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Abstract

The avian retina possesses one of the most sophisticated cone photoreceptor systems among vertebrates. Birds have five
types of cones including four single cones, which support tetrachromatic color vision and a double cone, which is thought
to mediate achromatic motion perception. Despite this richness, very little is known about the spatial organization of avian
cones and its adaptive significance. Here we show that the five cone types of the chicken independently tile the retina as
highly ordered mosaics with a characteristic spacing between cones of the same type. Measures of topological order
indicate that double cones are more highly ordered than single cones, possibly reflecting their posited role in motion
detection. Although cones show spacing interactions that are cell type-specific, all cone types use the same density-
dependent yardstick to measure intercone distance. We propose a simple developmental model that can account for these
observations. We also show that a single parameter, the global regularity index, defines the regularity of all five cone
mosaics. Lastly, we demonstrate similar cone distributions in three additional avian species, suggesting that these
patterning principles are universal among birds. Since regular photoreceptor spacing is critical for uniform sampling of
visual space, the cone mosaics of the avian retina represent an elegant example of the emergence of adaptive global
patterning secondary to simple local interactions between individual photoreceptors. Our results indicate that the
evolutionary pressures that gave rise to the avian retina’s various adaptations for enhanced color discrimination also acted
to fine-tune its spatial sampling of color and luminance.
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Introduction

The chicken (Gallus gallus) is typical of most diurnal birds in

possessing seven photoreceptor cell types including one rod and six

cones (Figure 1A) [1]. Tetrachromatic color vision is mediated by

four types of single cone which are maximally responsive to violet,

blue, green and red light [2]. Double cones, in contrast, consist of

pairs of closely apposed principal and accessory members which

act as a single functional unit and are thought to mediate

luminance detection that is used for motion perception [3,4,5].

Placental mammals lack double cones and therefore use a single

set of cones for both functional purposes [6].

Prior studies have shown that most non-photoreceptor cell

types in the retina tile its surface with varying degrees of

regularity [7,8,9,10,11,12,13,14]. This tiling reflects the need for

similar, parallel processing of information across the retina [15].

Neuronal tiling is such a pervasive feature of retinas that it has

been used as a defining criterion for retinal cell types [16].

Studies have shown that neurons of the same type tend to avoid

each other, whereas no such avoidance is apparent between cells

of different type [13]. Regular tiling is such a reliable feature of

retinal cell type patterning that violation of tiling was recently

used to distinguish two types of bipolar cell in the mouse, which

were previously thought to represent a single cell type on account

of their sharing a specific molecular marker [16]. Considerations

of spatial regularity and tiling have even been used to argue that

all possible bipolar cell types have now been identified in the

mouse [16].

Photoreceptors display the most regular tiling of all neuronal

cell types. Many teleost fish and some reptiles have almost

perfectly regular ‘crystalline’ arrays of photoreceptors which occur

in a variety of patterns [17,18,19,20,21,22,23]. The photoreceptor

mosaic of zebrafish is probably the best studied example of such

‘crystalline’ arrays [21,23,24]. In this species, cone photoreceptors

are arranged in parallel rows such that one row contains

alternating pairs of red and green cones which form ‘double

cones’ while the next row contains alternating blue and ultraviolet

cones [21]. Adjacent rows of photoreceptors are arrayed such that

blue cones are always adjacent to red cones and ultraviolet cones

are always flanked by green cones [21]. This patterning between

rows lends the zebrafish photoreceptor mosaic an appearance of

almost crystalline regularity when viewed en face. Quantitative

studies of the spatial regularity of the zebrafish and goldfish cone

mosaics have been performed and have demonstrated a high

degree of regularity which accords with the near crystalline

appearance of these mosaics [21,25].
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Amongst vertebrate retinas such crystalline regularity of

photoreceptors is the exception rather than the rule. The most

detailed studies of mammalian photoreceptor spatial distribution

to date have been performed on human and ground squirrel

retinas [26,27]. Studies in these species have demonstrated varying

degrees of spatial regularity for both rods and cones. As with inner

retinal cell types, photoreceptors of like type avoid the spatial

vicinity of other cells of the same type but are indifferent to the

presence of photoreceptors of another type. It is possible to

computationally model the spatial distribution of photoreceptor

mosaics by invoking simple ‘minimal spacing’ rules such that no

two cells can occur within a certain defined distance of one

another [26,28]. Thus, it appears that the global regularity of

photoreceptor mosaics arises due to local, homotypic interactions

between individual cells. Since regular spatial sampling is critical

for optimal neural reconstruction of the visual scene [29], this

emergent order across the retina has clear adaptive significance.

Mounting evidence suggests that the common ancestor of

modern reptiles, birds and mammals was a diurnal organism with

a highly sophisticated cone visual system comparable to that of

present-day birds [30,31]. This amniote ancestor is likely to have

possessed four single cones mediating tetrachromatic color vision

as well as double cones for motion detection. In addition, the cones

of this common ancestor are likely to have contained brightly

Figure 1. Oil droplets permit classification of chicken cone photoreceptors. (A) Diagram of the seven photoreceptor cell types of the
chicken retina. Oil droplets are colored approximately according to their appearance under brightfield illumination. Rods and the accessory member
of double cones lack oil droplets. A hematoxylin and eosin-stained section of an adult chicken retina is shown on the right. The drawing are based on
depictions of avian rods and cones by Ramón y Cajal [73]. RPE, retinal pigment epithelium; ONL, outer nuclear layer; INL, inner nuclear layer; GCL,
ganglion cell layer. (B) Brightfield view of a flatmounted P15 chicken retina viewed photoreceptor side up. Size bar = 10 mm. (C–E) Same field as in (B)
viewed under ultraviolet (327 nm) light (in C), blue (460–490 nm) light (in D) and green (520–550 nm) light (in E). Only blue cones show fluorescence
under ultraviolet light, and this fluorescence is short-lived. Both green cones and double cones fluoresce under blue light. Only red cones fluoresce
under green light. (F) Table summarizing the appearance of chicken oil droplets under brightfield and fluorescent light. (G) Digitized versions of the
field shown in (B). Colored dots correspond to their respective single cone types. Black dots represent double cones.
doi:10.1371/journal.pone.0008992.g001

Bird Cones Tile the Retina

PLoS ONE | www.plosone.org 2 February 2010 | Volume 5 | Issue 2 | e8992



colored oil droplets in their inner segments which are widespread

amongst modern birds and reptiles [1,30,31,32]. These oil droplets

reside at the junction between the inner and outer segments and

are thought to act as microlenses and long-pass spectral filters,

focusing incoming light onto the photosensitive outer segment and

improving color discrimination [32,33,34]. The presence of such

adaptations in both modern birds and reptiles supports the

hypothesis that the common amniote ancestor was a diurnal

organism with a highly developed cone system [31].

During the evolution of placental mammals, many of these

specialized adaptations to a strongly diurnal niche were lost [35].

The majority of placental mammals possess only two types of

cones, sensitive to short- and long-wavelength light [35,36]. In

addition, placental mammals lack double cones and oil droplets

[30]. The loss of multiple components of the cone visual system in

these animals is thought to have occurred during a long period of

nocturnality in mammalian evolution [35]. The presence of both

rudimentary double cones and colorless oil droplets in marsupials

and monotremes support the notion that the common mammalian

ancestor did at one time possess such adaptations which were

subsequently lost [30,37,38]. Only three clades of placental

mammals have re-evolved cone-dominant retinas adapted to a

diurnal niche: ground squirrels, tree shrews and primates (the

lattermost showing cone dominance only within the fovea) [30].

Of these three groups, only primates have additionally evolved

trichromatic color vision via duplication of the ancestral long-

wavelength sensitive opsin, an event which occurred only 25 to 30

million years ago [39]. No placental mammal has successfully

reacquired oil droplets [30]. Thus, despite the evolution of a

variety of adaptations to the diurnal niche within these three

clades, the retinas of placental mammals do not reflect the

condition of the cone visual system thought to have been present in

the common ancestor of amniotes.

Unlike the case of mammals, a diurnal lifestyle is presumed to

have been maintained throughout the evolutionary history of birds

from the common amniote ancestor [30,31]. Thus, studies of avian

cones may provide clues to the organization of the cone system of

ancestral species including the most recent ancestors of birds, the

theropod dinosaurs. Given the remarkable adaptations of the

avian cone system for improved color discrimination, we

hypothesized that the distribution of cones might be similarly

optimized for spatial sampling of color and luminance. Here we

show that avian cones constitute five independent but overlapping

mosaics with a high degree of spatial regularity. The features of

cone patterning found in the chicken are shared by a wide range of

avian species suggesting that they are universal amongst birds.

These results support the hypothesis that evolutionary fine-tuning

of the cone system in birds extends to the level of spatial

patterning.

Results

Avian Cone Types Can Be Distinguished by the Properties
of Their Oil Droplets

In order to identify individual cone photoreceptors in the

chicken retina, we took advantage of the presence of brightly

colored oil droplets in their inner segments (Figure 1A,B). With

the exception of those in violet cones, all cone oil droplet types

contain a mixture of carotenoid pigments which endow the oil

droplets with characteristic brightfield appearance and fluores-

cent properties (Figure 1B–F) [1,40]. These features are identical

in all cones of a given type and thus permit unequivocal

classification of individual cones. Using this approach, we were

able to determine the spatial coordinates of all individual cones

and analyze their numbers and spatial distributions (Figure 1G

and Table S1).

We examined a total of 28 post-hatch day 15 (P15) chicken

retinas including seven mid-peripheral retinal fields from each of

four quadrants (Figure 2A). We found that the five cone types are

present in characteristic ratios as previously described (Figure 2B)

[2]. In the retina as a whole double cones were the most abundant

cone type (40.7%) followed by green (21.1%), red (17.1%), blue

(12.6%) and violet (8.5%) single cones. Double cones were more

abundant ventrally than dorsally, while blue and violet cones

showed the converse pattern (Figure 2B). The density of all cone

types decreased with increasing retinal eccentricity (data not

shown), but the relative ratio of different cone types was nearly

constant within a given quadrant.

Individual Cone Types Tile the Retina as Highly Regular
Mosaics

When a field of retinal oil droplets is viewed as a whole, there is

little apparent order. However, when cone types are considered

individually, they show a highly regular distribution with a

relatively uniform distance between neighboring cones (Figure 3A).

In order to evaluate this regularity systematically, we created

spatial autocorrelograms for each of the cone types (Figure 3B and

Figure S1) [26]. In this analysis, each cone in a field is placed at the

origin of a coordinate system and all other cones are replotted

relative to that point. This process is then repeated for all cones in

the field. The resultant graph for double cones shows a circular

region immediately surrounding the origin which is virtually

devoid of points (Figure 3B). This finding indicates the presence of

an ‘exclusion zone’ around individual cones of a given type within

Figure 2. Cone photoreceptor types are present in characteristic ratios. (A) Diagram of a chicken eye cup showing the regions of the mid-
peripheral retina (in light blue) from which all fields analyzed in this study were derived. (B) Percentages of cone types from each of four quadrants
(n = 7 fields for each quadrant). Data for violet, blue, green and red cones are colored accordingly. Data for double cones are shown in black. Error
bars indicate SD.
doi:10.1371/journal.pone.0008992.g002
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which cones of the same type are only rarely encountered. Similar

exclusions zones are present around each of the single cone types

as well (Figure S1).

Progressing farther out from the origin of the autocorrelogram

there occur alternating shells of increasing and decreasing cone

density which can be better appreciated by graphing the data as a

density recovery profile (DRP; Figure 3C) [41]. The DRP depicts

the spatial density of cones at progressively greater distances from

the origin of the autocorrelogram. It shows a region of very low

cone density in the immediate vicinity of the origin followed by a

series of density peaks at progressively greater distances from it

(Figure 3C). Each successive ‘shell’ beyond the first represents the

nearest neighbors of individual cones progressively more

removed from the primary cone at the origin (Figure 3C). The

presence of these successive shells is indicative of long-range

order within the double cone mosaic that extends beyond the

nearest neighbors of a given photoreceptor. Such long-range

order is also evident in the single cone mosaics but to a lesser

extent (Figure S1).

The distances of all the nearest neighbors of a given cone

type follow an approximately Gaussian distribution (Figure 3D).

Within a given field, the mean nearest neighbor distance is

different for each cone type, and there is a strong correlation

between the mean nearest neighbor distance and the width of

the distribution around the mean (r = 0.94) (Figure 3D). These

data indicate that homotypic cone spacing does not involve an

absolute ‘exclusion radius’ within which cones of the same type

never occur. Rather, there is a preferred distance at which

cones of the same type position themselves relative to one

another.

Figure 3. Cone photoreceptors tile the retina as five overlapping mosaics. (A) Digitized image of double cone distribution in a portion of
a single field (dorsal-nasal field 7 in Table S1). Size bar = 10 mm. (B) Spatial autocorrelogram for entire field of double cones of which a portion is
shown in (A). The circle around the origin indicates the diameter of an average double cone oil droplet. (C) Density recovery profile derived from
the spatial autocorrelogram in (B). The peaks designated ‘‘1st shell’’ etc. are explained in the main text. The vertical orange line indicates the
average diameter of a double cone oil droplet. (D) Distribution of nearest neighbor distances for each of the five cone types within a single retinal
field (dorsal-nasal field 7 in Table S1). The vertical orange line indicates the average diameter of the oil droplet corresponding to each of the
indicated cone types.
doi:10.1371/journal.pone.0008992.g003
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Cone Mosaics Display a High Degree of Topological Order
One way of assessing topological order in a two-dimensional

(2D) distribution of points is to use Voronoi tessellations [42]. In

this kind of tiling, all points in the plane are partitioned into

Voronoi domains which represent all those points in the plane that

are closer to a particular cell than to any other cell. We have

created Voronoi tessellations for all of our cone photoreceptor

distributions in order to derive quantitative measures of their

topological order (Figure 4A–C and data not shown). It can be

seen in a typical field that red cones tile the plane in a highly

regular fashion which has a degree of orderliness between that of a

random distribution of equal density and a perfect hexagonal

array of the same density (Figure 4A–C). For comparison with the

cone distributions, we created Voronoi tessellations for one

Figure 4. Cone mosaics show a high degree of topological order. (A–C) Voronoi tessellations of a portion of a red cone field (B) and a random
(A) and perfect (C) distribution of points of the same density as in (B). (D) Graph showing the average Pn distributions for all chicken cone types as
well as simulated random and perfect distributions. ‘Epithelia’ indicates the average Pn distribution for five different animal and plant epithelia as
given in [Ref. 38]. Note that the Pn distribution for the random simulations included a small number of 11-, 12- and 13-sided cells which are not
shown. Error bars are SD. (E) Graph showing the topological disorder (m2) for all five cone types as well as random and perfect distributions. ‘Epithelia’
are as described in (D). Error bars are SD. (F) Graph of P6 vs. topological disorder (m2) for all 140 P15 cone mosaics examined. The solid curve indicates
the value of Lemaı̂tre’s law (equation shown in the graph) in the range, 0.34,P6,0.66.
doi:10.1371/journal.pone.0008992.g004
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hundred random distributions of points and calculated the fraction

of polygons of each type that were observed (Figure 4D). The

highest fraction of polygons were hexagons (P6 = 0.29360.018

[mean 6 SD]), but there was a wide distribution of sizes ranging

from 3-sided up to 13-sided. As the degree of order in a Voronoi

tiling increases, there is a corresponding increase in P6 and a

decrease in the width of the polygon distribution. In the limiting

case of a perfectly regular tiling, P6 = 1 (Figure 4D).

We found that Voronoi tilings of the four single cones all

showed very similar polygon distributions with P6 ranging from

0.45460.019 (mean 6 SD) for green cones up to 0.49460.031

(mean 6 SD) for blue cones (Figure 3D). Strikingly, a wide range

of post-mitotic animal and plant epithelia show polygon

distributions very similar to those observed here for chicken single

cones (Figure 4D) [43,44]. The mean P6 value for epithelia from

five different species was 0.46060.020 (mean 6 SD) [44]. It has

been suggested that epithelia from diverse species converge on this

particular polygon distribution as a topological consequence of the

cell division process [43]. It is therefore intriguing that the Voronoi

tilings of all four single cone types match this distribution so

closely, since these tilings are only notional epithelia and the

constituent cells used to generate them are not spatially

contiguous. It is possible that the degree of order observed in

the individual single cone mosaics reflects the orderliness of the

underlying epithelium of which they are a part. However, double

cones were found to have a polygon distribution quite different

from single cones with P6 = 0.57060.034 (mean 6 SD)

(Figure 4D). This finding demonstrates a higher degree of

topological order in double cones than single cones and suggests

that the orderliness of a given cone type is not a necessary

consequence of the degree of order in the underlying epithelium.

An alternative measure of topological regularity is the variance

of the probability distribution Pn of the number n of sides of a given

cell [45,46,47]:

m2~
X?

n~3

n{6ð Þ2Pn ð1Þ

Whereas P6 serves as a measure of order, m2 is a measure of the

spread of the polygon distribution and is therefore a measure of

topological disorder. We found that the four single cone types have

similar m2 values ranging from 0.63460.060 (mean 6 SD) for blue

cones up to 0.73460.046 (mean 6 SD) for green cones (Figure 4E).

The single cone values are again comparable to that found for

multiple epithelia 0.76060.086 (mean 6 SD). In contrast, double

cones showed a degree of disorder significantly less than single

cones 0.49460.063 (mean 6 SD). Thus, two different measures of

topological orderliness demonstrate a high degree of order in all

cone types, with double cones showing a higher degree of order

than single cones. The two functional classes of cones in the

chicken retina, single cones which subserve color vision and

double cones which mediate motion perception, therefore form

two distinct classes with respect to topological order.

Next, we studied the relationship between P6 and m2 in the

chicken cone mosaics. It has been shown that a wide range of 2D

cellular mosaics found in nature including examples from

metallurgy, geology and ecology as well as mosaics obtained from

experimental and computational simulations all obey a quasi-

universal topological relation between P6 and m2 known as

Lemaı̂tre’s law [48,49,50]. In the range, 0.34,P6,0.66, this law

takes the form:

m2~ 2pP2
6

� �{1 ð2Þ

In order to assess whether the chicken’s cone mosaics also obey

this law, we plotted P6 versus m2 (Figure 4F). Those mosaics that

had P6.,0.47 showed m2 values which were in close agreement

with Lemaı̂tre’s law (Figure 4F and Figure S2). In contrast,

mosaics with a P6,,0.47 tended to have a value for m2 which was

less than would be predicted by the law. The near universality of

this law is thought to be a consequence of the fact that all mosaics

which obey it are statistical ensembles in equilibrium [50]. The

deviation of some cone mosaics from this law at lower P6 values

therefore suggests that these mosaics may not be in statistical

equilibrium. Alternatively, there may be unknown biological

constraints which contribute to this deviation.

Individual Cone Mosaics Are Spatially Independent of
One Another

Given the homotypic spacing observed between cones of the

same type, we wished to determine whether similar spacing occurs

between cones of different type. We evaluated whether there was

any tendency for heterotypic pairs of photoreceptors to repel one

another by measuring the effective radius of exclusion (ERE)

around individual photoreceptors (Figure 5A). The ERE is a

measure of the zone around individual photoreceptors within

Figure 5. Cone mosaics are spatially independent. (A) Graph of
the effective radius between cones of the same type (homotypic pairs)
and different types (heterotypic pairs). Also shown for comparison is the
average oil droplet diameter for all cone types. ‘D-D’, ‘Double cone-
Double cone’; ‘G-G’, ‘Green cone-Green cone’ etc. Error bars are SD. (B)
Graph of the nearest neighbor regularity indices for cones of the same
type (homotypic pairs) and different types (heterotypic pairs) (blue
bars). Also shown are regularity indices for simulated mosaics as
described in the main text (red bars). Abbreviations are as in (A). Error
bars are SD.
doi:10.1371/journal.pone.0008992.g005
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which there is a deficiency of other photoreceptors [11,41]. If

heterotypic pairs of photoreceptors have no tendency to repel one

another one would expect that their proximity should only be

limited by the size of the individual cells. In such a case, one would

expect that the ERE should be roughly equal to one cell diameter,

since when two cells directly abut one another their centers are

one cell diameter apart. The ERE for all homotypic pairs of cones

was significantly greater than one cell diameter and correlated

closely with that cell type’s average nearest neighbor distance

(Figure 5A; compare Figure 6A). In contrast, the ERE for all

heterotypic pairs was comparable in size to the average diameter

of an oil droplet which we used as a surrogate measure of

photoreceptor diameter (Figure 5A; also see Figure 1A). These

data suggest that heterotypic pairs of cones do not repel one

another, and that their proximity is only limited by the size of their

cell bodies.

In order to further explore the possibility of spatial co-

regularities between cone mosaics we employed a commonly used

measure of geometric order within cellular mosaics known as the

regularity index (RI). The RI is equal to the average nearest

neighbor distance divided by its standard deviation [10,26]. Before

evaluating the RI for heterotypic pairs of cones, we determined the

RI for the five homotypic cone mosaics. We found that red, green

and blue single cones and double cones all had very similar RIs

ranging from ,7.5 to 7.8 (Figure 5B). Violet cones had a slightly

lower mean regularity index of ,6.4. For comparison, a prior

study of the rod and S-cone mosaics of the ground squirrel retina

found mean RIs of 2.8 and 4.5, respectively [26]. In addition,

studies of retinal ganglion cell mosaics have found RIs ranging

from ,3.0 to ,6.5 [7,9,11]. The chicken cone photoreceptor

mosaics therefore appear to be more regular than most other

previously characterized mosaics of retinal neurons.

Next, we determined the RI for all possible heterotypic (X-Y)

pairs of cone by identifying the nearest ‘Y’ neighbor of every ‘X’

cone and then calculating the mean and standard deviation

(Figure 5B). We found that the RIs for all heterotypic pairs were

significantly less than for homotypic pairs and fell between ,2.9

and 3.7. Although lower than the values found for homotypic

pairs, these RIs are still larger than what would be expected for a

totally random distribution of points (,1.9). This discrepancy can

be accounted for by two possible factors. First, since real

photoreceptors occupy space, their possible locations are con-

strained by the fact that two photoreceptor cannot lie on top of

each other. This constraint will therefore limit the possible

distribution of individual photoreceptors and thereby increase

their regularity. Secondly, since both the ‘X’ and ‘Y’ photorecep-

tor mosaics are highly ordered, apparent co-regularities might

occur simply due to the fact that the two ordered mosaics happen

to fall in register with each other.

In order to control for the effects of steric hindrance and

spurious co-regularity due to random spatial registration of

mosaics, we carried out computer simulations to assess their

effects. We generated random distributions of photoreceptor ‘Y’

that matched the density and mean regularity index of the real ‘Y’

mosaics using a sequential addition, ‘hard disk’ model (see

Materials & Methods for details) [26,51,52]. We then calculated

the RI for the heterotypic pairs X-Y by using the coordinates of

the real ‘X’ cells and comparing them to the simulated ‘Y’ mosaics.

This simulation was carried out one hundred times for all possible

heterotypic pairs, and the mean and standard deviation of the

resultant RIs were determined (Figure 5B). These simulations

produced RIs which were comparable to what was found for the

real X-Y pairs but with somewhat lower mean values (red bars in

Figure 5B). This result suggests that the RIs we found for the real

heterotypic pairs reflect the degree of co-regularity to be expected

between two independent, but highly ordered mosaics [14]. We

therefore conclude that if any higher-order spatial correlations

exist between cone types, they are likely to be quite subtle. The

spatial independence of the individual cone types accords well with

what has been previously reported for a range of different retinal

cell types [13,14,16].

All Cone Types Use the Same Yardstick for Measuring
Intercone Distance

In order to obtain further insights into the mechanism of cone

spacing, we plotted the average nearest neighbor distance between

cones of the same type as a function of photoreceptor density. We

found that average nearest neighbor distance decreases as a

function of increasing density (Figure 6A). Figure 6A shows 140

distinct datapoints (five photoreceptor types x 28 fields) which vary

Figure 6. All cone types measure intercone distance with the
same yardstick. (A) Graph of photoreceptor density vs. average
nearest neighbor distance for all 140 P15 cone mosaics examined
(middle curve). The upper and lower curves are graphs of density vs.
average nearest neighbor distance for a series of computer-generated
perfect and random distributions, respectively. The inset shows data for
the three developmental timepoints (i.e., red cones at E18, P0 and P6). It
corresponds to the region of the main graph highlighted with a dotted
box except that all P15 chicken datapoints shown in the main graph are
shown in black to facilitate visualization of the developmental
timepoints. (B) Graph of the same datapoints as in (A) but shown as
density vs. the inverse-square of the average nearest neighbor distance.
The linear correlation coefficients (r) for the best fit line for each of the
three datasets are shown.
doi:10.1371/journal.pone.0008992.g006

Bird Cones Tile the Retina

PLoS ONE | www.plosone.org 7 February 2010 | Volume 5 | Issue 2 | e8992



over a greater than ten-fold range of densities. Individual

photoreceptor types show a range of densities on account of the

fact that sample fields derive from various retinal eccentricities and

quadrants. For comparison with the real data, we also plotted data

from computer-generated random and perfect distributions of

varying density (Figure 6A). Both the perfect and the random

distributions follow curves which are very similar in shape to that

of the real data but which are shifted up and down, respectively,

along the Y-axis. Thus the curve describing the chicken’s cone

photoreceptors mosaics resides at an intermediate position

between those for random and perfect distributions. The position

of this curve can therefore be used to quantify the degree of

geometric order in the mosaics. We will return to this point below.

First, it should be noted that data from all five cone photoreceptor

types appear to fall on the same curve (Figure 6A). Thus, at any

given density, the average nearest neighbor distance is indepen-

dent of photoreceptor type. This observation contrasts with the

earlier conclusion that all five photoreceptor types are spatially

independent and are therefore likely to have distinct molecular

mechanisms of homotypic spacing. Instead, it suggests that they

share a common mechanism, at least with respect to determining

the magnitude of the spacing between cells.

In order to assess at what point in development the orderliness

of the cone mosaics first appears, we determined the spatial

coordinates of red cones at three earlier developmental timepoints:

embryonic day 18 (E18) and post-hatch days 0 and 6 (Table S1).

We then plotted density versus average nearest neighbor distance.

We found that at all timepoints examined, the data fall on the

same curve as the data from P15 (inset in Figure 6A). Since oil

droplet pigmentation first becomes apparent in the peripheral

retina around E16–17 and full pigmentation of all the red cones

first appears somewhat later [53], E18 was the earliest point at

which we could reliably distinguish all cones of this type. We

therefore conclude that, at least for red cones, the adult pattern of

spatial organization is already achieved at the earliest point at

which oil droplets can be distinguished.

A Single Parameter Defines the Regularity of All Five
Cone Mosaics

In order to quantify the degree of geometric order inherent in

the cone photoreceptor mosaics, we next plotted density versus the

inverse-square of the average nearest neighbor distance. It can be

seen that all of the real datapoints as well as the simulated random

and perfect distributions fall on three straight lines with different

slopes (Figure 6B). If extended to the Y-axis, all three lines can be

seen to pass through the origin since as density R 0, average

nearest neighbor distance R ‘ (Figure 6B). Because all three lines

are of the form, y = mx, the slope, m, can be used as a measure of

the degree of order within the cone mosaics as a whole. Thus,

remarkably, it is possible to reduce the spatial organization of all

five cone photoreceptor mosaics to a single quantitative measure of

geometric order.

Similar Mechanisms of Cone Spacing Are Used by a Wide
Range of Bird Species

Next, we wished to determine the generality of the relationship

between density and average nearest neighbor distance amongst

birds. We therefore examined the spatial distribution of a subset of

cones from three additional species belonging to three different

orders: downy woodpecker (Picoides pubescens), house sparrow (Passer

domesticus) and pigeon (Columba livia) (Table S1). We found that

these three bird species show a relationship between density and

average nearest neighbor distance very similar to that of the

chicken (Figure 7A and Figure S3). In order to assess the degree of

order within the cone mosaics of these species we replotted the

data from each as density versus the inverse-square of the average

nearest neighbor distance (Figure S3). We then fit each dataset

with a straight line of the form, y = mx, in order to estimate the

degree of geometric order within their cone mosaics and compare

the values to that of chicken. To simplify comparison between

species we derived a global regularity index which is the inverse of

the slope, m, normalized to the value of a perfect hexagonal array

set equal to one. The photoreceptor mosaics of P. pubescens, P.

domesticus and C. livia have global regularity indices of 0.45, 0.46

and 0.50, respectively, compared to the chicken which has 0.57

(Figure 7B). The chicken mosaic therefore appears to be somewhat

more orderly overall than those of the other species. Yet, given the

relatively small number of datapoints for the other species, these

values must be considered tentative. Nevertheless, since the cone

mosaics from four species representing four orders of bird show

such similar geometric features and spatial organization, it is likely

that they share similar mechanisms of cone spacing which may be

representative of all diurnal bird retinas.

Figure 7. A range of bird species show similar cone patterning.
(A) Graph of photoreceptor density vs. average nearest neighbor
distance for three additional species of bird representing three different
orders. All P15 chicken datapoints are shown in black for clarity. P.
pubescens, Picoides pubescens; P. domesticus, Passer domesticus; C. livia,
Columba livia. (B) Graph of the global regularity indices for all four bird
species examined as well as for computer-generated random and
perfect distributions. The global regularity index is the inverse of the
slope of the best fit linear curves of the form, y = mx, for each of the
datasets as shown in Figure S3. All values are normalized to that for
perfect which is set equal to one.
doi:10.1371/journal.pone.0008992.g007
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Discussion

In this study we have used the colored oil droplets present in the

inner segment of cone photoreceptors to characterize the spatial

distribution of the chicken’s five functional classes of cone. We

found that each type of cone is arrayed as a highly regular mosaic

with a characteristic spacing between cones of the same type. All

five cone mosaics display a high degree of topological and

geometric order but are spatially independent of one another.

Remarkably, all cone types use a similar density-dependent

yardstick to measure intercone spacing. Based on the relationship

between density and nearest neighbor distance, we derived a single

parameter that uniquely characterizes the regularity of all the cone

mosaics within the retina. The value of this parameter was

determined for three additional species of bird, which were found

to have cone spatial patterning which was fundamentally similar to

that of the chicken. This result suggests that the principles of cone

spacing identified in the chicken may be universal among diurnal

birds. These results confirm that avian cone photoreceptor have

an extremely high degree of spatial organization which is likely the

result of evolutionary selection.

In evaluating the spatial distribution of chicken cones, we found

that as photoreceptor density decreases, the average nearest

neighbor distance between cones of the same type increases. The

net result of this scaling is that photoreceptors maintain a relative

uniform degree of spatial regularity despite changes in density. A

similar scaling relationship between density and average nearest

neighbor distance was previously found for a type of ganglion cell

in the chicken [11]. In contrast, another study in the ground

squirrel found that rods and S-cones maintain a ‘minimal distance’

between cells of the same type which is constant throughout the

retina, independent of cell density and specific to each cell type

[26]. Thus, at a given density, the S-cone mosaic in the ground

squirrel is more regular than the rod mosaic since it maintains a

greater ‘minimal distance’ between neighbors of the same type.

One consequence of this lack of scaling is that the regularity of the

ground squirrel’s rod mosaic decreases with decreasing rod density

[26]. These findings suggest that the scaling relationship between

photoreceptor density and the average nearest neighbor distance

we observed in the chicken retina is not a feature of all

photoreceptor mosaics. Furthermore, it is clear that even within

a single retina, not all photoreceptor types necessarily measure

intercone distance in the same manner. One possible explanation

of this result is that rods and cones may differ in their mechanisms

of spacing. Since chicken rods lack oil droplets, their spatial

distribution was not analyzed in the present work, and so this

question could not be addressed. Yet, prior studies in chicken

suggest that rod density is roughly equal to that of double cones in

the peripheral retina and that they are highly regular in their

distribution [54,55]. Future studies will address whether chicken

rods obey the same rules as cones with respect to homotypic

spacing.

The degree of order within two-dimensional cellular mosaics

can be characterized by the distribution of values for the area of

individual cells within the mosaic (geometric order) or by the

distribution of values for n, the number of neighbors each cell has

(topological order) [45,56]. Measures of topological and geometric

order are often found to be strongly correlated in a wide variety of

organic and inorganic 2D cellular mosaics [56]. Nevertheless, the

two measures of order are mathematically independent and do not

necessarily correlate [56,57,58]. We found that all four single cone

types in the chicken have a similar degree of topological order as

defined by their Pn functions (see Figure 4D). In contrast, double

cones showed a distinctively higher degree of topological order

than single cones. One measure of geometric order, the nearest

neighbor regularity index, showed similar values for double and

single cones (Figure 5B and data not shown). Thus, in the case of

double cones, there appears to be a dissociation between the two

types of order. The reason for the seemingly disproportionate

degree of topological order found in the double cone mosaics of

the chicken is currently unknown. However, given the putative

role of double cones in luminance detection and motion

perception [6], this high degree of order could represent an

evolutionary adaptation for these functions.

A wide range of post-mitotic animal and plant epithelia show

very similar Pn functions and hence display similar degrees of

topological order [43,44]. The presence of a similar Pn function in

such a wide range of epithelia has been posited to arise as a

topological consequence of mitosis [43]. Surprisingly, we found

that the Pn functions of the Voronoi tessellations of single cone

mosaics in the chicken are similar to those found in epithelia

(Figure 4D). This finding is difficult to explain in terms of mitosis

since these Voronoi tessellations do not represent actual epithelia.

However, since all of the individual cone mosaics reside in the

same epithelium, it is possible that their Pn functions simply mirror

that of the underlying epithelium. If the underlying epithelium had

a Pn function similar to the one observed in many other epithelia,

then a random assignment of cells (i.e., polygons) from the

underlying epithelia to each of the individual cone mosaics would,

on average, endow the individual mosaics with a similar Pn

function. However, we know that the individual cone mosaics do

not represent random samplings of the underlying epithelium.

Furthermore, the fact that double cones have a very different Pn

function argues against this simple interpretation. These findings

suggest that there may be unknown biological reasons for the

repeated occurrence of this particular Pn function.

The results of the present study constrain the range of possible

models that can explain the formation of the chicken’s cone

mosaics. Any model of mosaic formation must encompass two key

aspects of cone photoreceptor patterning. On the one hand, the

five cone mosaics are spatially independent and show no evidence

of heterotypic repulsion between different cone types. These facts

suggest the existence of distinct biochemical mechanisms of

spacing unique to each cone type. On the other hand, cone-to-

cone spacing, although density-dependent, is independent of cell

type, suggesting a mechanism of measuring intercone distance

which is shared by all cone types. If cone spacing is established

simultaneously or in temporally overlapping waves for the five

cone types, it seems necessary to invoke multiple distinct molecular

signals mediating homotypic interactions for each of the five types.

Such interaction could be mediated either by a diffusible signal or

by cell-cell contact. In this scenario, cone-spacing might involve a

‘two-component’ mechanism consisting of a cone type-specific

signaling system mediating cell type recognition and a second

shared system for measuring the distance between cones.

If spacing occurs in temporally separate waves for the different

types of photoreceptors, it is possible to posit models which involve

only a single biochemical mechanism for all photoreceptor types

(Figure 8). In such a model, the least abundant photoreceptor type

(i.e., violet cones) would establish spacing first, perhaps via a lateral

inhibition mechanism such as Notch-Delta signaling [59,60].

Once violet cone spacing is complete, these cells would turn off

expression of the molecules mediating lateral inhibition, and the

next most abundant cell type (blue cones) would establish spacing

using the same mechanism. This process would be repeated until

all cells types had established their spacing. Uniform growth of the

photoreceptor epithelium would result from addition of successive

generations of cells via cell division or intercalation (Figure 8). This
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model, although purely theoretical, has the advantage of requiring

only a single biochemical mechanism to establish homotypic

spacing. In addition, the progressive expansion of the photore-

ceptor epithelium would result in the observed relationship

between average nearest neighbor distance and cell density as

depicted in Figure 6A. Furthermore, local non-uniformities in the

expansion of the epithelium over developmental time would be

predicted to result in progressively greater variation in nearest

neighbor distances for those cell types whose spacing was

established earlier, a fact which we observed in the chicken retina

(see Figure 3D).

A variety of models and theoretical mechanisms have been

proposed to explain the development of the nearly crystalline cone

photoreceptor mosaics of certain teleost fish species

[21,24,61,62,63]. In one computer modeling study [63], the

author used a ‘cell rearrangement’ algorithm to reproduce the

‘row mosaic’ arrangement of cone photoreceptors found in the

zebrafish retina. In this model, cells of different types were at first

randomly arrayed on a lattice and then allowed to exchange

positions with adjacent cells so as to optimize inter-cell adhesion.

The author found that it was possible to arrive at an arrangement

similar to that of the zebrafish mosaic given the correct choice of

homo- and heterotypic ‘adhesion’ strengths. Not surprisingly,

given the regular spatial relationship between heterotypic pairs of

cones in the zebrafish, it was found that heterotypic adhesion

played a more important role than homotypic adhesion in

establishing the mosaic. Given that the mosaics of different cone

types appear to be independent in the chicken, it is unlikely that

such heterotypic adhesive interactions are active during avian

retinal development.

Another model for the formation of the zebrafish cone mosaic

posits that cell-cell signaling between differentiating photorecep-

tors and adjacent undifferentiated progenitors may be responsible

for patterning [21]. In this model, a cohort of presumptive cones

are born in a linear pattern and then individual cone sub-types

differentiate sequentially along a moving front with red cones

differentiating first followed by green, blue and ultraviolet [21]. In

this scenario, the first-born red cones instruct the adjacent

undifferentiated progenitors via cell-cell signaling to assume

defined fates. This process is then repeated until all of the sub-

types are generated in the correct spatial distribution. Apropos of

this model, it has been shown that disruption of Notch-Delta

signaling in the developing zebrafish retina results in marked

defects in the planar patterning of photoreceptors such that the

regular mosaic pattern is lost and photoreceptors of the same type

show a highly irregular and partially clumped distribution [64].

This finding suggests that Notch-Delta signaling may represent

one of the mechanisms whereby this patterning is established in

zebrafish.

The remarkable regularity of the chicken’s cone mosaics raises

the question of its adaptive significance. Theoretical analyses have

suggested that optimal spatial sampling of the visual scene is

achieved by perfectly regular, hexagonal arrays of receptors and

that any deviation from this pattern results in a decrement in the

quality of the reconstructed image [29,65]. If we assume that

regular spatial sampling is critical for the survival of highly visual

species such as birds and primates, one may ask why they have not

evolved perfectly ordered ‘crystalline’ photoreceptor mosaics. One

interesting explanation that has been offered is that a modest

degree of irregularity within the photoreceptor mosaic can actually

serve to reduce the amount of spatial aliasing that occurs when

visual scenes are sampled by perfect arrays of photoreceptors

[66,67]. However, others have argued that the strongly periodic

patterns which are prone to aliasing are not frequent in the normal

visual environments of most vertebrates and would therefore

probably be insufficient to account for the evolution of disordered

cone patterning [68].

Another potential explanation for cone disorder is that it may be

topologically impossible to pack six perfectly hexagonal photore-

ceptor mosaics (i.e., five cone and one rod mosaic) within a single

epithelium. The question then arises whether the photoreceptor

mosaics of the chicken retina are as regular as they can be given

the ratios of their occurrence and these packing constraints. Under

such conditions, any increase in the regularity of one mosaic might

Figure 8. A model for the formation of the photoreceptor mosaics of the chicken. In this model the individual photoreceptor types
establish their spacing in a series of temporally discrete waves. The least abundant photoreceptor type (i.e., violet cones) establishes spacing first,
possibly via a lateral inhibition mechanism (far left). Then, the next most abundant photoreceptor type, blue cones, establishes its spacing. This
process continues until spacing has been established for all photoreceptor types (the diagram only shows the four single cone types). The addition of
subsequent waves of photoreceptors results in a relatively uniform expansion of the epithelium and a concomitant ‘spacing out’ of those
photoreceptor types whose spacing was established earlier. Since spacing is established in discrete steps, all photoreceptor types can, in principle,
employ the same biochemical mechanism to establish spacing.
doi:10.1371/journal.pone.0008992.g008
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necessitate a decrement in the regularity of one or more of the

other mosaics. Thus, although the individual cone mosaics are

spatially independent, their regularities may depend on packing

constraints within the photoreceptor epithelium and therefore be

interdependent. Given the ratios and densities of its photorecep-

tors, it is possible that the chicken’s mildly disordered photore-

ceptor mosaics represent an optimal solution to a 2D packing

problem [69]. Future computational modeling studies will be

required to address this question.

It has been postulated based on a variety of theoretical

considerations that birds use two separate sets of photoreceptors

for detection of chromatic and luminance signals, the single cones

and double cones, respectively [5,6]. Primates, in contrast, jointly

sample color and luminance information through the same set of

photoreceptors [6,70,71]. Specifically, primate luminance detec-

tion mechanisms combine the outputs of both red and green cones

whereas all three cone types mediate detection of chromatic signals

[6,71]. Given the apparent importance of regular photoreceptor

spacing in the visual ecology of birds, it is surprising that the red

and green cone mosaics of the human fovea are nearly random in

their distribution [71]. In fact, in those foveae where departures

from randomness were noted, there was evidence of modest

clumping of cones of the same type [71]. It has been hypothesized

that the nearly random arrangement of red and green cones in

humans could represent a compromise between the demands of

color and luminance detection [71]. In an organism that jointly

samples color and luminance, some degree of photoreceptor

clumping may actually benefit color vision in the peripheral retina

as well as high acuity spatial vision [71]. Yet such benefits come at

the cost of confusing spatial and spectral information at small

spatial scales [71].

The channeling of spectral and spatial signals through the same

set of photoreceptors may also help explain the absence of colored

oil droplets in primate retinas. Although oil droplets improve color

discrimination, they reduce photoreceptor sensitivity [34]. It is

therefore possible that the detrimental effects of decreased

sensitivity on spatial vision could outweigh the benefits of

improved color discrimination that oil droplets would confer in

these species. Thus, the absence of regular spatial patterning of red

and green cones and the failure to re-evolve oil droplets in

primates might be a simple consequence of the detection of

spectral and spatial information by the same photoreceptors.

Correspondingly, separation of these two information channels in

the ancestors of birds may have been the evolutionary innovation

which permitted the subsequent elaboration of additional cone

adaptations such as the regular spatial patterning documented in

the present study.

Methods

Analysis of Cone Photoreceptor Distribution
All animals studies were conducted in accordance with the

Guide for the Care and Use of Laboratory Animals and the

Animal Welfare Act and were approved by the Washington

University in St. Louis Institutional Animal Care and Use

Committee. Post-hatch chickens (Gallus gallus, White leghorn;

Charles River Laboratories; North Franklin, CT) were euthanized

via carbon dioxide asphyxiation, and embryonic chickens were

euthanized by decapitation. Eyes were removed from the head by

blunt dissection, and the anterior segment was cut off with a razor

blade. The vitreous body was removed and the eyecup was

incubated for 30 minutes at 37uC in Hank’s Buffered Saline

Solution with calcium and magnesium to facilitate separation of

the retina from the retinal pigment epithelium (RPE). The retina

was oriented as shown in Figure 2A, with the inferiormost extent

of the pecten oculi defining ventral. RPE-free portions of mid-

peripheral retina were removed with iridectomy scissors and fixed

for 30 minutes in freshly prepared 4% paraformaldehyde in 1X

phosphate-buffered saline solution (PBS). The chicken retina is

prone to stretching which can result in an abnormal, elliptical

exclusion zone in the spatial autocorrelogram. For this reason,

great care was taken at all stages of handling the retinal tissue to

minimize trauma. In addition, all fields found to have elliptical

exclusion zones were excluded from further analysis. After

fixation, the retinal fragment was rinsed several times in PBS

and flatmounted, photoreceptor side up, on a glass microscope

slide in a drop of PBS. Fragments of glass coverslip (0.16–0.19 mm

thick) were placed around the specimen as ‘legs’ to support an

intact coverslip which was then laid on top. Images of the retina in

three different planes of focus at the level of the oil droplets were

taken at 4006 magnification under brightfield illumination on a

compound microscope (Olympus BX51) equipped with a CCD

camera (Olympus DP70). Additional images were then captured

under illumination with ultraviolet (327 nm), blue (460–490 nm),

and green (520–550 nm) light. The fluorescent images were post-

processed in Photoshop to maximize contrast. Individual photo-

receptor types were identified by overlaying the various brightfield

and fluorescent images in Photoshop. The position of the

individual cones was then recorded manually by placing colored

dots of uniform size on a different layer for each cone type. ImageJ

software (NIH) was used to define the center of mass for each dot

in a field and the X,Y coordinates of all dots were recorded.

A single individual of each of three additional species (Picoides

pubescens, Passer domesticus, and Columba livia) was found in a

moribund state. Immediately upon the death of the animal, retinas

were processed as for the chicken. Fields from both eyes and in

some cases at varying eccentricities were analyzed. Since the

fluorescent properties of these species’ retinas were somewhat

different those of the chick, it was only possible to distinguish a

subset of cone types with certainty using brightfield illumination.

Voronoi Tessellations
All computational analyses and calculations were performed

using custom Matlab scripts and Microsoft Excel. Voronoi

tessellations of photoreceptor distributions were created with a

custom script using a Matlab function called ‘Voronoi’. In order to

avoid edge effects, only those Voronoi cells whose vertices all lie

within the field were included in subsequent analyses. Pn

distributions were calculated from the number of vertices of the

individual Voronoi cells of a given photoreceptor distribution.

Spatial Distribution Analyses
Nearest neighbor analysis, spatial autocorrelograms, density

recovery profiles and effective radii were all calculated as described

previously [10,11,26,41,72]. In the nearest neighbor analysis, the

distance from each photoreceptor in a field to the nearest

photoreceptor of the same type was determined for all photore-

ceptors in a given field. In order to avoid edge effects, only

photoreceptors inside a 10 mm buffer zone around the perimeter

of the field were analyzed. In order to generate spatial

autocorrelograms each point in a photoreceptor distribution was

placed at the origin of a coordinate system and then all other

points were replotted relative to it. This procedure was repeated

for every point in a given field. Density recovery profiles (DRPs)

were derived from autocorrelograms by calculating the density of

points within successive annuli out from the origin of the

coordinate system. An annulus width of 0.3 microns was used,

and the density was calculated by dividing the number of points
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within an annulus by the area of that annulus. The effective radius

is a measure of the distance around a cell that is relatively devoid

of other cells of the same type [41]. It is equal to the length of the

base of a rectangle whose height is equal to the average cell density

and which encloses an area equivalent to that produced by the dip

in the DRP between the origin and the first abscissa where the

DRP reaches the average cell density [26,41,72].

Simulated Photoreceptor Distributions for Cross-
Correlation Analysis

In order to create simulated distributions of points with a

defined nearest neighbor regularity index for purposes of the cross-

correlation analysis (Figure 5B), a sequential addition, hard disk

model was used [51]. In this model random points are added

sequentially to a field such that they cannot be placed within a

defined distance of any previously placed points. This defined

distance represents the hard disk diameter. Points are sequentially

added until a desired density is attained. Increasing the hard disk

diameter results in progressively more regular mosaics. In order to

determine what hard disk diameter would yield simulated

distributions with nearest neighbor regularity indices of the desired

value, a series of simulations were conducted with a range of hard

disk diameter and the resultant regularity indices were calculated

(data not shown). A curve was then fitted to these datapoints, and

the hard disk diameter necessary to achieve a given regularity

index was read off of this curve.

As a control for the cross-correlation analysis, the regularity

indices for heterotypic pairs ‘X-Y’ were calculated by using the

coordinates of the real ‘X’ cells and comparing them to the

simulated ‘Y’ mosaics. An additional feature of the simulated ‘Y’

mosaics was that they were created on a field already containing

the real ‘X’ cells. Thus, newly placed ‘Y’ cells not only had to be at

least one hard disk diameter from every previously placed ‘Y’ cell,

but they also had to not overlap any ‘X’ cells. For the purpose of

this simulation, cell diameter was assumed to be equal to oil

droplet diameter (see Figure 1A). The average oil droplet

diameters for all five oil droplet types were obtained by measuring

ten different oil droplets of each type in a single field using an

optical micrometer (data not shown). The mean oil droplet

diameter shown in Figure 5A represents the average diameter for

all five cone types combined.

Supporting Information

Figure S1 Spatial distributions, autocorrelograms and density

recovery profiles for all five cone types. (A–O) This figure depicts

data in the same format as in Figure 3A–C for all five cone types in

a single retinal field (dorsal-nasal field 7 in Table S1): double cones

(A–C; included here for comparison), green cones (D–F), red cones

(G–I), blue cones (J–L) and violet cones (M–O). The vertical

orange lines in C, F, I, L and O indicate the average diameter of

the oil droplet corresponding to each of the given cone types.

Found at: doi:10.1371/journal.pone.0008992.s001 (2.21 MB TIF)

Figure S2 Cone photoreceptor mosaics with P6.,0.47 obey

Lemaı̂tre’s law. (A and B) These two graphs depict the same data as

in Figure 4F, split into two separate graphs with those datapoints

having P6,,0.47 in (A) and those with P6. = ,0.47 in (B). The

best fit power curve for both datasets are shown as dotted lines,

and the equations are given in the box. The R-squared value for

the goodness of fit to these curves is also shown. The solid line in

both figures represents Lemaı̂tre’s law. The value of the coefficient

([2p]21) is shown numerically for comparison with the equation

of the fit curve. The cone mosaics with P6.,0.47 fit a curve which

is almost directly superimposed on that representing Lemaı̂tre’s

law. In contrast, the cone mosaics with P6,,0.47 show a relatively

poor agreement with Lemaı̂tre’s law.

Found at: doi:10.1371/journal.pone.0008992.s002 (5.75 MB TIF)

Figure S3 Determining the global regularity indices for all four

bird species. (A–F) Graphs of photoreceptor density vs. the inverse-

square of the average nearest neighbor distance for the following

datasets: computer-generated random mosaics (A), chicken cone

mosaics (B), computer-generated perfect mosaics (C), P. pubescens

cone mosaics (D), P. domesticus cone mosaics (E) and C. livia cone

mosaics (F). Also shown are the best fit lines of the form, y = mx,

for each dataset. Global regularity indices are equal to the inverse

of the slope of the best fit line as shown, normalized to perfect

which was set equal to one.

Found at: doi:10.1371/journal.pone.0008992.s003 (5.15 MB TIF)

Table S1 Data and coordinates for cone mosaics from all four

species. This file contains a total of 35 worksheets. ‘Summary’

includes a variety of data about all the P15 chicken mosaics (NND,

nearest neighbor distance). Worksheets labeled ‘DN1’ (‘Dorsal-

Nasal field #1’), ‘DT1’ (‘Dorsal-Temporal field #1’), ‘VN1’

(‘Ventral-Nasal field #1’), ‘NT1’ (‘Ventral-Temporal field #1’)

etc. contain the raw coordinates for all P15 chicken fields

examined in the present study. Worksheets labeled ‘E18’, ‘P0’

and ‘P6’ contain the raw coordinates for the chicken mosaics

examined at the indicated developmental stages. Worksheets

labeled ‘P. pubescens’, ‘P. domesticus’ and ‘C. livia’ contain the

raw coordinates for the three additional species examined.

Found at: doi:10.1371/journal.pone.0008992.s004 (6.86 MB

XLS)
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