as a graph drawn randomly and
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with uniform probabilities from the set of all N-node graphs with

degree distribution p(k), so the probability of any graph c being

generated as null model for the PPIN under study must be

p(c)~
X

k1...kN

P
i

p(ki)

� �
Pi dki ,ki (c)P
c’ Pi dki ,ki (c’)

ð10Þ

The issue of sampling uniformly the desired space of graphs is

non–trivial. Naive application to the original PPIN of the popular

method of ‘edge-swapping’ (or ‘graph shuffling’) would indeed upon

equilibration produce randomised graphs, but these might not be

sampled uniformly; biased sampling would invalidate any inference

based on comparing observations in real PPINs to those in

randomised graphs. In this paper we used the general and exact

Markov chain Monte Carlo (MCMC) method for generating

random graphs proposed in Coolen et al. [36], which is based on

edge–swaps [44] but involves nontrivial move acceptance proba-

bilities. Most graph randomisation protocols, including the one used

in this paper, are defined via a degree–preserving MCMC dynamics

in the space of graphs, which is defined such that it produces a

relaxation towards an equilibrium state where all acceptable graphs

are generated with prescribed probabilities. This dynamics must be

run for a sufficient duration of time to guarantee that all transients in

the MCMC have died down and the desired equilibrium state has

indeed been reached. In this paper we have used equilibration times

such that the number of accepted transitions in the MCMC

exceeded 100 per link, which (upon systematic monitoring of a

number of key observables in the graphs) was found to be adequate

to ensure equilibration of the Markov chain.

Numerical practicalities
After measuring a graph’s degree distribution p(k) and

normalised DDC functions P(k, k’) we applied to both functions

a weak Gaussian smoothening, resulting in the new functions

~pp(k)~

Pkmax
m~0 e

{ 1
2s2

(k{m)2

p(m)

Pkmax
m~0 e

{ 1
2s2

(k{m)2
ð11Þ

~PP(k, k’)~

Pkmax
m,m’~0 e

{ 1
2s2
½(k{m)2z(k’{m’)2�

P(m, m’)
Pkmax

m,m’~0 e
{ 1

2s2
½(k{m)2z(k’{m’)2�

ð12Þ

with diffusion width s~1:5. The reason for doing this is that it

prevents probabilities from being strictly zero, which (while

reflecting only finite size effects) would cause problems in the

distance measure (9). A further benefit of this smoothening is that

it removes some of the finite size noise from the images in Figs. 2

and 3.

Dendrograms, as shown in Fig. 5A and Fig. 6, were computed

using information-theoretic network distances (9) in the hierarchi-

cal clustering routine ‘hclust’ of the R environment [45] with the

‘average’ agglomeration method.

Finally, in plotting the normalised degree-degree correlations of

PPINs in Figs. 2 and 3, we chose to limit ourselves to kƒ40. The

reason is that while proteins with larger degrees certainly exist in

the networks studied, the limited number of these no longer justify

the interpretation of quantities such as P(k, k’) as clean estimators

of (normalised) probabilities; this would require more data points

in the large (k, k’) regions.

Supporting Information

Figure S1 This figure shows for each PPIN the normalised

Hamming distance between the original network and its null

model. The null models were obtained for each PPIN by

application of the exact Markov Chain Monte Carlo randomisa-

tion protocol of Coolen et al. 2009. The Hamming distance D is

defined in such a way that it equals zero if the two networks are

strictly identical, and equals one if the two networks are statistically

independent (apart from the values of their degrees, which are

preserved by the randomisation). The effect of insufficient

equilibration of the randomisation protocol would be marked by

Hamming distances significantly less than one. This figure

supports our confidence that the equilibration time which we

used in the randomisation algorithm, being 100 accepted moves

per protein interaction, were adequate.

Found at: doi:10.1371/journal.pone.0012083.s001 (0.45 MB EPS)

Figure S2 Network comparison by clustering using a simplified

information-theoretic distance without the contribution of DDCs.

Definitions and conventions are identical to those in Figure 6.

Found at: doi:10.1371/journal.pone.0012083.s002 (0.46 MB EPS)

Table S1 Triangular matrix of information theoretic network

distance between the AP-MS datasets.

Found at: doi:10.1371/journal.pone.0012083.s003 (0.00 MB

TXT)

Table S2 Triangular matrix of information theoretic network

distance between the Y2H datasets.

Found at: doi:10.1371/journal.pone.0012083.s004 (0.00 MB

TXT)
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