
Conversion of Phase Information into a Spike-Count
Code by Bursting Neurons
Inés Samengo1, Marcelo A. Montemurro2*
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Abstract

Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly
originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and
auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra information about the
external world, beyond the one contained in the firing rate alone. However, no biologically plausible mechanism has yet
been suggested that allows downstream neurons to infer the phase of the LFP at the soma of their pre-synaptic afferents.
Therefore, so far there is no evidence that the nervous system can process phase information. Here we study a model of a
bursting pyramidal neuron, driven by a time-dependent stimulus. We show that the number of spikes per burst varies
systematically with the phase of the fluctuating input at the time of burst onset. The mapping between input phase and
number of spikes per burst is a robust response feature for a broad range of stimulus statistics. Our results suggest that
cortical bursting neurons could play a crucial role in translating LFP phase information into an easily decodable spike count
code.
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Introduction

Cortical networks have a rich repertoire of rhythmic oscillations

[1]. Previous studies [2,3] have suggested that coherent oscillations

could be used in the brain as an effective time frame regulating

neural coding. For example, in hippocampal place cells, the firing

of a place cell indicates that the animal is inside the place field, and

thereby provides coarse location information [4]. More detailed

information about the precise position inside the place field can be

obtained from the phase of the theta rhythm at burst onset [5,6].

More generally, in several brain areas, the relative timing between

the firing onset of pyramidal neurons and the local field potential

(LFP) encodes additional information about the external stimulus,

not present in spike counts alone. Although there have been

suggestions that similar mechanisms could operate at the

neocortical level [7,8], direct quantitative evidence using informa-

tion theoretic analysis of in-vivo data became available only

recently for visual [9] and auditory [10] cortices. Those studies

showed that when the timing of spikes is measured relative to the

phase of the LFP, there is a significant increase in information

about the stimulus carried by the spike train. The advantages of a

phase-of-firing encoding are illustrated in Figure 1 [11]. The bars

represent the firing rate of a cell in response to three different

stimuli. Based on the traditional view that information is encoded

in the mean firing rate, stimulus 1 can be discriminated from the

other two stimuli, since it generates a weaker response. However,

both stimuli 2 and 3 give rise to the same firing rate, and therefore

cannot be discriminated using the firing rate alone. However, if

the relative timing between firing onset and the phase of the

ongoing LFP oscillation is also taken into account (phase-of-firing

code), then the responses to stimuli 2 and 3 become distinguish-

able, since they occur at different phases of the LFP. In the figure

we used a color code to represent the phase of the LFP in sections

of p/2. The phase-of-firing code increased the information

transmitted by cortical cells by around 54% in visual cortex [9]

and by more than 100% in auditory cortex [10], when compared

to the information conveyed by the spike rate alone. However, it is

still unclear how phase information could be read out by distal

downstream target cells, since the LFP at the soma of the pre-

synaptic afferents is not directly accessible to remote neurons. The

aim of this work is to show that cortical bursting neurons can

translate phase information into a spike-count format, thus making

it available to other brain regions.

The ultimate origin of the LFP is still a matter of debate. One

line of thought supports the idea that the LFP is generated by a

weighted linear sum of the membrane potentials of the neurons in

a local neighborhood [12]. Since the membrane potential of

spiking neurons is an oscillating variable per se, in this view, the

LFP could be understood as a mean field variable describing the

collective dynamics of an ensemble of coupled non-linear

oscillators [13–15]. The LFP thus results as a measure of the

coherence of the spiking activity in a given local area. There is,

however, an alternative line of thought based on experiments

performed along several decades [16–23]. This line proposes that
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the LFP results from the average synaptic and dendritic processes

reaching a given cortical neighborhood [24,25]. Thus, the LFP

mainly reflect coherent input into the region, instead of coherent

output, as advocated by the previous view [26]. Therefore,

pyramidal neurons in cortex are presumably driven by time-

varying signals whose temporal evolution unfolds similarly to that

of the LFP [27]. When the majority of the synaptic inputs to a

given area come from local recurrent connections, the two views

coincide. However, in those brain areas that receive massive input

from distal areas, the two views make different predictions for the

LFP. In this paper, we adopt this second point of view, and see the

LFP as an input signal driving the modeled neuron [26].

In order to explore the phase code instantiated by bursting

pyramidal neurons, we simulated a widely used two-compartment

neural model driven by different types of time-dependent input

currents. We characterized the way the stimulus phase is

represented in the output spike trains, and compared the

performance of the phase code with other alternative codes. We

conclude that the number of spikes in each burst provides a robust

representation of input phase. Therefore, by reading out the intra-

burst spike count, a downstream neuron can extract information

about the temporal properties of the input current exciting the

neuron. Our analysis thus presents a biologically plausible

mechanism capable of translating phase information into a spike

count code.

Results

We simulated the activity of a bursting model neuron (see

Methods and Figure 2A) driven by a time-dependent signal that is

proportional to the LFP. This driving signal will be henceforth

called the stimulus. Example burst-like responses are displayed in

Figure 2B. In each single trial, bursts appear with variable

duration: some of them are short, containing just one or two spikes

(n is equal to 1, or 2), whereas others are long enough to comprise

up to 7 spikes (n = 7). In the subsequent traces of Figure 2B, we

show the response of the model cell to repeated presentations of

the stimulus, subjected to input noise that is drawn independently

in each stimulus presentation. Even though the standard deviation

of the noise is as high as one quarter of the standard deviation of

the signal, the number of spikes per burst n remains fairly constant

throughout different stimulus presentations. Hence, n displays a

remarkable flexibility within each trial, though little variation is

observed across trials. This means that the number of spikes in

each burst must encode information about some specific stimulus

feature. The aim of our work is to reveal this feature.

Response to constant stimuli
As a first step, we considered constant input currents, which are

useful to motivate the study of more natural signals (see below).

When driven with a constant stimulus, after an initial transient

period model neurons set onto a periodic firing regime (Figure 3A).

The mean firing rate, the intra-burst period and the inter-spike

interval within each burst depend on the intensity of the input

Figure 1. Schematic representation of a phase code. Firing rate
of a cell in response to three different stimuli. By reading out the
number of spikes per unit time (the height of the bars), stimulus 1 is
distinguishable from the other two stimuli. However, stimuli 2 and 3
induce the same response, and therefore cannot be discriminated on
the basis of the firing rate alone. However, if also the timing with
respect to the phase of the LFP is taken into account, stimuli 2 and 3
become distinguishable. Inspired on a figure from [11].
doi:10.1371/journal.pone.0009669.g001 Figure 2. Pyramidal neuron model. (A) Schematic representation of

the two-compartment model and the ionic currents involved. The
stimulus is injected into the dendritic compartment. Next to each
compartment we also show an example trace of the membrane
potential during burst generation. The ionic currents associated with
each compartment are also indicated. See Methods for mathematical
details. (B) Typical responses obtained for a random input current. The
top trace represents a sample stochastic stimulus. The stimulus consists
of a signal part (low-pass filtered Gaussian white- noise with 10 Hz cut-
off frequency), and a noise component (low-pass filtered Gaussian
white- noise with 1 KHz cut-off frequency, whose standard deviation
(SD) is equal to J of the SD of the signal). The four example traces
correspond to the output of the neuron when stimulated with the same
signal component, and four different realizations of the noise. The
numbers on top of the traces indicate the number of spikes in the
bursts.
doi:10.1371/journal.pone.0009669.g002

A Neural Code for Input Phase
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current, as explained in the supporting Text S1 and Figure 3B, D

and E. The number of spikes per burst n, however, changes much

more slowly as the input current is varied. For instance, while the

firing rate varies from around 30 Hz to 50 Hz, the number of

spikes per burst remains fixed at 5. This rigid behavior of the burst

size contrasts with the flexibility observed in Figure 2B, where a

broad variation in n-values is observed. The wider range of burst

sizes obtained with time-dependent stimuli suggests that n encodes

dynamic stimulus features. To explore this hypothesis in a

systematic way, in the following sections we used time-varying

stimuli of increasing complexity.

Sinusoidal stimulation
When stimulated with low-frequency sinusoidal currents, the

neuron locks to the input oscillations, firing one burst per stimulus

cycle, as shown in Figure 4A. As the input frequency increases,

more complex patterns are observed: some stimulus cycles are

missed, bursts are not necessarily equally spaced, and they contain

a variable number of spikes (see examples in supporting Figure

S1A). Such complex responses appear because high-frequency

stimulation of non-linear oscillators can give rise to erratic

behavior, characterized by chaotic traces [28–30]. Therefore, in

this study we restrict the analysis to fairly slow input currents, thus

setting the basis for a candidate neural code.

As opposed to the rigid behavior in response to constant stimuli,

the number of spikes per burst n is highly sensitive to the stimulus

period and amplitude (Figure 4B). Thus, the temporal structure of

the signal has a profound effect in the internal composition of

bursts. Rapid or shallow stimuli generate bursts with only a few

spikes, whereas slow or strong oscillations elicit long bursts. The

dependence of the firing rate of the cell with the stimulus

amplitude and frequency is discussed in the supporting Text S2

(see also the supporting Figure S1B).

Which stimulus attribute is best represented by the number of

spikes per burst? This question may be phrased more precisely by

asking which is the stimulus attribute that, at the time of burst

onset, is most tightly related to n. When two quantities co-vary,

they have the same contour lines [31,32]. Hence, we need to

decide which stimulus attribute has the same contour lines as the

ones corresponding to n. To assess this issue, we defined a

coefficient of dissimilarity l (see Methods) that quantifies the

difference between the contour lines in Figure 4B, and the ones

corresponding to the three different stimulus attributes of

Figure 4D, E and F.

Figure 3. Response to a constant input current. (A). Membrane potential traces for different intensities of the input current. In the lower panels
(B–D), the colored symbols correspond to the traces in A of matching colour. (B) Spike firing rate as a function of the input current intensity. The two
singular points correspond to the onset of firing at I&0:5 nA, and the change in the size of bursts from 3 spike bursts to 4 spike bursts at I&1:35 nA.
(C) Burst size (in number of spikes per burst, n) as a function of the input current. (D) Inter-burst time interval Dt. Apart from the discontinuity at the
onset of firing, the interval between bursts decreases smoothly as the input current increases. (E) Intra-burst inter-spike interval dt. After a rapid
adjustment following the singular points corresponding to firing onset and burst size transition, the intra-burst ISI remains essentially unaffected by
variations on the constant input.
doi:10.1371/journal.pone.0009669.g003
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PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9669



This coefficient is a variance measure, quantifying the

variability of n within each contour line of the candidate stimulus

feature. If l= 0, the two quantities co-vary perfectly. Larger values

of l indicate a weaker correspondence between them. For fast

input stimuli, a quantitative assessment of the co-variation of n

with different stimulus features becomes unreliable, since the

contour lines of all quantities become highly complex, with

structures that are repeatedly nested one inside the other. In

particular, in coincidence with the behavior of other non-linear

oscillators subjected to forcing oscillatory input, in the high

frequency region the neuron model exhibits a series of bands

characterized by chaotic dynamics interleaved with windows of

periodicity (see references [28–30]). Any numerical procedure to

detect contour lines becomes discontinuous in this range.

Therefore, all calculations of l are performed within the range

of T from 50 to 200ms. In Figure 4C, we show the dissimilarity

index for the three level plots of Figure 4D–F, associated to the

stimulus amplitude (D), slope (E) and phase (F) at burst onset.

As a first option, we considered the possibility that n represented

the stimulus amplitude at burst onset (Figure 4D). The coefficient

of dissimilarity between n and the amplitude is 1.81. As a second

option, and following Kepecs et al. [33] and Kepecs and Lisman

[34], we evaluated the co-variation between n and the stimulus

slope at burst onset (Figure 4E). The degree of dissimilarity

between these two quantities is 0.45, implying a significant

improvement with respect to the amplitude.

In this paper, we put forward a novel alternative, namely, that

the number of spikes per burst represents the phase of the stimulus

at burst onset. In Figure 4F we see the contour lines of the stimulus

phase at the time of burst onset. Their degree of dissimilarity with

the contour lines of n is 0.17. This low value implies that the phase

is yet a better candidate stimulus attribute, as compared to the

hypothesis of the input slope. Note that we are considering a rather

wide range of stimulus periods and amplitudes. Although for small

amplitudes and long periods the level lines of slope and phase

appear to be similar, there is a clear mismatch outside the lower

right region in Figures 4E and F, where only the phase co-varies

with n. We attribute the better performance of the phase code to its

broader range of validity.

In order for a neural code based on the number of spikes per

burst to be useful, the mapping between n and the encoded

stimulus feature must not depend strongly on the properties of the

input signal. For instance, changing the stimulus frequency should

not lead to a significantly different mapping. We therefore assessed

Figure 4. Response to sinusoidal input. (A) Sample membrane potential traces (black) for two different stimuli (blue, not to scale) differing in
their amplitude. Burst generation locks to the stimulus. (B) Color map of the average burst size as a function of both the maximum amplitude, I0 , and
period, T , of the periodic stimulus. (C). Dissimilarity index (see Methods) for three candidate burst codes representing the amplitude, the slope, and
the phase of the input signal at the time of burst initiation. The index quantifies the difference between the level lines in the color maps in panels D–F
and those of the burst-size map in B. The dissimilarity index is minimal for the phase code. (D–F). Average value of the stimulus amplitude (D), slope
(E) and phase (F) at burst onset, as a function of the maximum stimulus amplitude, I0 , and period T .
doi:10.1371/journal.pone.0009669.g004
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whether the three neural codes discussed in Figure 4 were stable

with respect to changes in the stimulus amplitude and frequency.

In Figure 5A–C we show the probability distribution of each

candidate stimulus feature, given that the cell generated a burst of

n spikes. Each distribution pools together the results obtained with

stimuli covering a broad range of periods and amplitudes (the

range is shown in Figures 4B and 4D–F). Light colors represent

high probability. When considering the distribution of stimulus

amplitudes (A) and slopes (B), the probability densities corre-

sponding to different n values overlap significantly. Hence, by

reading out the number of spikes per burst, it is not possible to

guess the value of the stimulus amplitude or slope. In contrast, the

correspondence between stimulus phase and n is remarkably

narrow (Figure 5C). Therefore, all stimuli seem to induce the same

mapping between phase and n, irrespective of the amplitude or

frequency of the input signal.

Stochastic stimulation
To test whether the results of the previous section also hold for

stochastic time-varying stimuli, we explored the correspondence

between input phase and n also for random input currents, as for

example, low-passed filtered Gaussian noise of several cut-off

frequencies. In the context of stochastic stimulation, the concept of

phase needs to be broadened, in order to be also applicable to

non-harmonic stimuli (see Methods and supporting Text S3). Any

smooth time-dependent signal is the sum of a constant term and a

zero-mean function. By means of the Hilbert transform (see

Methods) the latter can be uniquely decomposed as the product of

a positive function (the strength of the stimulus), and an oscillatory

term whose modulus is always less or equal to one. The oscillatory

term fluctuates between positive and negative values, so it can be

interpreted as the sine of a time-dependent function: the phase of

the original signal. The phase, therefore, is an angle varying

between 0 and 2p. This angle represents the temporal properties

of the input signal: The faster the phase grows, the higher the

frequency content of the signal. If the signal is a pure sinusoid

(supporting Animation S1), then the phase increases linearly in

time, and its slope is proportional to the frequency. Supporting

Animation S2 and Animation S3 show examples of the phase

determined for amplitude and frequency modulated signals,

respectively. If the input current is irregular, the phase has a

complex temporal structure, as seen in the example movie of the

supporting Animation S4.

In Figure 5D–F we show the probability distribution of the three

candidate stimulus features, for each fixed value of n. Once again,

when considering either the amplitude (D) or the slope (E) of the

stimulus, the distributions corresponding to different n values

overlap significantly. Hence, in agreement with the result found

with periodic stimuli, stochastic stimuli confirm that n is not a good

predictor of the stimulus amplitude or slope. In contrast, the value

of the stimulus phase (Q) can be easily predicted from n. Notice

that the distribution of phases at burst onset corresponding to

Gaussian stimuli is remarkably similar to the one obtained with

sinusoidal signals. The mapping between stimulus phase and n is

therefore stable, irrespective of the nature of the driving signal.

One key question is how the intrinsic time scales of the neuron

relate to the time scales of the stimulus to allow coding. For

instance, if the stimulus time scales are much faster than the

characteristic times of the neural response, then coding becomes

difficult since the neuron may not be able to adjust its response at

the same pace as the stimulus varies. We therefore compared the

characteristic frequencies of the neuron responses with the

frequency content of the cortical LFP, extending up to the limit

of the high-gamma band around 150 Hz. We verified that for

Figure 5. Comparison of different candidate burst-codes. (A, B, C) Normalized histograms of the stimulus amplitude (A), slope (B) and phase
(C) at burst initiation, for different burst lengths n. For each vale of n, the color plot represents an estimation of the probability of each stimulus
feature. The highest discriminability is obtained for the stimulus phase, given that the phase distributions show minimal overlap for different n values.
The plots pool together all the phases obtained with the collection of stimulus amplitudes and periods used in Figure 3 B. (D, E, F) Same distributions
as in A, B, C, but when the stimulus consists of a low-pass filtered Gaussian signal, with 30 Hz cut-off frequency. As for the sinusoidal case, the phase
code has the maximal discriminability.
doi:10.1371/journal.pone.0009669.g005

A Neural Code for Input Phase

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9669



moderate or fast input signals, the power spectrum of the neuron

membrane potential shows a characteristic band-pass profile that

extends from a few Hertz to around 40 Hz, with only a weak

dependence on the stimulus cut-off frequency (see Supporting

Figure S3). This suggests that stimuli above 40–50 Hz may start to

be sensed as too fast by the cortical neuron. In the opposite limit,

that is for constant stimuli, the phase is not defined. In Figure 2 we

showed that in this case the number of spikes per burst shows a

weak dependence on stimulus amplitude. Therefore, we expect

that for very slow stimuli the neural code undergoes a crossover to

an amplitude code.

With this idea in mind, we tested the validity and robustness of

the phase code for stimuli with cut-off frequencies between 5 and

60 Hz. In Figure 6A, the mean value of the phase at burst onset is

displayed as a function of n, each curve corresponding to a

different cut-off frequency. The different curves almost coincide,

with only a small deviation for small cut-off frequencies and for

small burst sizes.

The mapping between n and phase is therefore almost

independent of the stimulus parameters, implying that by reading

out the number of spikes per burst, downstream neurons can

estimate the stimulus phase independently of the context in which

the bursts are fired. For comparison, in panel B we show the

correspondence between stimulus slope at burst onset and n.

Clearly, the mapping between these two quantities is much more

dependent on the stimulus statistics. Although for cut-off

frequencies of 5 Hz and 10 Hz the number of spikes per burst

varies monotonically with the slope of the input, the correspon-

dence between these two quantities is strongly dependent on the

cut-off frequency. Therefore, unless the frequency content of the

stimulus remains fixed, or downstream neurons receive parallel

information about the cut-off frequency of the input signal, the

slope at burst onset cannot be decoded unambiguously by reading

the number of spikes per burst. For higher cut-off frequencies the

relationship between burst size and input slope becomes non-

monotonic, and decoding of the slope by reading the size of bursts

becomes ambiguous even for a fixed cut-off frequency.

Having verified that there is a robust relationship between phase

and n, one can assess their degree of correspondence using

quantitative methods. To that end, we estimated the amount of

phase information (see supporting Text S4) encoded in the

number of spikes per burst, as shown in Figure 7. This measure

quantifies the performance of a decoder that tries to guess the

value of the input phase by reading out the number of spikes per

burst, on a single-trial basis.

Consistent with the characteristic frequencies found in the

neural responses (Supporting Figure S2), the information about

input phase conveyed by the size of bursts exhibits an optimal

value for stimuli with a cut-off frequency of around 20–40 Hz.

Thus, bursting neurons can transmit up to 0.8 bits of phase

information per burst. Given that almost all bursts are generated

along the first semi-cycle of the phases between 0 and p, n encodes

input phases with a precision of approximately p
�

20:8. This result

is in agreement with previous experimental studies: through

information-theoretical measures, Montemurro et al. [9] showed

that in visual cortex, the precision of the relative timing between

spikes and the phase of the LFP is approximately p/2.

An alternative measure of the degree of correspondence

between the intra-burst spike count and input phases is given by

receiving operating characteristics (ROC) curves (see supporting

Text S4). In Figure 7B, these curves are shown for discriminations

between n = 2 (doublets of spikes) and several other n values (one

curve per value). Our results show that distinguishing between

different n values clearly allows a linear decoder to discern between

different phase intervals.

To assess the robustness of the code, in Figure 8E and G we

show the conditional distributions for phase p( Dn) and slope

p(sDn), obtained with the stimulus shown in Figure 8A. In the right

panels, we see how these distributions change, when a small high-

frequency component is added (see panels B, F and H). The phase-

conditional distributions are only slightly modified, whereas the

slope distributions change radically, making slope discrimination

impossible. Accordingly, the information about the phase is almost

unaffected, whereas the slope information falls from 0.76 to 0.02

bits/burst. As a consequence, the slope code deteriorates rapidly,

as soon as the input stimulus contains high-frequency components.

In our discussion so far, we have assumed that the slope is

defined locally, in the same way as it was done by Kepecs et al [33].

Another way of defining the slope that takes into account intrinsic

neuronal integration times would be as an average quantity

Figure 6. Mean values of input phase and slope as a function of
burst-size. (A) Mean phase of the low-pass Gaussian stimulus at burst
onset, as a function of the number of spikes per burst n. Different
curves correspond to stimuli of different cut-off frequency. All curves
collapse, indicating that all cut-off frequencies induce the same
mapping between n and phase. The standard deviation of the stimulus
is 3.6 nA. (B) Slope at burst onset for the same stimuli as in A. Different
cut-off frequencies induce different mappings between n and slope.
doi:10.1371/journal.pone.0009669.g006
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Figure 7. Quantification of the relationship between burst length and input phase. (A) Shannon mutual information between the stimulus
phase at burst onset and the number of spikes per burst n. The stimulus is low-pass filtered Gaussian noise with varying cut-off frequency (horizontal
axis). Different curves correspond to different stimulus standard deviations. (B) ROC curves for pairwise comparisons, for the same stimulus as in A.
Different curves correspond to comparisons between different n values.
doi:10.1371/journal.pone.0009669.g007

Figure 8. Robustness of the burst-mediated phase code. (A) Example of input stimulus (low-pass filtered Gaussian noise, with 10 Hz cut-off
frequency) as a function of time. Colors represent the stimulus phases. (B) Same stimulus as in A, but with an additional high-frequency component,
whose standard deviation is 10 times smaller than the standard deviation of the stimulus in A. (C) and (D) Derivative of the stimuli shown in A and B.
(E) and (F) Phase probability distribution at burst onset, for the stimuli as in A and B. The high-frequency component has a minimal effect in the phase
distributions. (G) and (H) Slope probability distributions for the stimuli shown in A and B. The high-frequency component has a drastic effect in the
slope distributions. All curves collapse, so n is no longer useful to discriminate slopes.
doi:10.1371/journal.pone.0009669.g008

A Neural Code for Input Phase
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integrated over a certain time window. We have repeated the

analysis shown in Figure 8 using the mean slope defined as the

average of the local slope over a time window of 10 ms and 20 ms.

In the absence of noise, the information about the mean was

substantially lower: from the 0.76 bits/burst obtained for the local

definition of the slope the information decreased to 0.47 bits/burst

for an integration window of 10 ms, and 0.22 bits/burst for a

window of 20 ms. These values are further reduced when noise is

added to the signal.

We have also verified that the information about the phase of

the input signal remains high even for significantly larger levels of

noise. For instance, repeating the information estimation shown in

Figure 8 using noise with a standard deviation 2.5 times higher,

the information about the phase is reduced by about 15%. These

findings are in good agreement with recent experiments in the

monkey auditory cortex [10] that have confirmed that the phase of

the LFP remains a robust response feature, also in the presence of

high input noise.

Discussion

There is increasing evidence that a large amount of extra

information about external stimuli can be encoded in cortical spike

trains if spike timing is measured relative to the phase of the LFP.

That suggests that the LFP may be used as a local clock in cortex,

allowing neural populations to synchronize in small neighbor-

hoods, and to coherently interact with other brain regions.

The feature of the LFP that most effectively can determine the

pace of a local clock is its time-dependent phase. The main

motivation for our work was to identify a mechanism that allowed

cortical neurons to encode the phase relationship between their

individual firing and the LFP, so as to make this information

available to downstream neurons in an easily decodable way. To

that end, we stimulated a bursting pyramidal model neuron driven

by a time-dependent stimulus. The stimulus represented the total

synaptic input on the neuron. Here, we assumed a close

relationship between an effective time-dependent input current

driving each pyramidal cell in the area and the LFP. Fluctuations

in the LFP imply that the extracellular milieu varies in time. Ionic

channels and pumps take the extracellular medium as the

reference with respect to which they measure trans-membrane

voltages. Hence, the net effect of a positive deflection in the LFP is

equivalent to a negative input current into each cortical cell. In this

context, the stimulus I(t) used in this study should be interpreted as

proportional to the negative LFP. In addition, large fluctuations in

the LFP have been hypothesized to co-vary with synchronous,

coherent input into the cortical area [25–27]. To represent such

coherent input, the signal I(t) that we have used throughout this

paper can also be interpreted as a direct synaptic input into each

cell. The sign of the input should depend on the type of synapses

involved (excitatory or inhibitory). The two effects combined (that

is, the fluctuations in the extracellular medium and the coherent

synaptic input) give rise to an effective driving current I(t) that is

proportional to the LFP [27].

In this context, we have shown that there is a tight and robust

correspondence between the number of spikes per burst and the

phase of the stimulus at burst onset. In the case of sinusoidal

stimuli, bursting neurons lock to the driving signal. The phase of

the locking depends on both the amplitude and the period of the

external current. Large amplitudes and periods induce early

locking, whereas small amplitudes and periods give rise to late

bursting (for a possible mechanistic explanation for this effect see

supporting Text S2, and supporting Figure S2). In the case of

random stimuli, the signal no longer has a unique amplitude and

period. However, n still represents the stimulus phase, and this

phase is related to the local stimulus oscillation preceding burst

generation.

Experimental evidence of the robustness of the phase
code

The phase code is robust with respect to stimulus statistics. The

mapping between n and stimulus phase remains roughly invariant

throughout a broad range of cut-off frequencies (see supporting

Figure S4), and is not easily perturbed by input noise (Figure 8).

This constancy is presumably relevant to sensory processing.

Recently, Kayser et al. [10] have shown experimental evidence

that phase codes are strikingly robust in the presence of input

noise. The information in the timing of single-cell spiking (as

registered with an external clock) degraded rapidly when the

input stimulus was contaminated by noise. However, the

information in the relative timing between single spikes and the

phase of the LFP (that is, with respect to the internal clock) was

only weakly affected.

Do bursts detect input phase, input slope, or both?
Kepecs et al. [33] and Kepecs and Lisman [34] have shown a

correspondence between n and input slope, claiming that the

quantity encoded in burst size was the local slope. However, we

have shown evidence that the variable more robustly encoded in

the number of spikes per burst is the phase of the input signal. The

slope code reported earlier was only valid for stimuli that included

frequencies up to 20 Hz [33], and as we showed in Figure 6B that

even in those cases the mapping between input slope and burst size

depended strongly on the frequency cut-off of the stimulus. In fact,

a slope code can simply be a consequence of the natural

relationship between phase and slope for a slowly oscillating

signal. As can be seen from for low-passed Gaussian white noise

stimuli, these two quantities co-vary (see supporting Figure S5 A–

B), albeit in a way that strongly depends on stimulus statistics.

Furthermore, the slope probability distributions P(s|n) become

wider for faster stimuli, whereas the phase distributions P(Q|n)

remain essentially unchanged (see supporting Figures S4 and S5

C–D), in agreement with the idea that the neuron model is actually

encoding the phase of the input signal. The relationship between

phase and slope can explain the slope coding observed for the

stimuli with lower cut-off frequencies in Figure 6B. However, even

in that narrow range the slope code is strongly dependent on

stimulus statistics. On the other hand, Figure 6A shows that the

encoding of the phase is only weakly dependent on the particular

frequency structure of the input signal, thus establishing a robust

mapping between burst size and input phase that emerges as an

intrinsic coding property of the cortical neuron.

Encoding the full 0{2p phase cycle of the input signal
In Figure 5 we showed that bursts have a strong tendency to

occur on the first half cycle of an oscillating input signal; that is for

phases between 0 and p. Thus, the range of encoded phases is

essentially restricted to this range. However, if the net synaptic

drive is projected onto pyramidal bursting neurons via inhibitory

interneurons, then the effective input to the target cells is inverted

in sign. In such a case, bursts are triggered in the range between p
and 2p of the original input phase. Therefore, by using both

populations of bursting cells (those driven by excitatory synapses

and those driven via inhibitory interneurons) downstream

populations should be able to decode the full phase cycle between

0 and 2p. This mechanism involving two different subpopulations

of bursting neurons has been suggested previously [33].
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Modulation of burst size in real neurons
Previous studies in the hippocampus [35,36] and the olfactory

bulb [37] have displayed examples where the number of spikes per

burst co-varied with the phase of the input signal. We employed a

theoretical model neuron to reveal the nature of this correspon-

dence, and to provide a unifying framework for the examples

previously found in these different brain areas. Mehta et al. [38]

have stressed the importance of translating spike-count based

codes into temporal codes, given that the latter regulate spike-

timing dependent plasticity. We have taken the complementary

approach: given that phase information is only available locally,

we have emphasized the relevance of translating timing codes into

a spike-count format that can be read out by distal target neurons.

Bursting cells seem to be equipped with the intrinsic dynamic

mechanisms needed for this task.

Methods

Pyramidal neuron model
We simulated a two-compartment conductance based model of

a cortical pyramidal neuron [33,39–41]. The model derives from a

reduction of a multi-compartment neuron model due to Traub

[42], conceived to reproduce bursting with a minimum set of ionic

conductances.

The equations governing the model neuron are

cmdVs=dt~{IL{IK{INa{gc Vs{Vdð Þ=p, ð1Þ

for the membrane potential at the soma Vs, and

cmdVd=dt~{IL{IKS{INaP{gc Vd{Vsð Þ= 1{pð ÞzI tð Þ ð2Þ

for the potential in the dendritic compartment Vd. The gating

variables are governed by the kinetic equation

dx=dt~wx(ax(1{x){xbx)~wx(x?{x)=tx: ð3Þ

The somatic sodium current reads INa~gNam3
?h(Vs{ENa), where

m?~am=(amzbm), am~{0:1(Vsz31)= exp({0:1(Vsz31)){1ð Þ,
bm~4 exp({(Vsz56)=18), ah~0:07 exp({(Vsz47)=20), and

bh~1= exp({0:1(Vsz17))z1ð Þ. The somatic potassium

current is IK~gK n4(Vs{EK ), where an~{0:01(Vsz34)=

exp({0:1(Vsz34)){1ð Þ and bn~0:125 exp({(Vsz44)=80).

The dendritic persistent sodium current is INaP~
gNaPr3

?(Vd{ENa), where r?~1= exp({(Vdz57:7)=7:7)z1ð Þ.
The slow potassium current is IKS~gKSq(Vd{EK ), where

q?~1= exp({(Vdz35)=6:5)z1ð Þ and tq~tq0= exp({(Vdz55)=30)ð
zexp((Vdz55)=30)Þ. The leak currents are described by

IL~gL(V{EL), where V stands either Vs or Vd , and the

membrane capacitance is Cm~1 mF/cm2. The coupling conduc-

tance connecting the two compartments is gc~1 mS/cm2, and p

represents the relative area between the somatic and dendritic

compartments. The temperature scaling factors were

wh~wn~3:33. The maximum conductances were gL~0:18,

gNa~45, gK~20 m, gNaP~0:12, gKS~0:8, all in mS/cm2; while

the reversal potentials were EK~{90, EL~{65, ENa~55, in

mV. I(t) is the external input. The integration of the model was done

with a 4th order Runge-Kutta method using a time step of 0.01ms.

We verified that neither by halving nor doubling the time step was

there any change in the time evolution of the membrane potential.

Stimuli. We used three different types of stimuli of increasing

complexity and biological realism; (a) a constant stimulus of

intensity I, (b) a sinusoidal current described by the equation

I(t)~m0zI0 sin 2pt=Tð Þ, with m0 = 0.6 nA; (c) a low-pass filtered

Gaussian white noise with a cut-off frequency fc–this introduces a

correlation time t= 1/(2 fc). The Gaussian noise is filtered with a

4th order Butterworth filter. The filtering process ensures that the

signal has no frequency components above the cut-off frequency,

except for a narrow range due to the filter properties. The

reported standard deviations for the stimulus correspond to the

final current used to drive the neuron model. When the stimulus is

fully constructed, it is fed into the neural model (see Eq. (2)). In all

cases explored here, the injected input current is smooth at the

scale of the integration time step. Therefore, Eqs. (1–3) could be

integrated by standard methods [33].

Relationship between synaptic input and the LFP. We

assume that the total synaptic input to the neurons is proportional to

the LFP [27]. In order to translate collective field potentials into the

input current entering into one particular cell, synaptic time

constants should be taken into account. For example, synaptic

integration is often represented as a convolution of the presynaptic

signal with an alpha function whose time constant is in the order of a

few milliseconds. However, the frequency bands of LFPs that

participate in phase-mediated neural codes lie in the delta (olfactory

bulb, [43]), theta (hippocampus [5,6]), or delta and gamma bands

(cortex [44]). The correlation times of these signals are in the order

of 20 ms or more, that is, much longer than typical synaptic time

constants, which thus can be neglected in the present context.

Phase computation. A signal I(t) can be transformed into

an analytic signal defined in the complex plane with the Hilbert

transform, defined as

�II(t)~
1

p
PV

ð?

{?

I(t0)

t{t0
dt0 ð4Þ

Where PV denotes the principal value of the integral [45]. The

analytic representation of I(t) is ~II(t)~I(t)zi �II(t)~r(t) ei (t). The

phase of the signal is defined as (t), and measured between 0 and

2p. Further details can be found in Text S3, with example

Animations S1, S2, S3, and S4.

Burst detection. Bursts were identified in simulated spikes

trains as groups of spikes with an inter-spike interval (ISI) less than

a predefined threshold. The threshold was determined by

analyzing the ISI distribution. ISI distributions of bursting

neurons have a characteristic bimodal shape, revealing two

relevant times scales. At small ISIs, a sharp peak is evident,

associated with the intra-burst time scale (usually less than 15ms).

At longer ISIs, we find a broader peak, corresponding to the inter-

burst time scale. The minimum separating the two peaks was

taken as the threshold value used for burst detection [34].

Coefficient of dissimilarity l: We need a quantitative

measure of the difference between the level maps associated with

the value of different stimulus features at burst onset (Figure 3 D–

F) and the level map of burst size n (Figure 3B) in a given domain

of stimulus parameters. The index of dissimilarity l is defined as

the variability of n in each region where the chosen stimulus

feature remains confined within a certain small interval of width d,

averaged on different regions. If n(y) represents the number of

spikes per burst that are elicited when the stimulus feature is equal

to y, then the coefficient of dissimilarity is defined as

l~ n2(y){n(y)
2

y0

, where ::: denotes an average over y in the

infinitesimal interval (y02d, y0+d) and STy0
is an average over all

possible values of y0 in the domain l. When there is a perfect

match between the level lines of n and those of the stimulus feature

y, then l= 0. However, when there is a mismatch, l.0, and the

dissimilarity index increases as the correspondence becomes
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poorer. In our analysis we always took d equal to 10{3 of the

range of the feature y in the explored domain l. The index of

dissimilarity is a variance measure that quantifies the overall

differences between two level maps.

Supporting Information

Text S1 Bursting responses to constant stimuli.

Found at: doi:10.1371/journal.pone.0009669.s001 (0.03 MB

DOC)

Text S2 Bursting responses to sinusoidal stimuli.

Found at: doi:10.1371/journal.pone.0009669.s002 (0.02 MB

DOC)

Text S3 Extension of the concept of phase to non-harmonic

signals.

Found at: doi:10.1371/journal.pone.0009669.s003 (0.03 MB

DOC)

Text S4 Quantifying selectivity.

Found at: doi:10.1371/journal.pone.0009669.s004 (0.05 MB

DOC)

Figure S1 Responses to sinusoidal stimuli. (A) Sample membrane

potential traces (black) for two different stimuli (blue, not in scale),

differing in their amplitude. For an input frequency of 40 Hz, the

inter-burst period may become irregular (upper trace), or the

number of spikes per burst may be variable (lower trace). For higher

frequencies, locking is lost altogether, and chaotic behavior may

appear. (B) Average firing rate as a function of stimulus parameters.

Found at: doi:10.1371/journal.pone.0009669.s005 (0.95 MB TIF)

Figure S2 Mechanistic origin of the burst code: Relationship

between the integral of the periodic stimulus over one half cycle

prior to burst generation and the phase at burst onset. Different

colors represent different n values.

Found at: doi:10.1371/journal.pone.0009669.s006 (0.67 MB TIF)

Figure S3 Intrinsic time scales of the pyramidal neuron model:

Power spectra of the neuron membrane potential (black) when

stimulated with filtered Gaussian noise with cut-off frequencies of 2.5,

5, 20, 40, 60 and 80 Hz (from A to D). The red band indicates the

range of frequencies present in the stimulus. The power spectrum of

the response has a natural frequency band extending up to 40 Hz.

Stimuli below 5 Hz reduce the frequency content of the response, and

stimuli above 60 Hz introduce no changes in the power spectrum.

Found at: doi:10.1371/journal.pone.0009669.s007 (0.09 MB EPS)

Figure S4 Selectivity of the phase and the slope codes. A–C:

Probability distributions P(w|n) as a function of the phase at burst

onset, w, for low-pass filtered Gaussian stimuli. Each curve

represents a different number of spikes per burst n. D–E:

Probability distributions P(s|n) as a function of the slope s.

Different panels correspond to different cut-off frequencies: 10 Hz

(A, D), 25 Hz (B, E) and 40 Hz (C, F). For high cut-off frequencies,

the different curves are more segregated for the phase than for the

slope, implying better discriminability. In addition, the slope code

varies significantly as the cut-off frequency is changed (notice the

expansion of the scale of slopes, in the horizontal axes of D–F).

Found at: doi:10.1371/journal.pone.0009669.s008 (0.73 MB TIF)

Figure S5 Relationship between the stimulus slope and phase. (A)

Scatter plot of the stimulus slope and phase, for time points chosen at

random, in a Gaussian signal of 5 Hz cut-off frequency. A

correspondence between the stimulus slope and phase is visible. (B)

Same as A, for a Gaussian signal of 60 Hz cut-off frequency. As the

cut-off frequency increases, the correspondence becomes increasingly

scattered. (C) Width (measured as the standard deviation) of the

probability distributions of the phase P(w|n), for n = 2 and 3, as a

function of the cut-off frequency. The widths remain almost constant,

as the cut-off frequency increases. (D) Width of the probability

distributions of the slope P(slope|n), as a function of the cut-off.

Found at: doi:10.1371/journal.pone.0009669.s009 (0.46 MB TIF)

Animation S1 Modulus and phase of a sinusoidal signal. The

actual signal (upper left panel) is taken as the real part of a complex

signal. The imaginary part (second left panel) is calculated with the

Hilbert transform (see Methods, main text). With these two

functions, the stimulus can be interpreted as a vector that moves in

the complex plane (right panel). The modulus r(t) of this vector

and its phase w(t) are shown in the lower left panels.

Found at: doi:10.1371/journal.pone.0009669.s010 (0.03 MB GIF)

Animation S2 Modulus and phase of an amplitude-modulated

signal. Same as supporting Animation S1 for an amplitude

modulated signal.

Found at: doi:10.1371/journal.pone.0009669.s011 (0.06 MB GIF)

Animation S3 Modulus and phase of a frequency-modulated

signal. Same as supporting Animation S1 for a frequency modulated

signal.

Found at: doi:10.1371/journal.pone.0009669.s012 (0.74 MB GIF)

Animation S4 Modulus and phase of a low-pass filtered

Gaussian signal. Same as supporting Animation S1 for Gaussian

noise.

Found at: doi:10.1371/journal.pone.0009669.s013 (0.04 MB GIF)
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