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Abstract

We develop a general minimally coupled subspace approach (MCSA) to compute absolute entropies of macromolecules,
such as proteins, from computer generated canonical ensembles. Our approach overcomes limitations of current estimates
such as the quasi-harmonic approximation which neglects non-linear and higher-order correlations as well as multi-minima
characteristics of protein energy landscapes. Here, Full Correlation Analysis, adaptive kernel density estimation, and mutual
information expansions are combined and high accuracy is demonstrated for a number of test systems ranging from
alkanes to a 14 residue peptide. We further computed the configurational entropy for the full 67-residue cofactor of the
TATA box binding protein illustrating that MCSA yields improved results also for large macromolecular systems.
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Introduction

Entropies are key quantities in physics, chemistry, and biology.

While free energy changes govern the direction of all chemical

processes including reaction equilibria, entropy changes are the

underlying driving forces of ligand binding, protein folding and

other phenomena driven by hydrophobic effect. Traditionally

calculating entropies from atomistic ensembles x1, . . . ,xnf g of n

configurations xi[R3N of a macromolecule of N atoms remains

notoriously difficult.

We here propose and apply a method for calculating con-

figurational entropies

Sc*{

ð
r xð Þ ln r xð Þdx, ð1Þ

where r(x) denotes the configurational probability density r(x)~
exp ({bV (x))=Zc in the 3N dimensional configurational space

governed by the potential energy V xð Þ of the system. The fact that N

is usually on the order of several hundreds or thousands renders the

evaluation of this integral quite challenging despite a number of

successful attempts. [1–4] These broadly fall into three classes, (i)

special-purpose perturbation type approaches, also known as thermo-

dynamic integration [5], (ii) step-by-step reconstruction methods, in

particular the scanning procedures introduced by Meirovitch [6,7], (iii)

direct approaches which analyse information readily available in

standard equilibrium simulation trajectories [8–10].

While perturbation approaches provide relatively accurate free

energy differences also for larger systems, accurate entropies are

obtained only for smaller molecules. The main obstacle, which

aggravates with system size, is the sampling problem, which severely

limits the accuracy, in particular for explicit solvent models [2,5].

The most widely used direct method is the quasi-harmonic

approximation [8] (QH), which provides an upper limit to the

configurational entropy in terms of 3N independent classical or

quantum mechanical harmonic oscillators [9,10], which is

equivalent to approximating the configurational density r(x) by

a multi-variate Gaussian function,

r(x)~ 2pð Þ{3N=2
det A exp {

1

2
x{SxTð ÞTA x{SxTð Þ

� �
,

with A{1~C derived from the covariance matrix [9,10]

C~S x{SxTð Þ x{SxTð ÞTT. However, for macromolecules un-

dergoing large conformational motions the entropy is likely to be

considerably smaller than this QH upper limit due to coupling and

anharmonicities and, in particular, due to the existence of multiple

conformational states [11–14]. Indeed, for smaller systems such as

di-saccharides [15] or lipids [16], or small subsets of larger proteins

[17] significantly lower entropies than with QH were obtained by

inclusion of anharmonicities [11–13,18,19] and pairwise correla-

tion of QH modes [20].

Results

The MCSA Scheme
Here we develop a direct method consisting of three building

blocks. Results for small test systems will be presented during this
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introduction of the methodology to illustrate the effect of each

building block. Figure 1 shows that indeed for various small test

systems (alkanes, dialanine and a complete 14-residue b-turn) the

quasi-harmonic approximation severely overestimates the refer-

ence entropy. The reference values were obtained by thermody-

namic integration (TI) gradually perturbing the systems towards

an analytically tractable reference state consisting of non-

interacting particles in harmonic wells, as described in methods

and Refs. [21,22]. Entropy estimates obtained for all test systems

are also summarized in Table 1.

Non-Parametric Density Estimation
As the first of the three building blocks of the methodology we

recently introduced a non-parametric density estimation resting on

adaptive anisotropic ellipsoidal kernels [21] that captures the

configurational density in sufficient detail. Briefly, the configura-

tional part of the entropy in a d-dimensional space is estimated

from n configurations according to

Sc~
kB

n

Xn

i~1

ln
nZd xið Þrd

i,k

k xi,ri,kð Þ , ð2Þ

where k xi,ri,kð Þ~SK xi, xi{xð Þ=ri,kð ÞTx denotes the ensemble

average of an adaptive anisotropic kernel function K , whose

anisotropy and scaling ri,k depends on the local density at point xi,

and whose L1-measure is denoted by Zd xið Þ. This formula

simplifies to the well-known k-nearest neighbour entropy (k-NN)

by fixing the kernel function to an (isotropic) sphere whose radius

ri,k is chosen such that exactly k configurations are within the

sphere centered at configuration xi. In this limiting case, Zd is the

volume of the d-dimensional unit sphere. NN estimators in general

are entirely non-parametric and, at a finite sample size n, have

minimal bias [23] in any given number of dimensions d. A major

drawback, however, is the fact that due to the so-called ‘curse of

dimensionality’ [24] simple k-NN estimators are applicable for up

to ten dimensional configurational spaces only [25]. In contrast, as

can be seen in Fig. 1 (left, ‘‘dir’’-bar), adaptive anisotropic kernels

yield accurate results even for the 45-dimensional configurational

space of dialanine. For the more than 500-dimensional configu-

rational space of the 14-residue b-turn, however, the ‘curse of

dimensionality’ [24] renders it impossible to improve on the quasi-

harmonic approximation with direct density estimation alone

(Fig. 1 right). Convergence properties and full technical details of

this first MCSA module are discussed in Ref. [21].

Figure 1. Entropy estimates for a set of small test systems. Five selected alkane systems, dialanine (left), and the C-terminal b{turn of Protein
G (right, please note that here the units are kJ/(mol K)). Thermodynamic integration (TI), density estimates over the whole configurational space (dir),
full correlation analyis with subsequent clustering and kernel density estimation (FCA), quasi-harmonic (QH) and mutual information expansion
estimates of 2nd (MIE2) and 3rd (MIE3) order were obtained as described in the text.
doi:10.1371/journal.pone.0009179.g001
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Generation of Minimally Coupled Subspaces
As the second building block of our method, we apply an

entropy invariant transformation T such that the usually highly

coupled degrees of freedom separate into optimally uncoupled

subspaces, each of which being sufficiently low-dimensional to

render non-parametric density estimation applicable. As the most

straightforward class of entropy invariant transformations, we

consider here linear orthonormal transformations of the form

y~T x{SxTð Þ, with det T~1. More general transformations are

currently explored [26]. We apply Full Correlation Analysis (FCA)

[27] which minimizes mutual information by considering

H T½ �~{
kB

‘

X3N

i~1

ð
r(1)

i yið Þ ln r(1)
i yið Þ,

where yi denote the components of y and r(1)
i yið Þ~

‘3N{1
Ð

r(y)dyj=i the 1-dimensional marginal density along yi.

This procedure minimizes non-linear correlations of second and

higher order [27] and therefore generalizes the principal

component analysis (PCA) which only considers linear correlations

of second order. For complex macromolecules, however, even for

the optimal linear FCA transformation T, considerable non-linear

correlations between several degrees of freedom will remain and

cannot be neglected. To address this issue, the FCA modes are

subsequently clustered according to the generalized correlation

coefficient [25,28]

rMI,ij~ 1{ exp {2I
(2)
i,j

h i� �1=2

,

with the mutual information

I
(2)
i,j ~H

(1)
i T½ �zH

(1)
j T½ �{H

(2)
i,j T½ �

~{
kB

‘

ð
r(2)

i,j yi,yj

� �
ln

r(2)
i,j yi,yj

� �
r

(1)
i yið Þr(1)

j yj

� �
between components yi and yj . This is achieved by assigning mode

indices j to m clusters Cs such that all modes with correlation

coefficients larger than a certain threshold h are assigned to the

same cluster. This disjoint clustering defines an approximate

factorization r yð Þ&Pm
s~1 r(ds)

s 6j[Cs yj

� �
, where r(ds)

s denotes the

generalized ds-dimensional marginal density along 6j[Cs yj . This

factorization is approximate in the sense that for the entropy

S r yð Þ½ �~
Xm

s~1

S r(ds)
s 6

j[Cs

yj

� 	� �
zSres Csf gs~1,...,m

h i
ð3Þ

the residual entropy Sres Csf gs~1,...,m

h i
is small.

Such approximate factorization, of course, neglects all inter-

cluster correlations. These can be pairwise correlations, and thus

are small vhð Þ by construction, or higher-order correlations. For

the latter we have to assume that they are also effectively

eliminated by our threshold criterion. This assumption is

supported by the observation that for the alkanes and for

dialanine, with h~0:025, Sdir&SFCA (cf. Fig. 1). Thus, our

factorization yields accurate entropies and Sres is indeed small.

Mutual Information Expansions for Oversized Clusters
However, for the larger molecules considered here, the

necessarily small threshold typically results in at least one cluster

being too large for a sufficiently accurate density estimate (e.g., for

the b-turn d1~108). Accordingly, while our factorization still

improves the entropy estimate (cf. Fig. 1), Sres cannot be neglected

anymore. The third building block of our method addresses this

issue by subdividing each oversized cluster into hs disjoint

subclusters D
(s)
i of sizes ds

1, . . . ,ds
hs
v15, Cs~

Shs

i~1 D
(s)
i , irrespec-

tive of the necessarily remaining strong correlations between these.

The residual entropy contributions to the configurational entropy

S r yð Þ½ �~
Xm

s~1

Xhs

a~1

S r(ds)
s 6

j[D
(s)
a

yj

0
@

1
A

2
4

3
5

z
Xm

s~1

Sres D(s)
a


 �
a~1,...,hs

h i
zSres Csf gs~1,...,m

h i

will be drastically increased due to non-neglegible intra-cluster

Table 1. Entropy estimates obtained for all systems.

System N STI Sdir SFCA SMIE2 SMIE3 clust SQH

Butane 4 185+0.29 187+0.11 187+0.36 160+0.24 197+0.34 5 211+0.18

Pentane 5 245+0.30 251+0.17 252+0.69 203+0.44 265+0.25 8 303+0.08

Hexane 6 307+0.68 319+0.21 323+0.40 244+0.55 383+1.15 11 395+0.17

Heptane 7 388+0.92 399+0.34 407+0.33 317+1.26 484+1.58 13 492+0.17

Octane 8 450+0.48 485+0.67 492+0.59 397+1.13 522+1.15 15 587+0.07

Nonane 9 502+0.46 577+0.88 589+1.8 515+0.95 544+0.88 19 682+0.14

Decane 10 564+0.75 670+1.10 683+1.3 571+1.57 685+0.88 21 778+0.13

Dialanine 15 524+1.1 566+0.4 610+2.2 359+2.67 653+2.23 32 707+2.1

b-turn 169 6246+119 10446+66 10002+42 7834+123 9018+174 84–108 10446+66

TBP cofactor 696 – – 22250+58 21543+152 21853+93 32–88 23226+88

TBP complex 696 – – 24918+229 24371+392 24514+500 56–80 25880+197

Alkane test systems butane to decane, dialanine, the 14-residue b-turn, as well as free and complexed TATA box binding protein (TBP) cofactor. STI : absolute
configurational entropy obtained by TI (in J/(mol K)); Sdir : direct density estimate without clustering; SFCA : sum of density estimates after subspace clustering; SMIE2

and SMIE3 : Mutual information expansion estimates of 2nd (MIE2) and 3rd order (MIE3); clust: size of largest cluster; SQH : QH entropy estimate.
doi:10.1371/journal.pone.0009179.t001
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contributions Sres D(s)
a


 �
a~1,...,hs

h i
from all subdivided clusters Cs,

where we have omitted the argument r in the rightmost two terms

for brevity. We here propose to compute each Sres D(s)
a


 �
a~1,...,hs

h i
via the mutual information expansion (MIE) as

Sres D(s)
a


 �
a~1,...,hs

h i
~{

X
avb

I
(ds

azds
b

)

2 ra,rb

� 

z

X
avbvc

I
(ds

azds
b
zds

c )

3 ra,rb,rc½ �{ . . . ({1)hsz1Ihs ½ra, . . . ,rhs
�,
ð4Þ

where ra:r(da)
6

j[D
(s)
a

yj

� 	
. Expanding the mutual information

terms

I
(
Pk

1
da)

k r1, . . . ,rhs

� 

~
Xk

a~1

({1)az1
X

i1v...via

S½ri1
, . . . ,ria

�, ð5Þ

up to second or third order, respectively, with the right-hand sum

running over all possible permutations fi1, . . . ,iag[f1, . . . ,kg, has

proven sufficiently accurate in liquid state theory [29] and infor-

mation theory [30,31]. Indeed, for the b-turn, inclusion of the

remaining correlations via this expansion improved the entropy

estimate (Fig. 1). For the other test systems Sdir&SFCA&SMIE3. In

contrast, for some of the test systems SMIE2vSTI, such that from

our observations, 3rd order MIE provides a better estimate and an

upper bound to the true entropy.

Applications of MIE to macro-molecular systems can be

hampered by the curse of dimensionality and combinatorial

explosion of the number of terms [32,33]. In this work, the

problem is circumvented by clustering into sufficiently high-

dimensional (*15) subspaces which minimizes residual inter-Da

correlations and delays the onset of the combinatorial explosion.

At the same time the subspaces are sufficiently small that even for

the 3rd-order MIE no direct density estimates beyond the critical

dimensionality of ds~45 are required.

TATA Box Binding Protein: Protein Test Case and Error
Estimate

Together, these three building blocks enable one to calculate

configurational entropies even for larger biomolecules. We

considered the 67-residue TATA box binding protein (TBP, pdb

code 1TBA) inhibitor in two different configurations; complexed

(Fig. 2 top left) and free (Fig. 2 top right). To estimate the statistical

error of MCSA and QH configurational entropy estimates, for

both states five independent molecular dynamics (MD) simulations

were carried out using the OPLS force-field [34] and the TIP4P

explicit solvent model [35] (see methods section for full simulation

details). Fig. 2 shows the results obtained by the five entropy

estimation methods for both complexed (left) and free (right)

inhibitor. All methods estimate the free cofactor’s entropy to be

significantly higher than that of the bound cofactor. As can be

seen, for both complexed and free cofactor, QH yields the largest

estimate. The first two MCSA modules combined (kernel density

estimation on little correlated configurational subspaces obtained

from FCA) already yield remarkably smaller estimates, irrespective

of whether a high or a low clustering threshold h was chosen (hi

thresh and low thresh in Fig. 2), i.e., chosing small but higher

correlated subspaces or larger but lowly correlated subspaces

provides similar estimates. Finally, employing all the three MCSA

modules including MIE of 2nd (MIE2) and 3rd (MIE3) lowered

the estimate again with, as before, the 2nd-order estimate being

lower than the 3rd-order estimate.

The fact that the QH estimate is the largest in all cases

corroborates the observations for the small test cases, and

generally shows that MCSA yields improved estimates also for

large macromolecules. Already the first two MCSA modules

provide lower entropy estimates, even though relatively large

configurational subspaces (ds~35 . . . 88, see Table 1) were

obtained from FCA, which illustrates that indeed our kernel

density estimator works accurately also for the complex high-

dimensional configurational spaces spanned by proteins. Further,

the fact that the clustering threshold did not affect the final

estimate very much naturally reflects the fact that clustering with a

high threshold yields small subspaces Cs which are correlated,

such that Sres Csf gs~1,...,m

h i
in Eq. 3 is large, increasing our

estimate S r yð Þ½ �. On the other hand, clustering with a small

threshold gives rise to a small Sres Csf gs~1,...,m

h i
but sparse

sampling due to large ds then entails higher S r(ds)
s 6j[Cs

yj

� �� 

,

such that S r yð Þ½ � is also increased in this case. As expected, the

third MCSA module, MIE, circumvents this problem and lowers

the MCSA estimate further by 404 or 397 J=(molK) for the free

and the complexed cofactor, respectively. The 2nd-order estimate

is lower than the 3rd-order estimate in all cases, which shows that

also for proteins the pair correlations are generally overestimated,

and inclusion of 3rd-order correlations is indeed crucial.

The statistical errors are relatively small in all cases, but

generally twice as large for the free than for the complexed

cofactor. We attribute this observation to the larger inherent

flexibility of the free state, and hence to insufficient molecular

dynamics sampling. Consequently, the MIE error for the free

cofactor is over three times larger than that of the the complex.

Interestingly, the MIE estimate is slightly more affected with the

error for the free cofactor being three- to fourfold as high as for the

complex. Due to the high number of terms to be evaluated for the

MIEs (Eq. 5), already small errors of each S½ri1
, . . . ,ria

� result in

relatively large errors in Sres D(s)
a


 �
a~1,...,hs

h i
.

Discussion

We have developed a minimally coupled subspace approach

(MCSA) to estimate absolute macromolecular configurational

entropies from structure ensembles which takes anharmonicities

and higher-order correlations into account. The approach

combines three building blocks which together allow one to

calculate absolute entropies even for the highly complex

configurational densities generated by the dynamics of biological

macromolecules such as proteins. MCSA shares the versatility of

the quasi-harmonic approach as it can be applied to unperturbed

equilibrium trajectories while achieving the accuracy of special-

purpose perturbation type methods. The effective dimension

reduction provided by the Full Correlation Analysis allows for the

application of mutual information expansions to large macromol-

ecules. Further, the adaptive kernel non-parametric density

estimation method developed for MCSA requires much weaker

a-priori assumptions about the properties of the configurational

densities than (quasi-)harmonic approaches. The method is

applicable also to large macromolecules such as proteins. In this

study, we showed that MCSA applied to the TATA box binding

protein yielded significantly smaller and thus improved entropy

estimates.

We note that here we focus at configurational entropies of the

solute only, thus missing both the solvent as well as the solvent/

Minimally Coupled Subspaces
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solute parts. Using permutation reduction techniques [36], our

method should be capable of capturing also these important

contributions, which however lies outside the scope of the present

work.

Methods

Thermodynamic Integration Reference Entropy
Absolute free energies for the test systems butane to decane,

dialanine, and the ProteinG b-turn were calculated by thermody-

namic integration (TI). Simulation parameters cf. below. The TI

scheme we have chosen to obtain the Helmholtz free energy A of

the fully interacting particles consists of two phases. Harmonic

position restraints with a force constant k~25000 kJ=(mol nm2)
were slowly switched on for each atom in the first phase, and in the

second phase all force-field components were gradually switched

off. Within the second phase, the charges were switched off prior

to the rest of the force field. After the second phase, the system

consisted of non-interacting dummy particles with mass m
oscillating in their respective harmonic position restraint poten-

tials, i.e.,

V~
1

2
k
XN

j~1

(x{xj)
2 :

The free energy of this harmonic system can be obtained

analytically,

A0~{b{1 3

2

XN

j~1

ln
1

2b2kj

 !" #

where kj~~kkj=mj denotes the mass-weighted force constant.

Hence, the thermodynamic integration yields the absolute free

energy

A~A0{DA2{DA1

and the entropy by S~(A{SVT)=T , where SVT denotes the

ensemble average of the potential energy.

For the TI between the systems given by Vs (start) and Vf (end),

21 intermediate steps Vi(l)~lVsz 1{lð ÞVf , i~1, . . . ,21 were

Figure 2. Entropy estimates for the TATA box binding protein (TBP) inhibitor in complex (left) and free (right). The following
techniques are used: quasi-harmonic approximation (QH); FCA with subsequent density estimation using a high clustering threshold h (hi thresh) or,
respectively, a low threshold (lo thresh); mutual information expansion of order 2 (MIE2) or, respectively, of order 3 (MIE3). The displayed entropy
estimates are averages over five independent simulations of 100 ns each, the error bars indicate standard deviations of the mean.
doi:10.1371/journal.pone.0009179.g002
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used, and the intermediate values of li~0, 1e-6, 5e-6, 1e-5, 5e-4,

1e-4, 1e-3, 1e-2, 2e-2, 3e-2, 5e-2, 7e-2, 9e-2, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1 were distributed unevenly to obtain

approximately balanced DAi values. For each value of l a

trajectory of 12:5 ns (alkanes and dialanine) or 125 ns (b-turn),

respectively, was generated.

The error estimates of the TI reference entropies detailed in

Table 1 were obtained via two ways for the alkane test systems and

dialanine. First, by averaging over five independent simulations

and, second, by performing blockwise averaging as derived in Ref.

[37] over each of the 23 Vi(l) of each of these five trajectories. We

found that the error estimates obtained by these two methods

agree very well. Accordingly, for the b-turn only the block

averaging method was applied and the resulting error estimates

are also given in Table 1.

Molecular/Stochastic Dynamics Simulations
The test systems that were compared with a thermodyna-

mic integration reference (butane to decane, dialanine, and the

ProteinG b-turn) were set up as follows. Force-field parameteri-

zations were obtained from the Dundee Prodrug server [38] based

on the GROMOS united-atom force field [39]. Stochastic

Dynamics simulations were performed using the molecular

simulations package GROMACS [40] in vacuo at 400 K with

friction constant c set to 10, dielectric constant e~1, integration

step size of 0:0005 ps and no bond constraints. Positional

restraints were applied to three adjacent terminal heavy atoms.

To obtain MCSA error estimates, each of the simulations was

carried out five times using different starting velocities. MCSA and

QH entropy estimates were obtained from trajectories of lengths

12:5 ns (alkanes and dialanine) or 125 ns (b-turn), respectively, i.e.

the TI entropy references required 23 times as much computing

time as MCSA and QH estimates.

The TATA box binding protein (TBP) complex (protein

database entry 1TBA) was simulated using the OPLS all atom

force field [34] in explicit TIP4P solvent [35] and periodic

boundary conditions. NpT ensembles were simulated, with the

protein and solvent coupled separately to a 300-K heat bath

(t~0:1 ps). [41] The systems were isotropically coupled to a

pressure bath at 1 bar (t~1:0 ps) [41]. Application of the Lincs

[42] and Settle [43] algorithms allowed for an integration time

step of 2 fs. Short-range electrostatics and Lennard–Jones

interactions were calculated within a cut-off of 1:0 nm, and the

neighbour list was updated every 10 steps. The particle mesh

Ewald (PME) method was used for the long-range electro-

static interactions [44], with a grid spacing of 0:12 nm. The

free cofactor was simulated using the same parameters as above.

The starting structure was obtained by removing the TBP from

the X-ray structure of the complex and equilibrating for 2 ns.

Entropy estimates and corresponding errors for both complexed

and free cofactor were obtained from five trajectories of 200 ns

length each.

Mutual Information Expansions Implementation Details
Fill modes. Due to the moderate regularization assumptions,

our adaptive kernel density estimator is sensitive to the sparse

sampling problem whose effect is highly dependent on the

dimensionality. To guarantee the same accuracy of all density

estimates required for the computation of the correlation terms In

of Eq. 5 despite different dimensionality it is, thus, necessary to

ensure the same local densities around points yi in different terms.

This is normally not provided. The mutual information between

two modes yi and yj ,

I2~

ð
i,j

r(yi,yj) ln
r(yi,yj)

r(yi)r(yj)
, ð6Þ

contains differently well sampled terms in denominator and

numerator, because the number of sampling points available to

estimate r(yi,yj) is only half the number of sampling points

available for estimating the marginal densities r(yi) and r(yj) (see

Fig. 3). The accuracy for the estimation of the marginal densities

is, consequently, possibly higher than the joint estimate yielding an

inaccurate correlation estimate. To overcome this problem, we

devised the concept of fill modes. Accordingly, artificially

decorrelated modes yi
0 : fy’i,1, . . . ,y’i,3Ng~permfyi,1, . . . ,yi,3Ng

are created by permuting its components yi,j , with 1ƒjƒ3N. The

marginal densities r(yi
0)~r(yi) and r(yi

0,yj)~r(yi)r(yj), yielding

a new expression for Eq. 6,

I2~

ð
i,j

r(yi,yj) ln
r(yi,yj)

r(yi
0,yj)

, ð7Þ

where the product of the marginal densities r(yi) and r(yj) is now

computed from the synthetically decorrelated joint distribution

r(yi
0,yj), such that the same accuracy for the joint estimate is

guaranteed as for the marginal estimates. Conducting this scheme

on the 3rd order correlation function of three modes yi, yj and yk,

I3~

ð
ivjvk

r(yi,yj ,yk) ln
r(yi,yj ,yk)

r(yi,yj)r(yi,yk)r(yj ,yk)

r(yi)r(yj)r(yk)

,

yields

I3~

ð
ivjvk

r(yi,yj ,yk) ln
r(yi,yj ,yk)

r(yi,yj ,yk
0)r(yi,yk,yj

0)r(yj ,yk,yi
0)

r(yi
0,yj
0,yk

0)2

, ð8Þ

where the pairwise joint distributions have been ‘filled up’

with permuted ‘fill modes’, as described above, e.g. r(yi,yj)~

r(yi,yj ,yk
0)=r(yk

0).

Consistent dimensions. The sensitivity of the nearest-

neigbour estimates, Eq. 2, towards the sparse sampling problem

also affects the different terms of Eq. 5, which inevitably suffer

from different sparse sampling problems if computed separately.

Furthermore, a huge number of probability density distributions

r(yi),r(yi,yj), . . . ,r(yi,yj , . . . ,yk) is computed more than once for

the many instances of identical correlation terms appearing in that

equation. Expanding over entropy terms rather than correlation

terms, in contrast, yields

S r y1, . . . ,ynð Þ½ �~
Xt

k~1

X
m1v:::vmk

qk,tS r y1, . . . ,ykð Þ½ �, ð9Þ

where the first summation runs over different orders k~1, . . . ,t

until truncation order tƒn. qk,t~
Pt

i~k ({1)izk n{k

i{k

� 	
designates how many times a certain order appears and whether

it needs to be added or subtracted, and the second sum over all

n

k

� 	
possible combinations fm1, . . . ,mkg[f1, . . . ,ng. To guaran-

tee the same estimation accuracy for all r y1, . . . ,ykð Þ of Eq. 9,

each term is filled up to truncation order t yielding
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r y1, . . . ,yk,ykz1
0, . . . ,yt

0ð Þ. Under this modification, Eq. 9 reads

S r y1, . . . ,ynð Þ½ �~q
0
1,t

X
m1,...,mt

S r y1
0, . . . ,yt

0ð Þ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
marginal entropies=f ill modes

z

Xt

k~2

X
m1v:::vmk

qk,tS r y1, . . . ,yk,ykz1
0, . . . ,yt

0ð Þ½ �,

ð10Þ

with the number of marginal entropies,

q
0
1,t~

Xt

i~1

({1)iz1 n{1

i{1

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
normal first-order indexing

{
Xt{1

i~2

q
0
t

n

i

� 	
n{i

t{i

� 	
t{ið Þ

n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fill modes

,

which depends on the fill mode weighting index

q
0
t~
Xt

k~2

Xt

i~k

({1)izk n{k

i{k

� 	
,

where, like above, primes indicate permuted entries.
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