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Abstract

Background: Population variation in the degree of seasonal polymorphism is rare in birds, and the genetic basis of this
phenomenon remains largely undescribed. Both sexes of Scandinavian and Scottish Willow grouse (Lagopus lagopus)
display marked differences in their winter phenotypes, with Scottish grouse retaining a pigmented plumage year-round and
Scandinavian Willow grouse molting to a white morph during winter. A widely studied pathway implicated in vertebrate
pigmentation is the melanin system, for which functional variation has been characterised in many taxa.

Methodology/Principal Findings: We sequenced coding regions from four genes involved in melanin pigmentation (DCT,
MC1R, TYR and TYRP1), and an additional control involved in the melanocortin pathway (AGRP), to investigate the genetic
basis of winter plumage in Lagopus. Despite the well documented role of the melanin system in animal coloration, we found
no plumage-associated polymorphism or evidence for selection in a total of ,2.6 kb analysed sequence.

Conclusions/Significance: Our results indicate that the genetic basis of alternating between pigmented and unpigmented
seasonal phenotypes is more likely explained by regulatory changes controlling the expression of these or other loci in the
physiological pathway leading to pigmentation.

Citation: Skoglund P, Höglund J (2010) Sequence Polymorphism in Candidate Genes for Differences in Winter Plumage between Scottish and Scandinavian
Willow Grouse (Lagopus lagopus). PLoS ONE 5(4): e10334. doi:10.1371/journal.pone.0010334

Editor: Jerome Chave, Centre National de la Recherche Scientifique, France

Received January 24, 2010; Accepted March 30, 2010; Published April 23, 2010
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Introduction

Studies on genetic variation in endangered species have

traditionally focused on neutral genetic markers such as microsat-

ellites or mtDNA, but the importance of functional genetic

variation is receiving increased interest. However, characterising

ecologically significant functional variation in wild species for

which no closely related model organism exists remains difficult,

and is further complicated in species which are subject to active

conservation programs due to restrictions against invasive

sampling. A plausible non-invasive approach to study adaptive

variation in threatened species is to utilize candidate genes for

interesting phenotypes that are known a priori or from mapping

experiments in related model species [1]. One such phenotype is

geographic variation in seasonal polymorphism, exemplified by

the white winter phenotype displayed by many arctic animal

species. While such seasonal phenotypic variation might be

expected to have a complex genetic basis, it has been recently

shown that non-synonymous mutations in a candidate gene

perfectly explain population variation in winter coat colour among

Arctic foxes (Alopex lagopus) [2].

Colouration stands as perhaps the most extensively studied and

described phenotype in natural animal populations. Two adaptive

hypotheses of phenotypic variation that have been critically tested in

an evolutionary framework are camouflage e.g. [3] and sexual

colouration [4]. These and most studies on animal pigmentation to

date have focused on the melanin system, in which specialized cells

known as melanocytes produce either of two pigments—eumelanin

or pheomelanin—resulting in different tone and colour of skin, hair

and feathers. High concentration of eumelanin leads to a dark

appearance, whereas pheomelanin usually results in a brown or

reddish phenotype. Several genes that are involved in the pathway

have been identified in mammals (reviewed by [5]), of which the

melanocortin 1 receptor gene (MC1R) is the most well known.

The Willow grouse (Lagopus lagopus) and its subspecies the

Scottish grouse (Lagopus lagopus scoticus) display marked seasonal

differences in their plumage. While Scandinavian Willow grouse,

like a few other vertebrate arctic and subarctic species, are

predominantly white all through winter, they moult to a

pigmented plumage during the snow-free season. In contrast, the

Scottish grouse which inhabit the British Isles with a warmer

climate retain their pigmented plumage all through the year.

Intuitively, one would expect that the cryptic function of the

pigmented vs. white phenotype is strongly related to snow

coverage—leading to differences in individual fitness in the

respective environments.
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Previous studies have identified several causative non-synony-

mous substitutions in avian MC1R exons, including Val85Met

[6,7], Glu92Lys [8], Arg230His [9] and others [10,11]. Moreover,

the evolutionary rate of non-synonymous substitutions has been

shown to be correlated with sexual dimorphism in Galliform birds

[4]. Several alleles that contribute to pigmentation have been

described in MC1R orthologs in other vertebrates, most notably

Arg65Thr [12]. In TYRP1, Nadeau and colleagues [13] described a

Phe282Ser mutation that was associated with a plumage phenotype

in Japanese quail (Coturnix japonica). Conversely, phenotypic

variation in plumage was not related to MC1R variation in the

blue crowned manakin, Lepidothrix coronata [14] or old world leaf

warblers, Phylloscopus sp. [15], but these studies did not investigate

other candidate genes.

We sought to investigate any associations between phenotypic

differences in winter plumage and coding region variation by

obtaining sequences from four previously identified candidate

genes for plumage coloration (MC1R, TYR, TYRP1 and DCT) in

European Lagopus populations. A fifth additional gene (AGRP) is

implicated in the melanocortin pathway but not pigmentation and

was included mainly as a control [4], Mutations in Tyrosinase

(TYR), Tyrosinase-related protein-1 (TYRP1), and DOPA-chrome

tautomerase (DCT, also known as Tyrosine-related protein-2) are

mostly known for conferring phenotypic changes along the yellow-

brown axis, and the three genes all belong to the tyrosinase family.

On the other hand, the melanocortin 1-receptor (MC1R) is

expected to determine phenotypic change from dark pigmentation

to white.

Results

PCR amplification and sequencing
We obtained exonic and intronic sequences from AGRP, DCT,

MC1R, TYR and TYRP1 spanning chicken nucleotide positions

25–536, 309–587, 104–900, 68–375, 7–819 and 68–375, respec-

tively. Due to varying amplification success, the number of

successfully sequenced individuals varied between 7–13 from

Scandinavian Willow grouse and 7–11 from Scottish Red grouse.

Sequence variation
In the final alignments spanning a total of 2626 bp, we observed

65 segregating sites, corresponding to 1 SNP per ,40 bp, which is

in concordance with previously published levels of exonic

polymorphism in the genus [16]. None of the found alleles

separated the two phenotypically distinct subspecies (Fig. 1). For

instance, sequence variation in MC1R did not show any

correlations with colour in a region spanning amino-acid position

36 to 300. Moreover, several shared polymorphisms were found

between the populations, and this was reflected in the level of

population differentiation (FST,0.10; Table 1). Nucleotide

diversity corresponded to previous estimates of p = 1023 in birds

and other loci from the studied Lagopus populations [16].

Figure 1. Median-joining haplotype networks of phased sequences. Scandinavian Willow grouse and Scottish Red grouse sequences are
represented with grey and red, respectively. Node size is proportional to haplotype frequency.
doi:10.1371/journal.pone.0010334.g001
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Statistical tests of selection
Tajima’s D statistic [17] was generally negative across all loci

(Table 1), also compatible with the findings of [16]. Statistical

significance for deviation from the standard neutral model was

only obtained from TYRP1, but since this is based on 4 SNPs in

just 267 bp, we are careful in interpreting this result as non-neutral

evolution of the locus. Tajima’s D is the normalized difference

between nucleotide diversity (p) and Watterson’s estimator of h
and tends to negative when there is an excess of low frequency

variants in the sample, and positive when there is an overrepre-

sentation of intermediate frequency variants. In the case of a

recent selective sweep, Tajima’s D is expected to take a negative

value more extreme than that of the genomic background.

However, since Tajima’s D does not distinguish which allele is

ancestral, it only considers the folded frequency spectrum. In

contrast, Fay and Wu’s H statistic [18] can identify an excess of

derived alleles in a sample by using an outgroup sequence. To this

end we calculated H across the whole sequence (Table 1) and in a

sliding window of 100 bp with 25 bp steps (data not shown), but

did not find significant evidence of a recent selective sweep in the

history of either subspecies. However, we note that MC1R displays

the most extreme values of H in the two populations, with a

negative value for the Scandinavian population and a positive

value for the Scottish population (Table 1).

Linkage disequilibrium
We also investigated linkage disequilibrium since the extent of

correlations between markers determine the ability to detect

selection acting on nearby regions. In line with previous results

[16], we found low and homogenous levels of linkage disequilib-

rium in the three loci with .500 bp sequence data (AGRP1, MC1R

and TYR), with ZnS [19] values of 0.06 in all cases.

Discussion

Arctic species which display a white non-melanized winter coat

or plumage include hares, grouse, wolves, mustelids, owls and

foxes. Våge and coworkers [2] showed that a rare blue phenotype

in arctic foxes in Scandinavia was perfectly associated with two

amino acid substitutions in mc1r. Presently, northern European

Arctic foxes are highly endangered and threatened by global

climate change. A recent study showed that after the last

glaciation, arctic fox populations were not able to track their

optimal habitat when the climate shifted [20]. If this is also the

case in present populations of other arctic species, genetic diversity

that preserves adaptability to changing climate conditions might

be paramount for their long-term survival. The willow/red grouse

is an example of a polymorphism that is associated with climatic

conditions, with red grouse being cryptic all year round while

willow grouse have a camouflaged all-white winter plumage. It

could be hypothesised that the non-white morph will be favoured

when the climate becomes warmer and winters become snow-free.

However, the non-white populations in Britain and Ireland are

presently not in contact with the closest white populations in

Scandinavia, being separated by the North Sea, and thus it is

unlikely that the non-white morph will expand via migration.

Instead Scandinavian willow grouse must respond via selection

favouring a non-white mutant arising within the Scandinavian

population. This requires genetic variation for, or possibilities to

mutate to, the non-white phenotype in the Scandinavian

population. Interestingly, local populations living on largely snow

free islands off the Norwegian coast show signs of less pronounced

white winter plumages (J.H. pers. obs.). Understanding the genetic

basis of this polymorphism and whether similar genetic changes

can be found in all arctic species is thus of great importance.

We did not observe any non-synonymous substitutions associ-

ated with the differing winter plumage phenotypes in Willow

grouse in the sequenced regions of AGRP1, DCT, MC1R, TYR or

TYRP1. Additionally, we did not detect any significant deviations

from the standard neutral model which could indicate recent

selection in regions closely linked to the ones studied. However, we

note that because of the rapid decay of linkage disequilibrium and

short haplotype blocks in this species recently reported by [16] and

confirmed in our data, a selective sweep affecting cis-regulatory

elements or exonic regions that were not covered by our data

could still be present on a relatively short physical distance from

the sampled loci. In fact, we did observe a non-significant excess of

high-frequency derived alleles in the MC1R sequences of the

Scottish population, a pattern that would be compatible with a

recent sweep in the vicinity of the exon. Unfortunately, while this

could be resolved by characterising population variation in the

regions close to the exon, this remains very difficult since high

intergenic variability prevents repeatable PCR amplification.

However, a role for any of the five loci in maintaining the marked

phenotypic differences is discouraged by the complete lack of

lineage sorting into the two geographic populations. Willow grouse

and Scottish red grouse populations are genetically differentiated

[16], so a hypothetical locus that governs or contributes to the

phenotypic diversity which is the basis of their taxonomic

classification is expected to have a phylogenetic signature that

mirrors the origin of the sampled sequences.

Over 100 loci are believed to affect pigmentation in vertebrates

[21], and while the discovery of convergent evolution of genetic

background to similar phenotypes between quite disparate taxa

Table 1. Summary statistics of genetic variation and
statistical tests of neutrality for phased sequence data used in
the study.

n S p hW D H FST

DCT 48 5 0.0020 0.0049 21.40 0.45 0.087

Scandinavia 26 1 0.0006 0.0011 20.71 0.14

Scotland 22 4 0.0036 0.0048 20.70 0.69

MC1R 38 22 0.0057 0.0047 21.22 0.07 0.097

Scandinavia 24 15 0.0057 0.0069 20.61 20.21

Scotland 14 12 0.0044 0.0056 20.85 1.31

TYR 46 11 0.0025 0.0035 20.81 0.51 0.015

Scandinavia 24 10 0.0025 0.0038 21.09 0.29

Scotland 22 6 0.0024 0.0022 0.27 0.54

TYRP1 36 4 0.0012 0.0045 21.89* 0.32 0.024

Scandinavia 20 2 0.0014 0.0032 21.45 0.35

Scotland 16 2 0.0009 0.0022 21.49 0.23

AGRP 36 23 0.0062 0.0095 21.18 0.39 0.025

Scandinavia 22 10 0.0052 0.0051 20.07 20.33

Scotland 14 21 0.0081 0.0112 21.19 0.88

Statistical significance is indicated with a * (P,0.05). All results are given for the
whole dataset as well as the Scandinavian and Scottish subpopulations: n is the
number of (phased) sequences, S is the number of segregating sites, p is the
pairwise nucleotide diversity, hW is Watterson’s estimator of the population
mutation rate given by S, D is Tajima’s test of departure from the standard
neutral model using the folded frequency spectrum, H is Fay and Wu’s test of
departure from the standard neutral model using the unfolded frequency
spectrum, FST is Wright’s fixation index.
doi:10.1371/journal.pone.0010334.t001
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such as rock pocket mice (Chaetodipus intermedius) [22] and Arctic

skuas [9] encourages further surveys of MC1R, this study shows

that attention needs to be directed to other parts of the genome as

well. As mentioned above we can not exclude changes in

regulatory genes affecting the sequenced loci but we were unable

to find any changes associated with the colour polymorphism

within any of the sequenced genes. The nature of any putative

regulatory loci is highly speculative, but we would like to draw

attention to the possibility that the polymorphism might be driven

by changes in the moult pattern. Red grouse have two annual

plumages and associated moults while willow grouse have three

[23]. Having lost one plumage (the third all white winter plumage)

has allowed the red grouse to adapt to the snow free winter

conditions on Britain and Ireland. Thus candidate loci that are

involved in circadian rhythms and putatively in the timing and

onset of moult, like Clock-genes [24], might be suitable candidate

loci in the quest for the genetic basis of this adaptation.

Materials and Methods

Ethics statement
Samples from Scandinavia were all obtained from shot birds

which were culled under local laws and guidance in the respective

region of origin. Samples from Scotland came from birds caught

and bled under government license to Aberdeen University. These

birds were released after processing. Animal research at Uppsala

University follows the guidelines provide by Swedish national

legislation (http://www.codex.uu.se/).

PCR amplification and sequencing
Genomic DNA was extracted from 13 Willow grouse (Lagopus

lagopus) from Tjallingbacken, Sweden, and 15 Red grouse from Glas

Choille, Scotland, United Kingdom, using salt-based precipitation

as in [16]. Primers for Galliform loci originally described by [4] were

screened for functionality in European Lagopus and five primer pairs

were chosen (AGRPF1-AGRPR7, DCTF2-DCTR1, MSHR80-

MSHR9, TYR1F-TYR1R, TP1e1F3-TP1e1R1). Polymerase chain

reactions (PCR) were run in 20 ml volumes with 2.5 mM dNTP,

2.5 mM MgCl2, 1x reaction buffer (Fermentas, Vilnius, Lithuania),

1 mM of each primer, 0.5 units of Taq polymerase (Fermentas) and

30–70 ng DNA. The cycling parameters included an initial

denaturation step of 94uC for 2 min followed by 35 cycles of

94uC for 30 s, 60–65uC for 45 seconds and 72uC for 1 min and a

final elongation of 72uC for 2 min. Annealing temperatures were

65uC for the MC1R locus, 63uC for TYR and 60uC for TYRP1,

AGRP and DCT. PCR products were sequenced directly using the

amplification primers using Big Dye v3.1 on a 3730xl automated

sequencer (Applied Biosystems, Foster City, CA, USA) by a

commercial sequencing service (Macrogen, Seoul, Korea) and a

MegaBace 1000 capillary instrument (GE Healthcare, Wakeusha,

Wisconsin, USA) using Dyenamic ET terminators (GE Healthcare)

according to the manufacturer’s instructions.

Sequence analysis
Sequences were assembled and manually edited with Codon-

Code aligner (CodonCode Corporation, Deadham, MA, USA)

and sequence alignments were created with MUSCLE using

default parameters [25]. Reading frame was inferred by

comparing with the chicken (Gallus gallus) genome sequence [26]

and all alignments were manually inspected for non-synonymous

and synonymous polymorphisms that clustered within either

Scottish or Scandinavian populations. Haplotypes were inferred

using PHASE [27] with 1000 iterations and a 100 generation

burnin (Sequence File S1). Summary statistics for genetic

polymorphisms, population differentiation and linkage disequilib-

rium as well as statistical tests of neutrality were calculated with

DnaSP [28]. Variation was surveyed across the whole sequences,

totaling over synonymous and non-synonymous sites. Wright’s

fixation index FST [29] was calculated as in [30]. Linkage

disequilibrium was examined with the ZnS statistic [19], which is

the average of r2 [31] over all polymorphic markers. Fay and Wu’s

H test [18] was performed by determining the derived allele from

comparisons with black grouse (Tetrao tetrix) sequences described by

[4], and statistically significant deviations from the standard

neutral model were investigated using coalescent simulations based

on the observed population mutation rate. To further illustrate

differentiation and reveal stratification within the candidate genes,

median-joining networks [32] of phased haplotypes were con-

structed using Network 4.510 (http://www.fluxus-engineering.

com/).

Supporting Information

Sequence File S1 Phased sequences.

Found at: doi:10.1371/journal.pone.0010334.s001 (0.00 MB ZIP)
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