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Abstract

A central objective in neuroscience is to understand how neurons interact. Such functional interactions have been
estimated using signals recorded with different techniques and, consequently, different temporal resolutions. For example,
spike data often have sub-millisecond resolution while some imaging techniques may have a resolution of many seconds.
Here we use multi-electrode spike recordings to ask how similar functional connectivity inferred from slower timescale
signals is to the one inferred from fast timescale signals. We find that functional connectivity is relatively robust to low-pass
filtering—dropping by about 10% when low pass filtering at 10 hz and about 50% when low pass filtering down to about
1 Hz—and that estimates are robust to high levels of additive noise. Moreover, there is a weak correlation for physiological
filters such as hemodynamic or Ca2+ impulse responses and filters based on local field potentials. We address the origin of
these correlations using simulation techniques and find evidence that the similarity between functional connectivity
estimated across timescales is due to processes that do not depend on fast pair-wise interactions alone. Rather, it appears
that connectivity on multiple timescales or common-input related to stimuli or movement drives the observed correlations.
Despite this qualification, our results suggest that techniques with intermediate temporal resolution may yield good
estimates of the functional connections between individual neurons.
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Introduction

In the past few decades a number of methods have become

available for estimating the interactions or functional connections

between neurons or brain areas from neural signals [1,2]. These

techniques are beginning to shed light on how the brain is

functionally organized [3,4] and how populations of neurons

process and encode information [5]. One of the advantages of this

general approach is that estimates of functional connectivity can

be made using signals from a number of different recording

techniques from extra-cellular unit recordings [6,7] and calcium

imaging [8] to local field potentials [9] and fMRI [10]. Each

technique provides information about network structure and

dynamics on a different spatiotemporal scale. To be able to

combine results from different recording techniques into a global

understanding of interactions in the nervous system we need to

know the relationship between functional connectivity estimated

from methods with distinct timescales.

Functional connectivity analyses differ from anatomical con-

nectivity in several important ways. While these analyses

complement anatomy-based approaches for assessing connectivity

such as wire-tracing [11–13], anti-dromic stimulation [14], or

diffusion imaging [3,15], their interpretation is typically more

elusive. Unless one records with perfect temporal resolution from

all neurons in the brain there will always be missing information.

Unrecorded neurons, for example, may induce apparent func-

tional connectivity between recorded neurons. Thus, an estimated

network must be interpreted as an abstraction of the true network

and true interactions [2]. Secondly, whereas wire-tracing and

diffusion imaging provide information about stable anatomical

connections (albeit on different spatial scales), the signals used to

estimate functional connectivity generally differ in terms of

biological origin (e.g. dendritic potentials or spiking activity) and

spatiotemporal resolution. Functional connectivity estimated from

a single recording technique can be useful for decoding external

signals [5,7] and understanding the structure of interactions at that

scale, but building a complete picture of functional connectivity on

multiple spatial and temporal scales may prove more difficult.

We may hope that functional connectivity calculated from

different signals is similar because there are correlations between

neural activity measured using different techniques. Various

studies have shown that, at least in some cases, LFP and fMRI

signals are well correlated with spikes [16,17]. However, the

relation between different types of signals is not always simple or

consistent [18–22]. One possibility is that, even if the relationship

between recording techniques is not entirely clear, network activity

recorded using two different techniques may provide common

information about interactions between neurons or areas of the

brain. As such, it seems important to ask how much functional

connectivity is affected by the resolution of recorded signals.

Understanding the relationship between temporal resolution and

inferred functional connectivity is also important as it may tell us
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how fast we should record data to enable efficient estimation of

functional connectivity.

Here we compare functional connectivity estimates from multi-

electrode spike data with spike data that has been altered to

remove certain timescales or mimic known recording techniques.

We find that functional connectivity estimated from these

simulated recording techniques (fMRI, LFP, and Ca+2 recordings)

and functional connectivity estimated from low passed signals

matches the fast timescale connectivity fairly well for timescales

down to ,1 Hz. These results suggest that filtered signals may be

used to efficiently estimate fast timescale functional connectivity.

Finally, to test one possible origin for the observed slow timescale

functional connectivity we use several spike simulations. One

possibility is that slow interactions appear as a side-effect of fast

(synaptic-like) interactions. To test this idea, we fit a spiking model

to the original multi-electrode data and simulate from this model

using fast timescales only. We find that the slow timescale

functional connectivity estimated from these simulations is only

very weakly correlated with the estimated fast timescale connec-

tivity. The correlations between functional connectivity on

different timescales are reduced, even when we attempt to include

slowly varying external covariates (e.g. end-point velocity during

reaching movements). The patterns observed in real data thus

appear to be best explained by neuronal interactions on multiple

timescales or unobserved common input.

Results

Temporal Filtering Analysis
We analyze multi-electrode, single unit, spike data recorded

from the motor cortices of two macaque monkeys (Macaca mulatta).

After filtering and down-sampling the spike signals, we compute a

measure of functional connectivity, the pair-wise Granger

causalities from each pair of channels [23] (Fig. 1). Granger

causality provides a metric for how much one signal improves

prediction of another. It specifically measures the improvement

given by adding a second signal to an auto-regressive linear model.

Granger causality has been used to estimate interactions with a

variety of signals, and here it provides an estimate of the strength

of functional connectivity between neurons. Our goal is to

compare functional connectivity estimated from different signal

types. As a first step, we compare Granger causality estimated

from the highest frequency spike signals with Granger causality

calculated from filtered spike signals. Using this strategy we can

examine how functional connectivity estimated from slow

timescale signals relates to fast timescale connectivity. Correlations

between these two functional connectivity estimates imply that

functional connectivity calculated from filtered signals is predictive

of functional connectivity at fast timescales.

We examine the full population of neurons from each of our

datasets (143 for monkey R, 183 for monkey B) and divide the

data into non-overlapping blocks of 10 minute duration. We then

compute correlation coefficients between functional connectivity

(Granger causality) estimated from different segments at varying

levels of low-pass filtering (Fig. 2A and B). Cross-validation

ensures that model comparisons are relevant and not due to over-

fitting. We find that connectivity estimates are fairly robust to

temporal filtering (Fig. 3). For instance, functional connectivity

estimated after low-pass filtering at 1 Hz (Gaussian filter, s= 1 s)

is still significantly correlated with the fast timescale functional

connectivity (R = 0.4). Moreover, the rate at which this

correlation decays as a function of temporal resolution is

conserved across animals and tasks. Dataset R was recorded

while the animal performed center-out reaches, and dataset B

was recorded while the animal was sleeping (non-REM, slow-

wave sleep). This invariance suggests that, while functional

connectivity itself is task dependent, there may be consistent

relationships between functional connectivity across different

timescales.

Qualitatively, the functional connectivity estimated from dataset

B (sleep) has much more structure than that estimated from dataset

R (reaching). Neurons in areas M1 and PMd tend to cluster

together more closely (i.e. they have similar in- and outgoing

connectivity) in dataset B than in dataset R. However, the

distribution of directed Granger Causality in both datasets is in

good approximation exponential, and the connectivity matrices in

both cases are fairly symmetric. For any given pair of neurons, the

connection in one direction (Fi,j ) differs from the connection in the

other direction (Fj,i), on average by 1.7% for dataset B and 1.6%

for dataset R.

Figure 1. Filtering analysis. The Granger causality between each pair of neural signals (x and y) is calculated at different levels of smoothing (s)
and down-sampling. This provides measures of functional connectivity from x to y (Fx?y) and from y to x (Fy?x) for each timescale. By comparing
these measures across timescales we can examine how robust functional connectivity is to temporal filtering.
doi:10.1371/journal.pone.0009206.g001

Connectivity across Timescales
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Since the filtering and down-sampling procedure is noise-free,

the correlations above may not reflect the true relationship

between connectivity estimates that would be observed using

two different (noisy) recording techniques with two different

temporal resolutions. However, the correlation between fast and

slow timescale connectivity estimates is fairly robust to additive,

uncorrelated Gaussian noise. Connectivity between fast and

slow (1 Hz) connectivity is well correlated for signal-to-noise

ratios as low as ,1 (Fig. 4, left). These results suggest that, at

least to some extent, connectivity inferred from low-pass signals,

with noisy, limited data, is predictive of fast timescale

connectivity inferred from spikes. For comparison we show the

correlation between connectivity at each timescale for a signal-

to-noise ratio of 0.5 (Fig. 4, right). In this case, the correlations

are much reduced.

It is important to note that the correlations are computed only

between different segments of data (cross-validated). That is, we do

not compare connectivity estimated from the exact same signal

segments at different timescales. The reported correlations

effectively lower-bound the relationship between connectivity at

different timescales, since non-stationarity in the functional

connections should only reduce correlations.

Figure 2. Results from two sets of multi-electrode spike data. (A–B) show matrices of pair-wise Granger causality (scaled to [0,1]) between
each set of neurons at two levels of smoothing and down-sampling. The structure is consistent across a wide range of timescales. Note that neurons
in M1 and PMd, separated by the dotted lines, tend to cluster together (especially in Dataset B).
doi:10.1371/journal.pone.0009206.g002

Figure 3. The correlation between functional connectivity across timescales is robust for all datasets down to ,0.25 Hz. Correlation
coefficients are calculated across folds (10 min segments). Error-bars denote standard error (SEM) across segments (N = 5).
doi:10.1371/journal.pone.0009206.g003

Connectivity across Timescales
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Temporal Filtering Based on Existing Recording
Techniques

Low-pass filtering multi-electrode data is a simple, and

somewhat idealized, way of asking how functional connectivity

may change across timescales. To relate these analyses more

closely to existing recording techniques we performed the same

analysis using temporal filters based on Ca2+, LFP, and fMRI

imaging techniques.

To mimic Ca2+ imaging we use a typical exponential decay filter

[24–26]. We simulate 10 filters with time constants ranging from

2–4 s. Functional connectivity estimated after applying these filters

was weakly correlated with fast timescale connectivity (R,0.2),

and the correlation did not change significantly over the range of

time constants (Fig. 5A). Importantly, this is the connectivity

estimated from the raw calcium signals. Novel techniques using

deconvolution or statistical inference may allow inferring the spike

train directly from the calcium signals [25,26]. If spikes can be

accurately inferred from the imaging signal then fast timescale

functional connectivity could be recovered perfectly. Because they

are relatively low-pass, simulated calcium signals only allow

capturing relatively small parts of the high frequency functional

connectivity.

To mimic LFP signals we use acausal filters based on cross-

correlation results from primary motor cortex and pre-motor

cortex [18]. We used 5 different filters based on 5 different

recordings (Fig. 5B). There is large variation in how well the

functional connectivity estimated after filtering with these kernels

was correlated with fast timescale functional connectivity. This

variation persists even when the filters are smoothed to remove

any possible edge effects. This may indicate that the precise form

of a filter has a strong impact on the quality of the estimated

functional connectivity and may deserve further analysis. Still, in

ideal cases LFP signals may be about as good as high frequency

spike data for the inference of functional connectivity.

Finally, to mimic fMRI signals we use a prototypical

hemodynamic response function [20] based on deconvolution

results from motor cortex while a human subject performed

fixed-frequency finger tapping [27]. We fit this filter using a

simple gamma-cosine model [16]. This filter is similar to low-

pass filtering at ,0.2 Hz. We find that correlations with high

frequency functional connectivity are rather weak (Fig. 5C). This

may suggest that functional connectivity analyses based on fMRI

may need to be based on other statistical features of the signal, as

in dynamical causal modeling [1]. However, this analysis does

not take into account spatial filtering and population effects that

may allow more meaningful information about functional

connectivity to be extracted from fMRI. These results indicate

that even if future imaging techniques could have perfect spatial

resolution, without higher temporal resolution recordings,

prediction of fast timescale functional connectivity from such

signals would be poor.

Simulations
To examine why functional connectivity might be robust to

temporal filtering we perform the above analysis on simulated data

generated by a spiking model which captures fast-timescale

functional connectivity: a Generalized Linear Model (GLM)

[5–7]. Whereas Granger causality provides a metric for functional

connectivity between continuous signals, the Poisson GLM is an

effective method for modeling functional connectivity between

point processes (spikes). These two methods make different

assumptions about the signals to be modeled and their parameter

estimates cannot be interpreted in the same way. However, we can

use the GLM as a tool to remove certain characteristics of the

original data, such as slow timescale rate modulation, and see the

effect of these manipulations on functional connectivity as

estimated by Granger causality.

We start with a model that includes post-spike history kernels

and coupling terms, both parameterized by raised-cosine basis

functions (see Methods for details). These two sets of parameters

allow us to model the spiking properties of individual neurons (i.e.

refractoriness and burstiness) as well as the functional relationships

between pairs of neurons on a certain timescale (100 ms in this

case). To make the comparison between real and simulated data as

Figure 4. Effects of additive Gaussian noise. Adding uncorrelated Gaussian noise (SNR = 1) reduces the correlation slightly, but there is still
substantial correlation at 1 Hz. Error-bars denote SEM across segments (N = 5).
doi:10.1371/journal.pone.0009206.g004

Connectivity across Timescales
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accurate as possible, we fit the parameters of this model to

subpopulations of 10 neurons in the original data. The simulated

data thus reproduce certain characteristics of the observed spikes,

such as firing rates and inter-spike intervals, while removing

higher-order correlations as well as any dependence on external

variables. Importantly, the GLM attempts to preserve the fast

timescale connectivity from the original spike trains (Fig. 6A).

As with previous studies [7], we find that the model accurately

fits spike data from motor cortices (Fig. 6B). Using a Kolmogorov-

Smirnov (KS) test on the time-rescaled inter-spike intervals to

assess goodness-of-fit [28,29], we find that including coupling

terms improves the model’s accuracy on cross-validated data.

Smaller KS-statistics indicate that the observed and predicted

time-rescaled inter-spike intervals are closer together. We then

simulate spike trains from the model to generate a proxy dataset

with coupling only on timescales ,100 ms. The firing rates and

inter-spike interval distributions of simulated spikes both match

those from the original data. We then perform the analysis above–

low-pass filtering, down-sampling, and estimating Granger

causality for each timescale (Fig. 6C). If slow timescale connectivity

is a direct result of fast timescale connectivity, we expect to observe

agreement between fast and slow signal connectivity similar to the

original data. However, in these simulations the overall correla-

tions are much lower, and the correlation to fast timescale directed

Granger causality drops by ,50% when the simulated signals are

low-pass filtered at 5 Hz.

In some ways this result may not be surprising. In attempting to

remove slow-timescale functional connectivity it is likely that we

remove important slow-timescale dynamics as well. That is, the

simulated spike trains do not show the same rate modulation that

real neurons do. For example, the power spectra of the neurons

simulated by the coupled GLM match the power spectra of

observed spikes trains only for frequencies higher than 10 Hz

(Fig. 6D). To address this issue we perform a similar simulation

with the addition of an external covariate–in this case, the end-

point velocity for the recorded hand trajectories in dataset R. Most

of the power in the end-point velocity is between 0.1 and 2 Hz.

With the addition of these terms, the simulated neurons match the

observed neurons more accurately (Fig. 6B). In this case, the power

spectra of simulated neurons match those of the observed spike

trains down to 1 Hz, and the correlation between slow timescale

and fast timescale connectivity decays more slowly (Fig. 6C and

D). However, the robust correlation between functional connec-

tivity on multiple timescales that exists in real neural data is still

not observed.

Discussion

Modeling the interactions between neurons has a number of

benefits. Statistical models that incorporate coupling can improve

decoding of external variables and give a more complete picture of

multi-variate neural signals [5,30]. Moreover, the estimated

connectivity patterns often match the known anatomy and

physiology of the brain [3]. In many cases, however, what can

be said about connectivity is limited by the spatial and temporal

resolution of the recording techniques. It is often assumed that

connectivity is the same across all timescales and that connectivity

estimated using population signals will reflect connectivity between

individual neurons. If methods for estimating functional connec-

tivity are truly capturing synaptic connections, then functional

connectivity should be relatively well-preserved across timescales.

On the other hand, there are fundamental limits to how well-

preserved functional connectivity estimates will be. As the results

from filtering with a hemodynamic response function suggest, low-

pass filtering with large smoothing windows removes most of the

information about fast time-scale functional connectivity. Howev-

Figure 5. Results from filtering based on existing recording techniques. (A) shows similar results for 10 exponential filters meant to mimic
Ca2+ imaging. Correlation to fast timescale connectivity was not significantly different over this range of time constants (t= 2–4 s). (B) shows 5
acausal filters based on data from simultaneous spike-LFP recordings and the correlation between functional connectivity estimated after filtering
and fast timescale functional connectivity (sorted for clarity). (C) shows a filter based on a fMRI hemodynamic response function and the resulting
correlations. Error-bars denote SEM across segments (N = 5).
doi:10.1371/journal.pone.0009206.g005

Connectivity across Timescales
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er, based on the low-pass filtering results it appears that substantial

information does exist even when the size of the smoothing

window is on the order of a second.

Some previous evidence exists for an agreement between

connectivity estimates across timescales. A number of studies have

indirectly addressed the issue by using a frequency decomposition

of Granger causality [9,31–33]. This method decomposes a single

measure of Granger causality into a spectrum. Intuitively, we

would expect Granger causality at low frequencies to be preserved

by filtering and down-sampling. However, in many cases, it can be

hard to interpret this frequency decomposition–for example it can

be negative. Closest to our objectives here is a recent study that

showed, using simulated local field potentials, that Granger

causality is somewhat robust to temporal filtering and down-

sampling [34,35]. However, biological signals may not be as

regular as these auto-regressive simulations, and recent evidence

suggests that connectivity measures could depend on filter

characteristics in a non-trivial way [36]. Here we approached

the problem, empirically, by taking real spike signals recorded at

high temporal resolution and estimating functional connectivity

between filtered versions of the original spike signals. The

processed signals are meant to directly mimic the low pass

properties of various recorded signals.

In the absence of noise it is, perhaps, not surprising that filtered

signals still contain information about fast time-scale connectivity.

However, the fact that this connectivity information persists across

a coarse segmenting of the data and is robust to additive noise may

explain the success of connectivity methods using relatively slow

timescale signals, such as fMRI. Agreement between slow

timescale functional connectivity and fast timescale functional

Figure 6. Simulation results using a generalized linear model. (A) shows a typical set of parameters after fitting the spike trains of a
subpopulation of 10 neurons. On short timescales (,150 ms), refractory effects dominate spike behavior. However, there are small amplitude
interactions between many neurons. (B) shows goodness of fit tests (KS-test on the time-rescaled inter-spike intervals) for three example neurons
(bottom) and aggregate KS-statistics for an uncoupled model, a model with coupling, and a model including both coupling and hand velocity (top).
Smaller KS-statistics correspond to better fits. After performing the filtering analysis on simulated data, the correlation between connectivity across
timescales is robust for all datasets down to ,5 Hz (C). Error-bars denote SEM across simulations (N = 100). (D) illustrates the differences between the
power spectra of the observed and simulated neurons. The model with covariates follows the observed spectra down to ,1 Hz. However, much of
the observed power below 1 Hz is missing from the simulations.
doi:10.1371/journal.pone.0009206.g006

Connectivity across Timescales
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connectivity appears to hold true across animals, tasks (reaching

and sleep), and brain regions (primary motor and pre-motor

cortex). The multi-timescale properties of functional connectivity

we observed for our data may thus be a general property of neural

signals.

Our simulation results further suggest that agreement between

slow timescale and fast timescale functional connectivity is not a

general property of multivariate time-series and that slow

timescale functional connectivity in the brain is not simply caused

by fast, pair-wise interactions of the type captured by the GLM.

Both stimuli [37] and neural signals [38] themselves operate on

multiple timescales. Thus, one possibility is that our simulated

signals simply do not capture the multi-timescale structure of real

neural signals. LFPs in visual cortex, for instance, have been

shown to convey independent information about a stimulus on

multiple timescales [22]. From a modeling perspective, the

question is how to reproduce the observed correlations between

connectivity on different timescales. One option is to extend a

GLM-like model to include a wider range of timescales or to

include more explicit structure in the relationships between

neurons. For instance, it has been suggested that multi-scale

interactions could result from non-linear coupling [39] or

hierarchical structure [40,41]. Hierarchical structure is a common

characteristic of neuroanatomy [42] as well as behavior [43], and

this structure could lead neurons to interact with each other on

very slow timescales, in addition to the fast, synaptic-like

interactions that the GLM has typically been used to model.

Another explanation may be that there is common input driving

all of the observed neurons. Since this common input may be

multi-timescale itself, this would produce correlations in connec-

tivity across timescales [44].

In the case presented here, adding end-point velocity to the

GLM contributed to the correlations at slower timescales.

However, this model still does not reproduce the correlations

across timescales observed in real data. To fully capture these

correlations we may need to include the other sources of common-

input. For instance, motor cortex is known to represent planning

signals and forces in addition to kinematic variables [45].

Similarly, motor cortex receives broad anatomical connections

from the cerebellum and basal ganglia [46]. These broad, slowly

varying signals may well shape the low-frequency features of the

data that give rise to slow timescale functional connectivity. In

sensory systems there is evidence for low frequency noise

correlations on many spatial scales [47–50], and similar phenom-

ena may occur in motor cortex.

The results presented here suggest that functional connectivity is

relatively well conserved across time-scales. However, assuming

that neurons or brain areas are interacting on the specific

timescales that specific recording techniques observe seems

premature. Functional connectivity and correlations between

connectivity at different time-scales may depend on a number of

different factors such as the regions of the brain we record from,

the tasks performed during the recording, and the stationarity of

the signals. Moreover, the shape of the filters generating a given

signal (i.e. Gaussian, exponential, or hemodynamic) appear to

have a substantial influence on how well functional connectivity

between neurons can be reconstructed. Having an accurate

generative model for the signals may thus be important [51].

Rather than assuming that functional connectivity estimates are

direct measures of how the brain works, it seems prudent to

interpret connectivity estimates as approximations of an underly-

ing circuit which may be task-dependent and confounded by

unobserved factors such as common-input or even activity on

timescales outside the range of our recordings.

The results we have presented here are based largely on Granger

causality–a linear technique for estimating pair-wise functional

connectivity between neurons. Multi-variate approaches or non-

linear techniques [52,53] may yield different estimates of functional

connectivity and distinct results for how similar functional

connectivity is across timescales. Importantly, non-linear techniques

may allow estimation of more complex effects such as coupling

across frequencies [39] and gain control or gating [54]. Here we

have used Granger causality to provide a base-line for understand-

ing how similar functional connectivity is across timescales.

Finally, it is important to note that there may be large

differences between connectivity estimated from recordings of

individual neurons and that estimated using populations of

neurons. A similar analysis using LFPs may allow for a more

direct answer as to whether functional connectivity estimated from

slow timescale population signals (such as fMRI) is predictive of fast

timescale population signals (see [4,21,48]). However, our results

suggest that as the spatial resolution of imaging techniques increases

even functional connectivity estimated from relatively low temporal

resolution signals can inform our understanding of how individual

neurons interact on fast timescales. Specifically, intermediate

temporal resolution recordings (,1 Hz) from individual neurons

will be able to provide substantial information about the functional

connectivity between those neurons on fast timescales. This finding

also suggests that it will be possible to combine connectivity

estimates from multiple recording techniques. On the other hand,

the basis of this similarity across timescales is not yet clear. Our

simulations suggest that slow timescale connectivity is not caused

by fast timescale pair-wise interactions, and that the correlations

we observe may potentially be explained by the existence of

connectivity on many timescales, hierarchical structure, or

unobserved common-input. Exploring these types of models

promises to shed light on how functional connectivity estimates

from different recording techniques relate to one another and on

the neural mechanisms that give rise to functional connectivity.

Materials and Methods

Ethics Statement
All animal use procedures were approved by the institutional

animal care and use committee at the University of Chicago, and

conform to the principles outlined in the Guide for the Care and

Use of Laboratory Animals (National Institutes of Health publica-

tion no. 86-23, revised 1985). Data presented here were previously

recorded for use with multiple analyses. Procedures were designed to

minimize animal suffering and reduce the number used.

Recordings
Implantation and recording procedures have been previously

described [55]. Briefly, data were collected from two macaque

monkeys (Macaca mulatta). Data from monkey R were collected

during center-out reaching. Data from monkey B were collected

across multiple stages of slow-wave sleep (as assessed by visual

inspection of local field potentials and eye tracking data). The

animals were each implanted with two microelectrode arrays

(Blackrock Microsystems, Inc.): one implanted in the primary motor

cortex (M1) and one implanted in dorsal premotor cortex (PMd).

Each electrode was 1.0 mm in length. The neuronal signals were

classified as single- or multi-unit based on action potential shape and

inter-spike intervals greater than 1.6 ms. Spike sorting was

performed by manual cluster cutting with 143 neurons (78 M1,

65 PMd) discriminated in data from monkey R and 183 neurons (75

M1, 108 PMd) discriminated in data from monkey B. Only well-

discriminated single units were used in the subsequent analyses.

Connectivity across Timescales
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Temporal Filtering Analysis
To examine the effects of temporal filtering and noise on the

estimation of connectivity each spike train was low-pass filtered

(through convolution with a Gaussian) and down-sampled

proportional to this smoothing (factor of 2s). We then estimate

the Granger causality [23] between all pairs of signals, in some

cases after adding uncorrelated fixed-SNR Gaussian noise to each

signal. We chose Granger causality due to its popularity in

analyzing LFP, EEG, and fMRI data and its relative simplicity.

For two signals x and y the pair-wise directed Granger causality

(equation 1) is the log-likelihood ratio between the univariate and

bivariate auto-regressive models of order k:

x tð Þ~
Xk

t~1

a1,tx t{tð Þze1 tð Þ

x tð Þ~
Xk

t~1

a2,tx t{tð Þz
Xk

t~1

b2,ty t{tð Þze2 tð Þ

FY?X ~ log
var e1ð Þ
var e2ð Þ

� �
ð1Þ

Low-pass filtering and down-sampling may not have completely

independent effects on the correlations across time-scales.

However, combining the two is meant to mimic physical recording

techniques where how fast we sample is often determined by how

fast the underlying signal varies.

To prevent any biases from over-fitting we estimate the

parameters of the auto-regressive model and the Granger causality

Fx?y on different segments of the data. The correlations between

Granger causality estimates were then also computed on different

segments of the data. For practical reasons, the fastest timescale we

study is 60 ms (16.67 Hz). Since spikes are sparse signals, using

higher resolution data requires large model orders to produce non-

zero Granger causality. Moreover, as the model order increases so

does the potential for over-fitting. Here we use k = 8. Higher

model orders do no significantly improve the cross-validated

fraction of variance explained, and we find that, generally, the

model order (over the range k = 4 to k = 10) does not have a

significant impact on the correlation results presented here.

Simulations
The generalized linear model [2,5–7] assumes that spikes are

generated by a doubly stochastic Poisson process (Cox process).

The conditional intensity (instantaneous firing rate) of each neuron

depends on a short history of the activity from all neurons. Given a

history Ht of the activity of C neurons and model parameters a,

the conditional intensity for neuron i is given by equation 2 and

spikes are drawn from a Poisson distribution with this rate.

li t j ai,Htð Þ~ exp ai,0z
XC

c~1

XK

k~1

ai,c,kfk nc,t{t:tð Þ
 !

ni tð Þ*Poisson li t j ai,Htð ÞDtð Þ

ð2Þ

Where ni denotes the number of spikes fired by neuron i in a

short time window. We fit the model parameters a using

maximum likelihood estimation and K raised cosine basis

functions fk, similar to [5]. In (2) a parameterizes both post-spike

filters and coupling filters. Finally, to incorporate end-point

velocity we use a variation of the model used by [7].

li(tjai,bi,Ht)~ exp ai,0z
XC

c~1

XK

k~1

ai,c,kfk(nc,t{t:t)

 

z
XL

l~1

jgl(V )j bi,l,xgl( cos (w))zbi,l,ygl( sin (w))
� �!

ni(t)*Poisson(li(tjai,bi,Ht)Dt)

ð3Þ

Where b parameterizes the dependence of each neuron’s firing

rate on hand-direction, and we again use raised-cosine basis

functions gl to expand the covariate in time.

To assess goodness-of-fit we can use the time-rescaling theorem

and perform a Kolmogorov-Smirnov test to compare the rescaled

inter-spike intervals with those predicted by the GLM [28,29].

After fitting each of these models to the original spike data, we

simulate spikes at high temporal resolution (1 ms). We then follow

the methods above to see how robust the connectivity of these

simulated systems is to temporal filtering.
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