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Abstract

Background: Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium.
The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to
Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not
overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium
modulates responses to Wnt signals.

Methodology/Principal Findings: We therefore carried out a systematic analysis of canonical Wnt signaling in mutant
embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B
proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT
(Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter,
BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse
embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to
non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the
canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.

Conclusions: We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the
midgestation embryo or embryo-derived fibroblasts to Wnt ligands.
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Introduction

Recent experiments have provided strong evidence that primary

cilia are essential for mammalian Hedgehog signaling. The primary

cilium is a highly conserved microtubule-based organelle that grows

from a basal body, a modified centrosome, and projects from the

cell surface into the extracellular environment and plays diverse

roles in cellular motility, sensory transduction and signaling. The

process of intraflagellar transport (IFT), which is necessary for the

assembly and maintenance of primary cilia, is the bidirectional

movement of cargo by IFT protein complexes along axonemal

microtubules [reviewed in 1]. Mutations that block the formation of

cilia, either by blocking IFT or through disruption of specific basal

body proteins, prevent the normal regulation of Gli transcription

factors in response to Hedgehog ligands [reviewed in 2,3,4]. Strong

support for the cilia hypothesis has been provided by experiments

that show that all of the core Hh signal transduction components

that have been analyzed are enriched in cilia [5–8].

The demonstration that mammalian, but not Drosophila,

Hedgehog signaling depends on cilia has led to considerable

interest in the roles cilia might play in other vertebrate signal

transduction pathways. In particular, a number of studies have

suggested that there is a connection between cilia and Wnt

signaling [9–11]. The first observation that suggested a connection

between primary cilia and Wnt signaling came from the

demonstration that Inversin regulates levels of Disheveled (Dvl)

and can act as a switch between canonical and non-canonical Wnt

pathways [11]. Inversin protein is enriched in cilia and basal

bodies (in addition to the adherens junctions and nucleus [12]),

which suggested that cilia might provide an important site for

localization of Wnt pathway components.

Two recent studies reported that disruption of ciliogenesis causes

hyper-responsiveness to canonical Wnt signals in vertebrates [9,13].

These findings have elicited considerable interest in the community

[14,15]. However, the phenotypes of mouse mutant embryos that

lack cilia do not overlap with the phenotypes of Wnt pathway

mutants; and mutants that lack cilia because of a mutation in the

IFT B complex protein IFT172 have normal canonical Wnt

signaling, as assayed by a Wnt reporter transgene [2,16] Mutant

mouse embryos that lack IFT and primary cilia die between 9 and

11 days of gestation with characteristic defects in the morphology of

the developing nervous system. It is therefore possible that the early

lethality and/or morphological abnormalities of IFT mutant

embryos might mask a subtle role of cilia in the Wnt pathway.
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We have therefore carried out a systematic analysis of canonical

Wnt signaling in embryos and cells that are mutant for four different

IFT proteins, using four different molecular assays.

Results

Axin2 is expressed normally in IFT mutant embryos
To test for a role of primary cilia in Wnt signaling during

development, we analyzed the expression of Axin2 in wild-type and

mutant midgestation (embryonic day 9.5 (e9.5)) mouse embryos.

The Axin2 gene is a direct transcriptional target of the canonical

Wnt pathway that is expressed in embryonic cells where canonical

Wnt signaling is active [17,18]. At e9.5 Axin2 transcripts were

detected in the otic vesicle, dorsal neural tube, the branchial

arches, somites, limb buds and tail bud of wild type embryos as

previously described (Figure 1) [17,18].

Because complex mechanisms control ciliogenesis, we analyzed

the requirement of cilia for Axin2 expression in mutants in four

genes that affect different aspects of IFT. Kif3a encodes a subunit

of the kinesin-II motor that drives anterograde trafficking from the

base to the tip of the cilium and Kif3a mutants do not generate cilia

[3,19,20]. Similarly, mouse mutants that lack IFT complex B

proteins IFT172 or IFT88 do not make cilia [3,21,22]. Dync2h1

encodes the heavy chain of the cytoplasmic dynein that is required

for retrograde intraflagellar transport [23,24]. By whole mount in

situ hybridization, we found that both wild-type and all four IFT

mutants expressed Axin2 prominently in the dorsal neural tube, tail

bud, limb buds and somites (Figure 1). No difference was detected

in either the position or level of expression of Axin2 expression

among the genotypes, although the IFT mutants showed the

defects in the morphology of the neural tube and embryonic

turning that have been attributed to defects in Shh signaling

(Figure 1A–D). Thus by this assay, mutations in four different

genes that affect different aspects of IFT have no detectable effect

on canonical Wnt signaling.

A canonical Wnt reporter is expressed in the normal
pattern in IFT mutant embryos

We previously showed that a canonical Wnt reporter, TOP-gal,

was expressed in the normal pattern in Ift172 embryos at e10.5

[2]. To assess the role of primary cilia in regulating canonical Wnt

signaling during early mouse development more stringently, we

analyzed earlier embryos and used a more sensitive reporter of

canonical Wnt activity, the BAT-gal transgene [25], which

contains seven tandem Lef/Tcf binding sites that drive the

expression of b-galactosidase in response to canonical Wnt signals.

At e9.5, Ift172 mutants carrying the BAT-gal transgene showed

the abnormal neural tube morphology characteristic of mutants

that lack Sonic hedgehog (Shh)-dependent ventral neural cell

types. Despite their abnormal cranial morphology, the spatial

pattern of BAT-gal reporter expression was normal in Ift172

embryos and was indistinguishable from that of wild type

littermates (Figure 2A,B).

Embryos homozygous for a targeted null allele of Ift88 lack all

cilia, like Ift172 mutants [26]. While IFT172 appears to be a

peripheral component of IFT complex B [27], IFT88 is a core IFT

complex B component. Homozygous Ift88-null mutant e9.5

embryos carrying one copy of the BAT-gal reporter expressed b-

galactosidase in a pattern indistinguishable from that of wild type

Figure 1. Axin2 transcripts are expressed normally in IFT
mutants. Wholemount in situ hybridization for Axin2, a downstream
target of canonical Wnt signaling, in wild type and IFT mutant embryos.

The domains of expression of Axin in Ift88 (A), Ift172 (B), Kif3a (C) and
Dync2h1 (D) mutant embryos were indistinguishable from those of
wild-type littermates.
doi:10.1371/journal.pone.0006839.g001
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Figure 2. Normal spatial pattern of canonical Wnt response in IFT mutants. The BAT-gal transgene expresses b-galactosidase under the
control of seven tandem TCF/LEF sites that mediate responses to canonical Wnt signals. A. Reporter expression patterns are similar in e9.0 wild type
and Ift172 mutant embryos that carry one copy of the BAT-gal reporter. B. Higher magnification view of the anterior of wild type and mutant
embryos shows indistinguishable patterns and levels of reporter expression. BAT-gal reporter expression in Ift88 (C), Kif3a (D) and Dync2h1 (E)
mutant embryos with wild type littermates at e9.5.
doi:10.1371/journal.pone.0006839.g002
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littermates (Figure 2C). Kif3a mutants, which also lack all cilia due

to the absence of the Kinesin-II anterograde IFT motor, arrest at

e9.0, somewhat earlier than Ift88 and Ift172 null mutants. Kif3a

homozygous mutant embryos expressed the BAT-gal reporter in

the same regions and at the same level as their wild type littermates

(Figure 2D). In Dync2h1 mouse mutants, which make short, bulged

cilia due to a lack of retrograde IFT, the BAT-gal reporter was

again expressed in a similar pattern and with the same intensity

that paralleled wild type littermates (Figure 2E). Thus, using the

expression pattern of this b-galactosidase reporter to assay the

qualitative responses to canonical Wnt signals in the absence of

cilia, we did not detect any difference in the pattern of reporter

expression between wild type and mutant embryos that lack cilia

altogether or have disruptions in cilia structure.

Loss of cilia does not influence the amount of activity of
a canonical Wnt reporter

In addition to providing spatial information on active canonical

Wnt signaling, b-galactosidase enzymatic activity in embryos

carrying the BAT-gal transgene can be used to detect subtle

quantitative differences in Wnt activity. We made whole embryo

extracts from e9.5 embryos that carried the BAT-gal transgene

and assayed enzyme activity in vitro (Figure 3). There was no

difference in b-galactosidase activity in extracts of e9.5 wild-type,

Kif3a/+ and Kif3a/Kif3a homozygous mutant embryos that carried

a single copy of the BAT-gal transgene (Figure 3A). Similarly, b-

galactosidase activity was indistinguishable in wild-type, heterozy-

gous and homozygous Ift88-null (Figure 3B), and heterozygous or

homozygous Ift172 (Figure 3C) mutant embryos carrying the

BAT-gal reporter. Thus this transgenic reporter of canonical Wnt

signaling demonstrates that genetic ablation of ciliogenesis does

not detectably alter responses to canonical Wnt ligands in the

midgestation mouse embryo.

The response of fibroblasts to Wnt3a does not depend
on cilia

Whole embryos are a mixture of cell types, which might obscure

an abnormal response to Wnt in specific responsive tissues. To

assay the response to canonical Wnt ligands in a more uniform

population of cells, we generated primary mouse embryonic

fibroblasts (MEFs) derived from wild-type and mutant embryos

and assayed their response to a canonical Wnt ligand. MEFs

derived from Ift88 or Ift172 embryos do not make cilia (Figure 4A)

[28]. We measured the response of the mutant MEFs to Shh in

Ift88 and Ift172 mutant cells with a Gli-luciferase reporter [29].

When treated with Shh, mutant cells were completely unrespon-

sive and failed to activate the Gli-luciferase reporter above basal

levels; these findings parallel the loss of Hedgehog-responsiveness

in mutant embryos (Figure 4B) [3,26]. To measure the Wnt-

responsiveness of the cells, we transfected the MEFs with the

SuperTOPFlash reporter [30] and stimulated the cells with

100 ng/mL of Wnt3a (Figure 4C). Both Ift88 and Ift172 mutant

cells activated the SuperTOPFlash reporter in response to Wnt3a

to levels indistinguishable from those of wild type primary MEFs.

Dkk1 is a potent inhibitor of b-catenin dependent Wnt signaling

[31]. Treatment of cells with Wnt3a in the presence of 50 ng/mL

of Dkk1 blocked reporter activation by Wnt3a in wild-type, Ift88

and Ift172 mutant MEFs (Figure 4C). Thus transcriptional activity

in response to canonical Wnt ligands is normal in cells that do not

have cilia. Furthermore, loss of cilia does not affect the cell’s ability

to respond to inhibitors of canonical Wnt signaling.

Dync2h1 MEFs have cilia that are of approximately normal

length, although they have a characteristic bulge along the

axoneme due to the disruption of retrograde IFT (Figure 4A) [28].

We previously showed that Dync2h1 MEFs fail to respond to Shh

[28]. However, like the responses seen in Ift88 and Ift172 MEFs,

Dync2h1 MEFs activated the SuperTOPFlash reporter normally in

response to recombinant Wnt3a and this response was attenuated

in the presence of the canonical Wnt inhibitor, Dkk1 (Figure 4C).

Loss of cilia does not disrupt the shift between canonical
and non-canonical Wnt signaling in MEFs

All of the assays described thus far indicate that canonical Wnt

signaling is normal in IFT mutants. Several observations have

suggested that loss of cilia causes a loss of non-canonical Wnt

signaling; in particular, it has been suggested IFT and/or basal

body proteins may regulate a switch between canonical and non-

canonical Wnt signaling [9–11]. IFT mutant embryos do not show

the craniorachischisis (open neural tube caudal to the forebrain)

characteristic of mouse mutants that lack components of the non-

canonical Wnt pathway [32,33], suggesting there is not a strong

disruption of non-canonical Wnt signaling in IFT mutants.

Although there is no single biochemical assay for the activity of

the non-canonical Wnt pathway, the non-canonical Wnt ligand

Wnt5a can repress b-catenin/TCF/LEF1-dependent transcrip-

Figure 3. Quantitation of BAT-gal reporter in whole embryo lysates. Transcriptional activation in response to canonical Wnt signals was
quantitated in e9.5 embryos that carried one copy of the BAT-gal reporter using a spectrophotometric assay for b-galactosidase enzyme activity (data
are mean, 6s.d., n$5; ANOVA, Tukey’s post-hoc tests, n.s.).
doi:10.1371/journal.pone.0006839.g003
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tion, although the mechanism remains unclear [34,35]. We

therefore tested the responses of IFT mutant MEFs to Wnt5a.

As expected, stimulation with the non-canonical ligand Wnt5a did

not activate the SuperTOPFlash reporter in wild-type or mutant

cells (Figure 4C). When cells were stimulated with Wnt5a and

Wnt3a simultaneously, canonical Wnt reporter activation was

attenuated in wild-type MEFs, as previously described [35].

Wnt5a also blocked the Wnt3a-dependent induction of the

SuperTOPflash reporter Ift88, Ift172 and Dync2h1 mutant MEFs,

exactly as seen in wild-type cells (Figure 4C). These results

demonstrate that either disruption of ciliogenesis or loss of

retrograde IFT does not affect the ability of MEFs to properly

modulate Wnt responses.

Discussion

In this study, we provide genetic and biochemical evidence that

canonical Wnt signaling is normal in mouse embryos and in MEFs

in the absence of cilia. In contrast to earlier reports, which

indicated that loss of cilia increased the response of cells to Wnt

ligands, we demonstrate that mice that lack components of the

IFT B complex (IFT88 and IFT172), or subunits of the motors

that drive anterograde (Kif3a) or retrograde (Dync2h1) trafficking

within cilia express canonical Wnt gene targets such as Axin2 or

activate the BAT-gal reporter in the normal spatial pattern.

Measurement of BAT-gal activity in the embryo or the Super-

TOPFlash reporter in MEFs derived from IFT mutants show that

the level of response to canonical Wnt signals is not affected in the

absence of IFT172, IFT88, Kif3a or Dync2h1. Based on these

findings, we conclude that lack of cilia or disruption in retrograde

IFT does not alter canonical/b-catenin-dependent Wnt signaling.

These findings contrast with previous results that suggested that

IFT proteins and, in particular, Kif3a, have specific roles in

regulation of the canonical Wnt pathway [9,13].

IFT mutants do not show phenotypes associated with
the Wnt pathway

It has previously been reported that loss of cilia leads to

enhanced responses to canonical Wnt ligands. Increased canonical

Wnt activity in mutants that lack negative regulators of Wnt

signaling, such as Axin, APC, Dkk1 or Cer1, causes arrest during

early development [36–38] with characteristic phenotypes that do

not overlap with those of IFT mutants. APC mutants cause a

strong activation of canonical Wnt signaling that leads to arrest

prior to gastrulation [36]. A partial loss-of-function allele of APC

does not cause as strong an activation of canonical Wnt signaling

and allows survival to later stages, when embryos show axis

duplications, abnormal development of the foregut and heart, and

lack anterior parts of the forebrain [39], a phenotype similar to

mutants that lack the activity of Axin, another negative regulator

Figure 4. The response of fibroblasts to Wnt3a does not depend on cilia. A. Wild type, Ift88, Ift172 and Dync2h1 MEFs stained for cilia
(acetylated a-tubulin, green) and basal bodies (centrin, red). MEFs derived from e9.5 wild type and Dync2h1 embryos generate cilia within 24 hours of
culture, but not Ift172 or Ift88 mutant MEFs. B. Ift88, Ift172 and Dync2h1 MEFs fail to respond to Shh. Cells were transfected with a Hh-responsive Gli-
luciferase reporter and stimulated with Shh-enriched media. Wild-type cells showed robust activation of the reporter in response to Shh treatment,
whereas Ift88, Ift172 and Dync2h1 MEFs were completely non-responsive to Shh. C. Ift88, Ift172 and Dync2h1 MEFs respond normally to Wnt3a.
SuperTOP-Flash reporter activity was assayed in response to 100 ng/mL recombinant Wnt3a. Reporter activity presented as relative light units (RLU)
normalized to Renilla luciferase control. Ift172 and Dync2h1 mutant MEFs activated the reporter in response to different levels of Wnt3a similar to wild
type levels (data are mean 6s.d., n = 4).
doi:10.1371/journal.pone.0006839.g004
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of the Wnt pathway [37,40]. Mutants that lack the canonical Wnt

antagonist Dkk1 show a weaker phenotype, but still lack anterior

parts of the brain [38]. In contrast, IFT mutants survive to e10.5,

never show axis duplications, show normal patterning of the gut

and heart and specify the forebrain normally. Kif3a mutants arrest

at e9.0, earlier than other IFT mutants, probably due to roles of

Kinesin-II outside of cilia [41,42]. Kif3a mutants lack the Shh-

dependent ventral neural types, but do not have axis duplications,

defects in ventral morphogenesis or anterior neural truncations

(Figure 1 and 2). Thus the phenotypes of IFT null mutant embryos

do not reveal any elevation of canonical Wnt signaling in the

absence of cilia or when cilia structure is disrupted. Thus both the

phenotype of IFT null mutant embryos and the reporter assays

presented here show that canonical Wnt signaling is normal in the

absence of cilia.

Cilia and the PCP pathway
The data that cilia are positive regulators of non-canonical Wnt

signaling are more complex. The non-canonical arm of the Wnt

pathway regulates the planar cell polarity (PCP) pathway in the

mouse [reviewed in 43]. Observations in cultured cells, as well as

in mouse, zebrafish and frog embryos, have implicated IFT and

basal body proteins in regulating the switch between canonical and

non-canonical Wnt signaling [9–11]. However, by one biochem-

ical assay, the ability of a non-canonical ligand to block

responsiveness to a canonical Wnt, we find that the switch

between canonical and non-canonical pathways is normal in IFT

mutant fibroblasts.

Mouse mutant embryos that lack components of IFT or

components of the non-canonical Wnt pathways have non-

overlapping phenotypes. Mouse embryos that have mutations in

core non-canonical Wnt genes such as Vangl2 and Celsr1 have a

shortened body axis and fail to initiate neural tube closure in the

hindbrain and spinal region, although the neural tube in the

forebrain is closed. At the end of gestation, these mutants have a

severe malformation of the neural tube similar to severe

craniorachischisis defects in humans [32,33]. Even though the

neural tube is completely open in Vangl2/Lp mutants, patterning of

the neural tube is fairly normal, with slight expansion of the floor

plate and mild dorsal expansion of the expression domain of Pax6

[33]. In contrast, IFT mutants do not exhibit craniorachischisis

(Figure 1 and 2). Instead, depending on the genetic background,

they show exencephaly, the failure to close the neural tube in the

midbrain and hindbrain, which is also seen in some Shh pathway

mutants [44,45]. It is conceivable that the disruption of Shh

signaling might mask a disruption in non-canonical Wnt signaling.

However, double mutants that lack both Ift172/wim and Vangl2/

Lp show a simple additive phenotype (K. Liem and K.V.

Anderson, unpublished data), which indicates that loss of Hh

signaling does not mask defects caused by a loss of non-canonical

Wnt signaling.

Our findings indicate that neither canonical nor non-canonical

Wnt signaling depend on cilia in the midgestation mouse embryo.

Our findings do not rule out the possibility that Wnt signaling in

specialized cell types or in other animals could be modulated by

ciliary components or that basal body components could have

roles in Wnt signaling [9]. It has been reported that zebrafish

embryos in which cilia proteins are down-regulated by treatment

with morpholinos show defects in convergent extension, a process

that depends on non-canonical Wnt signaling [9,46,47]. Mutations

in two zebrafish genes that encode proteins enriched in ciliated

cells affect PCP and lead to cystic kidneys, but do not disrupt

ciliogenesis [48–50]. In the mouse inner ear, there is a complex

relationship between PCP, IFT and the position of the kinocilium

(a specialized primary cilium), where disruption of ciliogenesis by

conditional deletion of Ift88 reveals that this IFT protein is

required to allow basal body migration in response to PCP signals

[51]. Either loss of cilia [52] or loss of planar polarity [53,54] in

the kidney leads to polycystic kidney disease, suggesting that these

two processes may be coupled in this tissue. We conclude that cilia

are not essential for non-canonical Wnt signaling and cilia do not

regulate this pathway in the mouse embryo, but additional

experiments will be required to test the relationship between cilia

and Wnt signaling in other animals and in the kidney.

Materials and Methods

Mouse Strains
Mutant alleles for Ift88null, Ift172wim, Dync2h1ttn and Kif3a have

been previously described [3,19,26,28]. Both Kif3a- and Ift88-null

alleles were generated from the conditional alleles by crossing to

the CAG-Cre line [55].

Axin2 In Situ Hybridization
Whole mount in situ hybridization using an Axin2 probe [18,56]

was performed as described previously [57].

BAT-gal Reporter Assays
For BAT-gal experiments, males carrying one copy of the BAT-

gal transgene and one copy of an Ift88, Ift172, Kif3a or Dync2h1

mutant allele were crossed to females heterozygous for Ift88,

Ift172, Kif3a or Dync2h1 mutant allele. Embryos were dissected at

e9.5 and BAT-gal activity in embryos was detected as previously

described [25]. b-galactosidase activity in mouse embryos was

measured using the b-galactosidase Enzyme Assay System

(Promega Corporation, Madison, WI, USA) according to

manufacturer’s instructions. Lysates prepared from embryos were

incubated at 37uC during which time b-galactosidase was allowed

to hydrolyze the colorless substrate to o-nitrophenol. The reaction

was stopped after 30 minutes with sodium carbonate and the

absorbance was read at 420 nm with a spectrophotometer.

Activity was normalized to total protein concentration, which

was measured using the Pierce BCA Protein Assay Kit (Pierce

Biotechnology, Rockford, IL, USA). Each column represents the

mean value of at least n$5 embryos. Data were analyzed by one-

way ANOVA with Bonferoni correction and Tukey’s post-hoc test.

Relative b-galactosidase enzyme activities in each mutant

genotype are normalized with respect to averaged wild type

maximum activity levels.

Immunostaining
Confluent MEFs were grown on gelatin-coated glass coverslips

and treated with low-serum medium (0.5% bovine calf serum).

After 48 h, cells were washed in PBS, fixed in 4% paraformal-

dehyde in PBS for 10 min on ice, permeabilized in 0.2% Triton

X-100/PBS for 10 min and blocked in 0.2% Triton/2% BSA/1%

FCS/PBS for 30 min at room temperature. Cells were incubated

with primary antibodies against acetylated alpha tubulin (mouse

1:1000, Sigma) and Centrin (rabbit, 1:200, Sigma) diluted in

blocking solution at 4uC overnight. Cells were washed three times

in 0.02% Triton X-100/PBS and incubated with the secondary

antibodies mouse Alexa 488 (1:200) and rabbit Alexa 568 (1:200)

along with DAPI (1:200) for 1 h at room temperature. Cells were

washed as before and mounted in VectaShield (Vector Labora-

tories, Burlingame, CA). Confocal microscopy was performed

using an upright Leica TCS SP2 AOBS laser scanning

microscope. Images were taken with a 63X water objective and

Cilia and Wnt Signaling
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1X zoom. Extended views of the confocal datasets were processed

using the Volocity software package (Improvision).

Luciferase Reporter Activity Assays
MEFs were isolated from e9.5 wild type, Ift172wim, Ift88null and

Dync2h1ttn mouse embryos and cultured under standard conditions.

Shh activity assays in MEFs were performed as described

previously [28]. To assay for Wnt activity, MEFs were plated at

a density of 16105 cells/cm2 in 24-well dishes the day prior to

transfection. Cells were transfected 18–24 h after plating with

240 ng of the SuperTOPFlash reporter [58] and 10 ng pRL-TK

(Clontech) using Fugene 6 (Roche) transfection reagent in a 3:1 (v/

w) ratio of reagent to DNA. After cells had reached confluency,

they were changed to low-serum medium (0.5% bovine calf serum)

for 24 h to induce cilia growth and then treated with 100 ng/mL

recombinant mouse Wnt3A (R&D Systems, Minneapolis, MN,

USA) alone or in combination with 50 ng/mL Dkk1 (R&D

Systems, Minneapolis, MN, USA) Wnt5a [35] for 18 h. Cells were

lysed after this treatment and luciferase activity was assayed with

the Dual Glo Luciferase Assay (Promega). Reporter expression was

normalized to cotransfected Renilla luciferase. Data were analyzed

by one-way ANOVA with Bonferoni correction and Tukey’s post-

hoc tests.
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