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Abstract

Social network analysis has long been an untiring topic of sociology. However, until the era of information technology, the
availability of data, mainly collected by the traditional method of personal survey, was highly limited and prevented large-
scale analysis. Recently, the exploding amount of automatically generated data has completely changed the pattern of
research. For instance, the enormous amount of data from so-called high-throughput biological experiments has introduced
a systematic or network viewpoint to traditional biology. Then, is ‘‘high-throughput’’ sociological data generation possible?
Google, which has become one of the most influential symbols of the new Internet paradigm within the last ten years,
might provide torrents of data sources for such study in this (now and forthcoming) digital era. We investigate social
networks between people by extracting information on the Web and introduce new tools of analysis of such networks in
the context of statistical physics of complex systems or socio-physics. As a concrete and illustrative example, the members
of the 109th United States Senate are analyzed and it is demonstrated that the methods of construction and analysis are
applicable to various other weighted networks.
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Introduction

Social relationships among people [1,2] are composed of

various weight of ties, as much as metabolic pathways [3] or

airline traffic networks [4,5]. However, introducing proper weight

for the relationships in social networks is not an easy task since it is

hard to objectively quantify the relatedness among people. As

people’s activities on the Web and communications via social

networking service become more popular, information about the

social relationships among people (especially for famous figures,

through news and blog sites) becomes available and can be used as

a source of high-throughput data. Here, we suggest that the ability

of search engines can be used for this task. Search engines count/

estimate the number of webpages including all the words in a

search query, and this feature can be used to measure the

relatedness between pairs of people in social networks in which we

are interested. The more webpages that are found, the more

popular or relevant the combination of the search query is.

Therefore, cooccurrence of two people in many personal webpages,

news articles, blog articles, Wikipedia, etc. on the Web implies that

they are more closely related than two random counterparts.

There are several advantages of using search engines to

construct social relatedness networks. First, with a list of names,

one can systematically count the number of webpages containing

two names simultaneously, extracted by search engines to assign

the weights of all the possible pairs. This procedure enormously

reduces the necessary efforts to extract social networks, compared

with the traditional methods based on surveys. In addition, such

automation makes analysis of enormous amount of data related to

social networks possible and helps us to avoid subjective bias, such

as the ‘‘self-report’’ format of personal surveys [6]. Furthermore, if

one extracts social networks from a group of people on a regular

basis over a certain period, the temporal change or stability of the

relationship between group members in the period can be

monitored. Although it is possible that some error or artifacts,

such as several people with the same name [7], are caused by this

systematic approach, this can also be managed by adding extra

information (such as putting additional queries like the subjects’

occupations into the search engine, in such cases). Furthermore,

the cost of investigation with the search engine is much smaller.

This example highlights the effectiveness, objectiveness, and

accuracy of the usage of Web search engines.

Materials and Methods

Datasets and Google Correlation
Based on the pairwise correlations extracted from Google, we

constructed and analyzed the weighted social networks among the

Senators in the 109th United States Congress (US Senate), as well

as some other social groups from academics and sports. Our

datasets are three representative communities with very different

characteristics, i.e., politicians, physicists, and professional baseball

players. The US Senate in the 109th Congress (http://www.

senate.gov) consists of 100 Senators, two for each state. Among the
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physicists who submitted abstracts to American Physical Society

(APS) March Meeting 2006(Bulletin of the American Physical

Society Vol. 51, No. 1. American Physical Society.), we selected

the subset of 1143 authors who submitted more than two abstracts

for computational tractability. Finally, the list of Major League

Baseball (MLB) players is the 40-man roster (March 28, 2006) with

1175 players (http://mlb.com). To avoid the ambiguous situation

where there is more than one person with the same name, the

following distinguishing words or phrases were added to all the

search queries for each group: the words are ‘‘senator’’ for US

Senators, ‘‘physicist’’ for APS authors, and ‘‘baseball’’ for MLB

players. First, we recorded the number of pages searched using

Google for each member’s name, which were assigned as the

Google hits [8] showing the fame of each individual member.

The Google correlation between two members of a group is defined

as the number of pages searched using Google when the pair of

members’ names (and the additional word) is entered as the search

query. We have removed the number of Web pages from 103 to

104 and divided the number greater than 104 by 10, based on our

judgment about the page counting problem in Google. See Google

Inconsistencies (2003) http://www.searchengineshowdown.com/

features/google/inconsistent.shtml. (last accessed on 6/2/2010)

We observed that there exists an obvious gap between the number

of 103 and 104 in the distributions of Google hits and correlations,

and found that if we process data by the removing and dividing

mentioned, the distributions become smooth without any gap.

This process, however, does not cause any relevant changes in the

main results of our work. In this case, Google shows the number of

searched pages including all the words in the search query. Simply, this

Google correlation value is assigned as the link’s weight for the

pair of nodes. If no searched page is found for a pair, the pair is

not considered to be connected. Note that the idea of using co-

occurrence to quantify the correlation was presented before in

systems biology [9] or linguistics [10,11], but our work

comprehensively approaches such a general concept and focuses

on the digital records to extract information. The constructed

weighted networks are usually densely connected: the link density,

defined as the ratio of existing links to all the possible links among

nodes (N(N{1)=2, where N is the number of nodes), is 0:95 for

the US Senate, 0:16 for APS authors, and 0:66 for MLB players.

Due to the high link density, elaborating on the weights of links

or the strength (the sum of the weights around a specific node) of

nodes to extract useful information is more important. Figure 1

shows the weight and strength distributions for the weighted

networks constructed by assigning the Google correlation values as

link weights. Previous studies on other weighted networks show

heavy tailed weight and strength distributions [4,5] and our

networks also reveal such broad distributions spanning several

orders of magnitude, although the details are different for each

network.

The Rényi Disparity
The degree and strength are basic quantities that estimate the

importance of nodes in a weighted network [4,5]. However, the

weights on the links of two nodes with the same degree and

strength are not necessarily identically distributed. In other words,

just the number of links a node has (degree) and the sum of weights

on the links the node has (strength) are not sufficient to fully

conceive the node’s character. For example, two central nodes in

Fig. 2 have the exactly same values of degree and strength, but the

weight distributions around the nodes are totally different.

Quantifying such different forms of weight distributions is

important because it can distinguish whether a node’s relationship

with its neighboring nodes is dominated only by a small portion of

neighbors or if almost all the neighbors contribute similarly to the

node’s relationship. As an initial step to further investigation we

are interested in the dispersion or heterogeneity of weights a node

bears. Although this concept of disparity is not a new one

[3,12,13], we suggest a more general framework of such quantities

based on information theory.

Suppose a node i has ki links whose weights are given by the set

fwij Dj[nig, where ni is the set of the node i’s neighboring nodes.

The strength of the node is defined as si~
P

j[ni
wij . Now, let us

denote ~wwij~wij=si for each weight wij as the normalized weight. In

the continuum limit of neighbor indices x sorted by descending

weights (without loss of generality) around the node i whose set of

Figure 1. The weight and strength distributions. Google correlation value (weight) distributions p(w) for (a) US Senate, (b) APS authors, and (c)
MLB players and the strength distributions p(s) for (d) US Senate, (e) APS authors, and (f) MLB players are shown. Pairs with the largest Google
correlation values (a)–(c) and the nodes with largest strengths (d)–(f) for each plot are indicated.
doi:10.1371/journal.pone.0011233.g001
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weights is f~ww(x)g, (the normalization condition becomes simplyÐ
dx~ww(x)~1 in this case) if all the neighbor indices are re-scaled as

x?x’~cx (meaning the entire network gets larger by the factor of c,

and the normalized weights become ~ww0(x’)~~ww(x)=c~~ww(x’=c)=c
due to the normalization condition), the quantity D½f~ww(x)g�
characterizing the dispersion of weights should be scaled as

D½f~ww0(x’)g�~cD½f~ww(x)g�. This scaling behavior is the same as the

degree measure and, in fact, if all the weights are identical, the

quantity is set to precisely become the degree. We have found a class

of solutions satisfying such scaling conditions, which is the weighted

sum

Di(a)~
X
j[ni

~wwa
ij

0
@

1
A

1=(1{a)

ð1Þ

to node i, where the constant a is a tunable parameter, and we denote

this measure as the Rényi disparity. If all the weights are equal,

Di(a)~ki, which is just the degree of node i, regardless of the value a.

As the weight distribution deviates from the uniform distribution,

Di(a) also deviates from the degree, the details of which depend on

the parameter a, of course. We will use this weighted sum Di(a) as the

measure of the heterogeneity in the weight distribution for each node.

Note that the logarithm of Eq. (1), log Di(a), coincides with the Rényi

entropy [14] in information theory, from which the name ‘‘Rényi

disparity’’ originates. We have yet to decide the parameter a for

Di(a). In previous works [3,12,13], the quantity called disparity Yi

was defined for each node i. Its scaling behavior is that Yi*1=ki if

the weights are uniformly distributed and Yi*constant if the weight

distribution is severely heterogeneous. It is easy to see that the

disparity Yi in Refs. [3,12,13] is the reciprocal of a special case of our

Rényi disparity, with the parameter a~2, i.e.,

Yi~
1

Di(a~2)
~
X
j[ni

~ww2
ij : ð2Þ

The logarithm of this Di(2) is also a special case of Rényi entropy,

called the extension entropy [14,15] and Yi is related to the simple

variance Var(~wwij) by Var(~wwij)~(Yi{1)=ki.

If we consider the limiting case of a?1, we denote it as the

Shannon disparity D
(i)
Shannon~ lima?1 Di(a) of the node i. In this

limit, one can easily verify that

D
(i)
Shannon~ exp ({

X
j[ni

~wwij log ~wwij)~ P
j[ni

~ww
{~wwij
ij : ð3Þ

One can immediately notice that the Shannon disparity is the

exponential of an even more familiar and widely accepted entropy

in information theory, which is the Shannon entropy [14]. The

scaling property of DShannon is similar to 1=Y in Eq. (2) and, in

fact, for our three weighted networks the two quantities DShannon

and 1=Y are highly correlated: the Pearson correlation coefficients

are 0:95 for US Senate, 0:97 for APS authors, and 0:96 for MLB

players.

Even though DShannon and 1=Y are highly correlated in our

example networks, Shannon disparity works better for inhomoge-

neous weight distribution than the Rényi disparity with a=1.

Suppose the weight around a node follows the power-law relation

~ww(x)~(c{1)x{c for xw1, where x is the continuous version of

the neighbor indices sorted by descending weights and the

constant (c{1) is set to the normalization conditionÐ?
1

dx ~ww(x)~1.

In this continuum limit, we can explicitly calculate the

dependence of D(a) on the power-law exponent c by direct

integration, which is D(a)~½
Ð?

1
dx(c{1)x{ac�1=(1{a)

. The inte-

gration is straightforward and the result is

DShannon~ lim
a?1

D(a)~
1

c{1
exp

c

c{1

� �
ð4Þ

D(aw1)~
(c{1)a

ac{1

� �1=(1{a)

: ð5Þ

As shown in Fig. 3, the Shannon disparity DShannon is the only

Rényi disparity showing the non-polynomial scaling and more

sensitive to the exponent c than D(aw1), especially when c

becomes smaller and DShannon diverges much faster as c?1 (the

most homogeneous weight distribution).

Figure 4 shows the correlation between the strength s and the

Shannon disparity DShannon of each node for the two represen-

tative cases of the US Senate and APS authors. From the result, we

Figure 2. Two nodes in weighted networks with the same values of degree and strength. The degree of the central node in both (a) and
(b) is 4 and the strength is 12, but the distributions of weights around the nodes are quite different.
doi:10.1371/journal.pone.0011233.g002
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can conclude that there are some senators with the very large

strength and very heterogeneous Google correlation values with

other senators, whereas the strength and the Shannon disparity is

positively correlated for APS authors, which reflects the different

attributes of political and academic communities. For instance,

even the politicians meeting many other politicians may need to

focus on the relationships with small groups of others sharing

common interests with them, which might be related to the

partisan politics [16,17].

Maximum Relatedness Subnetwork
As previously stated, the link density values of the Google

correlation networks can be quite large compared with many

sparse networks that have been previously investigated. Especially

for the US Senate network, where almost every member is famous

enough to appear on numerous webpages, almost all the possible

pairs of senators are connected (a single webpage that is searched

for each pair of senators can establish the link between any two

senators). In such a case, beside the statistical properties, such as

weight and strength distributions presented earlier, the mere figure

of the weighted network itself can hardly give any visual clue for

specific information about the structure of the community. In

other words, there exist non-zero correlation values for almost all

the pairs of nodes.

Econophysics has encountered similar situations in dealing with

the financial time series correlations between companies or

countries quite often and one way to circumvent the problem is

the famous maximum (or minimum, depending on the definition

of the correlation) spanning tree (MST) [18]. MST extracts the

connected subtree (subnetwork without any loop) which maximiz-

es (or minimizes) the sum of the weights on all the extracted links

and one of the most popular methods of analyzing time series

correlations in econophysics. Even for an unweighted network,

one can extract MST of the network by assigning the edge

betweenness centrality values as the links’ weights so that the

‘‘skeleton’’ of the network is constructed [19].

In spite of the popularity of MST and its ability to select

important interactions in many systems composed of pairwise

correlations, there are a few drawbacks in the MST approach.

First, the essential interactions do not need to connect all nodes as

one giant component. In addition, MST uses the global rank of the

weights as prime information for construction, and this might not

be appropriate to access locally important interactions from the

individual nodes’ perspective.

We suggest a new approach, called the maximum relatedness

subnetwork (MRS), as an alternative method to extract the

essential interactions, instead of the conventional approach based

on maximum spanning tree (MST) [18]. In MRS, for each node i,
a directed link is connected from the node i to the other node j
with which the node i has its maximum correlation value. It is

possible for a node to have more than one directed link in the case

of the multiple nodes with the same maximum correlation value.

In this way, for a network with an exactly uniform weight

distribution, MRS is restored to the original network. MRS can

resolve the problems of MST by not posing the restriction of ‘‘one

connected component’’ and by using the locally maximum

correlation values. Although it is difficult to assign intuitive

meaning to MST, MRS has the clear interpretation of

consecutively connecting to the maximally related nodes. For

instance, a node’s incoming degree in MRS shows how many of its

neighbors consider the node as their most important partner and

can be used as the measure of reputation or importance in the entire

system. Furthermore, the directionality of MRS can yield new

information about the asymmetry of the node pairs which is

described below in detail.

The weighted social networks of our datasets constructed by the

Google correlation values consist of undirected edges, as do most

other social networks in the literature. This bidirectionality

represents the mutual relationship in social networks and is easily

understandable. The ‘‘mutual’’ relation, however, may not hold

for the relationship given by the Google correlation. For example,

the fact that a very famous person is connected with many

members does not necessarily mean that she has many friends.

Instead, it is possible that the members became connected to her

just because she is famous and appears on many different

webpages. Therefore, many asymmetric relationships (A is famous

mainly because of B, but the opposite is not necessarily true) might

appear, in the similar sense of the dependence relation between
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Figure 3. The functional form of DShannon~~~~ lima?1D(a) and
1=Y~~~~D(a~~~~2) in case of the power-law weight-index relation
~w(x)*x{{{ª, from Eqs. (4) and (5).
doi:10.1371/journal.pone.0011233.g003

 

Figure 4. The scattered plots for the correlation between the
strength s and the Shannon disparity DShannon of each node. The
correlations for (a) US Senate and (b) APS authors Google correlation
network are shown. Graphs are drawn in the double logarithmic scale
for easy visualization.
doi:10.1371/journal.pone.0011233.g004
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two authors in the collaboration network discussed in Ref. [20].

We believe that the directionality of MRS represents such

asymmetric relationships or structures. For instance, if we

consecutively ‘‘follow’’ the directed links in MRS, we can

hierarchically reach links in the ascending order of weights. The

link corresponding to the largest weight should be bidirectional by

definition, although the converse is not always true. In addition,

one can extend this concept further so that each node selects

different number of nodes. One idea is that considering the Rényi

disparity from the previous section as ‘‘effective’’ degree Deff and

choosing Deff number of links with largest normalized weights.

Results

Maximum Relatedness Subnetwork of US Senate
Network

Figure 5 shows the MRS of US Senate in the 109th Congress.

The most prominent senators are John Kerry and John McCain,

who get many incoming links from other senators, implying that

those numerous senators have the maximum Google correlation

value with Senator Kerry or McCain. The division or community

structure, reasonably consistent with the senators’ political parties,

is observed around the two prominent senators. Another property

of MRS is that two adjacent senators are likely of the same state,

e.g., Hillary Clinton and Charles Schumer from New York,

George Voinovich and Mike DeWine from Ohio, etc. Other

examples are Maria Cantwell and Patty Murray from Washing-

ton, Pete Domenici and Jeff Bingaman from New Mexico, Gordon

Smith and Ron Wyden from Oregon, etc. All the four ‘‘isolated’’

mutually connected pairs are of this case: Johnny Isakson and

Saxby Chambliss from Georgia, Mike Crapo and Larry Craig

from Idaho, Susan Collins and Olympia Snowe from Maine, and

Tim Johnson and John Thune from South Dakota. The last case,

Tim Johnson and John Thune from South Dakota, is especially

interesting because those two senators are mutually connected

despite their difference in political parties. Therefore, MRS is not

a random subset of a fully connected network but represents

actual/relevant relationship between people. Some previous works

about the community structures and interpretations for social

networks among politicians are discussed in Ref. [16,17]. We also

successfully capture some aspects of this political network, and

present from now on.

One can readily notice that almost all the senators around John

McCain are the Republicans, whereas a relatively considerable

number of non-Democratic senators are in John Kerry’s side. The

only Democratic Senator in John McCain’s side is Russell

Feingold, who has cosponsored the Bipartisan Campaign Reform

Act, also known as McCain-Feingold Act, with John McCain. The

likely connection between senators of the same state can explain

such different compositions of communities. Among the 50 states,

21 states have two Republican senators, 15 states have two

Democratic senators, and 13 states have one Republican and one

Democratic senator. Therefore, a Democratic senator more likely

serves with a Republican senator in a state than vice-versa, which

can cause this kind of community structure. We consider the main

factors setting the structure of MRS as the combination of the

‘‘global’’ effect based on the political parties and senators’

individual fame, and the ‘‘local’’ effect based on the home states.

In this paper so far, we have focused on a snapshot of the

Google correlation network. However, we can easily monitor the

temporal changes by constructing the network on a regular basis,

which is actually one of the most important advantages of our

network construction scheme. In the following section, we use the

US Senate network once again as an example of observing

structural changes over time near an enormous political event, the

United States Senate elections of 2006.

Temporal Change of the US Senate Network near
Election 2006

The United States Senate elections were held on November 7,

2006. We expected significant structural changes during this

enormous political event, so we took four snapshots (September

26, November 8, November 15, and December 17) of the US

Senate Google correlation networks near the elections, collecting

the Google correlation values on the four specific days. Again, we

observed the MRS of the network to infer the structural

modification since the overall statistical properties such as weight

and strength distributions, are similar for the four data. In Fig. 6,

we present four snapshots of the MRS of the US Senate Google

correlation network during the election period. A radical structural

rebuilding of the MRS was observed during this period and was

actually quite surprising because the webpages searched using

Google are not always about the current news topics, but more like

archives of the WWW from the entire historical database. The

radical movements of senators in the MRS show that the

dynamical webpages such as news articles, blog entries, and Wiki

pages take a considerable amount of space on the WWW [21].

The most outstanding rearrangement in this period is a great

movement of Senators from John McCain’s side to John Kerry’s

side on November (Figs. 6(b) and (c)). The movement of the

Republican election candidates (whether the candidate was re-

elected or not) is particularly interesting. We suspect that one of

the main reasons for this major change of the MRS is Senator

John Kerry’s ‘‘botched joke’’ about the Iraq War on October 30

and the following controversy [22]. Besides the MRS from Google

correlation values we used, the impact of John Kerry’s joke can

also be checked in Google Trends, with which one can find how

often people have searched certain topics on Google over time. If

you type ‘‘John Kerry’’ on http://www.google.com/trends (last

accessed on 6/2/2010), you will see a peak of search volume graph

near November, 2006. We believe that many Republicans, who

were at John McCain’s side in the MRS before the elections

(Fig. 6(a)) were involved in the controversy (with election

candidates being most active), and their maximum Google

correlation values moved from that with John McCain to that

with John Kerry. After the elections, the impact of the controversy

was relatively weakened and the MRS was reshaped again

(Fig. 6(d)). Although we have only discussed the major movement

tendency of senators and one possible cause, many other

interpretations and further studies are possible. The techniques

of Google correlation and MRS are widely applicable, and further

progress will be achieved in the future.

Aids to Obtain Further Specific Information
Relatedness, quantified by the Google correlation, could be the

concept from either cooperation or competition. Google correla-

tion values cannot solely distinguish whether a given relationship is

friendly or hostile. External information can help us to specify the

relationships in more detail, and, this this section, we show an

example of such a specification with the US Senate network. The

record of Roll Call Votes of the US Congress (http://thomas.loc.

gov/home/rollcallvotes.html), which guarantees that every sena-

tor’s vote is recorded, is used to elaborate relationships among

senators.

With 642 Roll Call Votes of senators in the 109th Congress, we

assign the vote correlation value C(i,j) for every pair of senators i and

j as follows:

Googling Social Interactions
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C(i,j)~

P
n

Xn(i,j)

P
n

dn(i)dn(j)
, ð6Þ

where Xn(i,j) is 1 if senator i and j concurrently voted for or

against the bill of the nth Roll Call Vote and {1 otherwise, and

dn(i) is 1 if Senator i participated in the nth Roll Call Votes and 0

if Senator i did not vote. We exclude the cases of unanimous votes

to remove the effect of the entire Senate’s opinion. Then,

C(i,j) [ ½{1,1� and measures the correlation of opinions of senator

i and j.

Now we can infer the degree of cooperation with the vote

correlation defined in Eq. (6). In Fig. 5, we distinguish the links

among senators with the positive and negative vote correlation.

From Fig. 5, we observe that the positive vote correlation is almost

always given to the senator pairs from the same party and the

negative vote correlation to the senator pairs from the different

parties. Among all the senator pairs, only 5:66% are from the

different parties and have positive vote correlation value and

0:08% are with the same party and have negative vote correlation

value, which implies the partisan polarization discussed in Ref.

[23].

Relationships between Two Groups: Bipartite Network
Analysis

Investigating relationships via search engines is not restricted to

a specific group of people. In addition, objects in a search query do

not have to be restricted to people’s names. We demonstrate this

fact by investigating the relatedness between politicians and large

corporations, revealing possible connections between politics and

business. For sets of politicians, we selected 18 potential US

presidential candidates in January 2008 and the 109th US

Senators. The list of eighteen candidates are Hillary Clinton,

Barack Obama, John Edwards, Dennis Kucinich, Joe Biden, Chris

Dodd, Bill Richardson, Mike Gravel, Rudy Giuliani, Fred

Thompson, John McCain, Mitt Romney, Mike Huckabee,

Figure 5. MRS of the US Senate Google correlation network, with the Google correlation values for May 4, 2006. The size of each node
is proportional to the logarithm of the Google hit value [8]. The nodes’ colors represent the political parties, i.e., blue for the Democratic party, red for
the Republican party, and yellow for the independent Senator James Jeffords. The links are distinctly colored as positive (gray links) and negative
(purple links) vote correlation in Eq. (6).
doi:10.1371/journal.pone.0011233.g005
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Duncan Hunter, Tom Tancredo, Sam Brownback, John Cox, and

Ron Paul. We chose the 100 largest corporations, as reported by

Fortune [24] as the set of corporations.

The method of analysis is similar to the previous one, but in this

case Google correlation values only between politicians and corporations

are considered in a way to construct a so-called ‘‘bipartite network.’’

MRS is generated by collecting links from politicians to the

corporations to which they are related most and vice-versa. Another

measure introduced is the normalized Google correlation which

represents the relatedness where the effect of fame is removed. This

new measure is able to effectively prevent famous nodes from

‘‘dictating’’ the network. Normalized Google correlation between i

and j is defined as =
Google correlation between i and jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i0s Google hits | j0s Google hits
p . All the

data for this analysis were collected in January 2008.

Figure 7 shows the MRS from the normalized Google

correlation network of the US presidential candidates and the

100 corporations. John McCain, who has become the actual

Republican presidential candidate at the time of writing, does not

have many connections with large corporations in MRS.

However, the only connected corporation with him is Northrop

Grumman, which recently won the joint tanker contract to

assemble the KC-45 refueling tankers for the US Air Force with

EADS [25]. Because Senator John McCain once uncovered a

corrupt effort by Boeing, which is Northrop Grumman’s rival

company [26], the connection looks interesting. The thick

bidirectional connection between Senator Hillary Clinton and

Exxon Mobil is likely from the large amount of money contributed

to Senator Clinton from the corporation [27]. In similar ways,

such analysis might give some hints for further investigation for the

relationship between politics and business.

We also tried to elucidate community structures from the

bipartite network between politicians and corporations as shown in

Fig. 8. First we extracted the normalized Google correlation values

between US Senators and the 100 corporations. Then we kept the

link, whose Google correlation value is larger than 0:002, to obtain

a sparser subnetwork for visualization. The community structure

from the subnetwork was obtained by Newman’s eigenvalue

spectral method [28] and the modularity Q is 0:58, which might

reveal the subunit of politics-business connections.

Figure 6. Four snapshots of MRS of the US Senate Google correlation network, near United States Senate elections 2006. The size of
each node is proportional to the logarithm of the Google hit value. Senators are classified as re-elected Democrats (dark blue), Democrats not
participating in the election (light blue), re-elected Republicans (dark red), Republicans not participating in the election (light red), Senators who
failed to be re-elected (black; all Republicans), and Senators who retired (purple).
doi:10.1371/journal.pone.0011233.g006
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Comparison with Real Social Networks
In this section, we provide evidence for the validity of social

network construction by Google correlation values. We obtained a

scientific collaboration network among the authors of papers citing

the five key papers [29–33] in the network theory. The

collaboration data was downloaded from ISI Web of Science,

http://isiknowledge.com/ (last accessed on 6/2/2010). The 776

authors who wrote at least three papers were selected due to

computational tractability. In this collaboration network, the pairs

of authors who wrote the papers together were connected and the

weights were assigned as the numbers of collaborated papers. To

test the reliability of the Google correlation network among these

authors, we constructed a weighted social network with the Google

correlation values. To avoid the ambiguity of authors’ name, the

word ‘‘network’’ is added to the search query in this case, assuming

most authors are related to the network research.

The direct comparison between these two weighted networks

(the collaboration network and the Google correlation network) is

nontrivial, partly because of the enormous difference in the link

density, i.e., the collaboration network is much sparser. Therefore,

we suggest two schemes for comparison. First, we check the

correlation between the weight in the collaboration network (the

number of collaborated papers) and the Google correlation values

for pairs of connected authors in the collaboration network. If the

Google correlation network represents the true relatedness, we

expect a positive correlation between the two quantities and

Fig. 9(a) indeed shows a positive correlation. Second, regardless of

whether two nodes in the collaboration network are directly

connected or not, the Google correlation value and the shortest

path length in the collaboration network for those two nodes are

expected to be negatively correlated. Figure 9(b) confirms this

expectation. Because the Google correlation value represents the

relatedness of two authors, the larger the Google correlation value

of the two authors, the nearer they are located in the collaboration

network.

These correlations, of course, are not perfect. However, we

suggest that the difference does not indicate the error or limitation

of the Google correlation but reveals the actual difference between

the collaboration and relatedness. Two authors can have large

Google correlation value, even if they have never written papers

Figure 7. MRS from the bipartite network of the US presidential candidates and the 100 corporations. The Democratic candidates’
names are colored as blue, the Republican candidates’ names as Red, and the corporations as their logos. Normalized Google correlation values are
used.
doi:10.1371/journal.pone.0011233.g007
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together, if they work in the similar fields, show up at the same

conferences many times, and thereby appear in the same

‘‘participant list’’ webpages of many conferences, for example. In

summary, we have verified that our method actually reflects the

structure of the real coauthorship network and have demonstrated

the potential of our method.

Finally, we should mention caveats of our method. Many

webpages are not under the quality control and may contain

misleading or alleged facts. Therefore, our method should be

considered as a proxy reflecting the real correlations. In other

words, one has to be careful when dealing with the Google

correlation data and note that any conclusions drawn from the

analysis should be followed by accurate follow-up investigations,

like genome-wide computational predictions followed by high-

quality, small-scale experiments in biology.

However, in any case, we would like to emphasize that the Google

correlation values can be the first, useful and exploratory step towards

further investigations. We also want to point out that it is possible to

flexibly customize the definition of the correlation measure for

different purposes, for instance, by dividing the raw cooccurrence

value by their Google hit values to get rid of their popularity effects

whenever it is necessary, as suggested in the previous sections.

Another way to customize our method is to use more specific search

engines. For instance, for the coauthorship relations, one can count

cooccurrences from Google Scholar, which indexes only the scholarly

literature. Public relationships among politicians can be extracted

more accurately by focusing on only the news articles. As an example,

we constructed a network of Korean politicians by counting the

number of news articles from a Korean online news service

Naver(http://www.naver.com/), and demonstrated that the two

clear groups in MRS well correspond to political parties and each

party’s leader/influential person possessing central position with

many incoming links. In South Korea, the search engine Naver is

more popular to the general public than Google, due to the many

localized information and interface. Moreover, it deals with the

Korean characters more appropriately than Google. So we use it for

the analysis on the Korean politicians.

Discussion

There is a tremendous amount of data on the Web, which can

prove very useful if we harness it cleverly. Search engines are a

Figure 8. Community structure of the subnetwork. We keep only normalized Google correlation values larger than 0:002, from the normalized
Google correlation network of the 109th US Senators and the 100 corporations. The Democratic Senators are colored as blue, the Republican
Senators as Red, and the corporations as green.
doi:10.1371/journal.pone.0011233.g008
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basic device to classify such information and we have constructed

social networks based on the Google correlation values quantifying

the relatedness of people. We have systematically analyzed the

basic statistical properties from the viewpoint of weighted network

theory, introduced a new quantity called the Rényi disparity to

represent the different aspect of the weight distribution for

individual nodes, and suggested MRS to elucidate the essential

relatedness. We have used the US Senate as a concrete example of

our analysis and presented the results.

The concepts of the Rényi disparity and MRS introduced in this

paper are not restricted to the Google correlation network, of

course. The process of finding out ‘‘hidden asymmetry’’ of

weighted links is applicable to other many weighted networks

from various disciplines as well. In other words, such concepts can

be interpreted as useful characteristics in different contexts. We

have also compared a real scientific collaboration network with the

social network constructed by our method introduced in this paper

and discussed the result. The larger Google correlation values two

authors have, the more papers they tend to have written together,

causing them to appear to be ‘‘closer’’ in the scientific

collaboration network.

Extracting information on the Web to construct networks makes

it possible not only to obtain large networks with many

participants, but also to monitor the change of such networks by

collecting data on a regular basis. We have verified that the

network structures do not change abruptly, partly because the

Web plays the role of a digital ‘‘archive,’’ not a ‘‘newspaper.’’

However, during important events such as the elections for the

United States Senate held in November 2006, the US Senate

network was significantly reformed as we have discussed in this

paper. If the webpages were classified into several categories such

as news articles, blog articles, etc., more information would be

available. We hope that so-called Web 2.0 [7,21,34,35] will

significantly increase the possibility to obtain such classified

information with ease in the future. The proper use of the Web

and search engine in scientific research has already begun, for

instance, in the research on the human tissue-specific metabolism

[36], and we welcome other researchers who will join this

movement in the future.

Acknowledgments

We thank Daniel Kim for building the data extraction platform with the

Google Search API.

Author Contributions

Conceived and designed the experiments: SHL PJK YYA HJ. Performed

the experiments: SHL YYA. Analyzed the data: SHL PJK. Wrote the

paper: SHL PJK YYA HJ.

References

1. Wasserman S, Faust K (1994) Social Network Analysis. Cambridge: Cambridge

University Press. 857 p.

2. Freeman LC (1977) A set of measures of centrality based on betweenness.

Sociometry 40: 35–41.

3. Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási A-L (2004) Global

organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:

839–843.
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