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Abstract

Background: Sequence similarity to characterized proteins provides testable functional hypotheses for less than 50% of the
proteins identified by genome sequencing projects. With structural genomics it is believed that structural similarities may
give functional hypotheses for many of the remaining proteins.

Methodology/Principal Findings: We provide a systematic analysis of the structure-function relationship in proteins using
the novel concept of local descriptors of protein structure. A local descriptor is a small substructure of a protein which
includes both short- and long-range interactions. We employ a library of commonly reoccurring local descriptors general
enough to assemble most existing protein structures. We then model the relationship between these local shapes and Gene
Ontology using rule-based learning. Our IF-THEN rule model offers legible, high resolution descriptions that combine local
substructures and is able to discriminate functions even for functionally versatile folds such as the frequently occurring TIM
barrel and Rossmann fold. By evaluating the predictive performance of the model, we provide a comprehensive
quantification of the structure-function relationship based only on local structure similarity. Our findings are, among others,
that conserved structure is a stronger prerequisite for enzymatic activity than for binding specificity, and that structure-
based predictions complement sequence-based predictions. The model is capable of generating correct hypotheses, as
confirmed by a literature study, even when no significant sequence similarity to characterized proteins exists.

Conclusions/Significance: Our approach offers a new and complete description and quantification of the structure-function
relationship in proteins. By demonstrating how our predictions offer higher sensitivity than using global structure, and
complement the use of sequence, we show that the presented ideas could advance the development of meta-servers in
function prediction.
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Introduction

Revealing functions of proteins is one of the major challenges of

molecular biology. Sequence similarity search tools such as

BLAST [1] revolutionized biological research by providing

functional hypotheses that could be tested experimentally.

However, identifying functionally characterized homologues using

sequence similarity is only possible for less than 50% of the

proteins predicted from genome sequencing projects. Since

structure is evolutionarily more conserved than sequence, it is

believed that structural information provides a solution for many

of the remaining proteins [2,3]. Indeed, the extended goal of

structural genomics is to systematically solve protein structures for

new protein families [4], use these structures as templates for in

silico structure prediction methods [5,6], and then use the solved

and predicted structures to infer function [7,8]. However, this

requires new computational methods that utilize structure for

function prediction. Thus understanding and predicting structure-

function relationships in proteins is considered by many to be the

holy grail of computational biology.

Approaches to the analysis of the structure-function relation-

ships in proteins either rely on global similarities (fold) or local

similarities (motifs) [9–12]. Fold similarities have been shown to

associate with function [13,14], and have also been used to infer

function-specific sequence patterns [15]. However, many folds

such as the TIM barrel and the Rossmann fold are found in
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proteins with several different functions [2], and this has led to

various local structure-motif methods based on, for example,

known functional sites or function-specific sequence patterns [16–

21]. Recently, meta-servers have obtained functional predictions

by allowing a large number of different evidence (including global

and local properties) to independently vote for a particular

function [22–24].

Here, we provide a comprehensive analysis of the structure-

function relationship in proteins, in which a library of recurring

multi-fragment structural motifs called local descriptors of protein

structure [25,26] are used to learn IF-THEN rules [27,28] that

associate combinations of local substructures with specific protein

functions. Unlike previous studies, we investigate all recurring

motifs and all annotated proteins using no prior knowledge of

functional sites or any sequence information. Thus, we induce a

rule-model that constitutes a complete representation of the

structure-function relationship in proteins based only on structure

similarity. By a computational evaluation of the model’s ability

generalize and predict the function of unseen proteins, we offer a

full quantification of the structure-function relationship. This

enables us to make critical observations about the importance of

structure in various aspects of protein function. Our findings can

be summarized as follows: (a) nearly two-thirds of all molecular

functions are predicted with a statistically significant accuracy, (b)

biological processes and cellular components are considerably

harder to predict from structure than molecular function, (c)

combining local similarities results in better predictive power than

using global similarity, in particular for functionally versatile folds,

and also allows prediction of the function of new folds, (d) catalytic

activities are better predicted than most functions involving

binding and this is related to protein dynamics and disorder,

and (e) structure-based predictions complement sequence-based

predictions and are shown through literature-validation to provide

many correct predictions even when no significant sequence

similarities exist.

Results

Library of annotated local substructures of proteins
A local descriptor of protein structure is a set of short continuous

backbone fragments (segments) centered in three dimensions

around a particular amino acid (Figure 1A, B). We built a library

of 4197 such recurring local substructures [25] from a represen-

tative set of all experimentally determined protein structure

domains in the Protein Data Bank (PDB) with less than 40%

sequence identity to each other [29,30]. The library was used to

automatically represent all protein structures in terms of matching

or not matching each of the local substructures. We then

organized the Gene Ontology (GO) annotations [31,32] of all

characterized proteins into 113 classes of molecular functions, 139

classes of biological processes, and 30 classes of cellular

components (see Table 1 and Materials and Methods for details).

Model induction
The relationship between structure and function was modeled

using IF-THEN rules [27,28] where the IF-part of each rule

specifies a minimal combination of local substructures discerning a

particular protein structure from structures annotated to other GO

classes (Figure 1C, D). The rule model was induced using only

substructures observed in protein structures statistically overrep-

resented in at least one GO class (Table S1). The GO classes are

not mutually exclusive. For example, the catalytic activity of a

metalloendopeptidase involving a zinc ion will give rise to the GO

molecular function annotations GO:0004222: metalloendopeptidase

activity and GO:0008270: zinc ion binding. In addition, some

functions are not completely discernible in terms of structure

because, e.g., the functionally discriminating properties are too

rare to be singled out by general rules. Consequently, the THEN-

part of the rules often contains several GO-classes with different

probabilities (Figure 1D). Our model for GO molecular function

encompasses ,20,000 rules describing various overlapping

structure-function relationships at different levels of specificity

(Table S2). As a point of reference, we also induced rules based on

domain-specific global structural similarity in terms of orientations

and connectivity of the main secondary structure elements (CATH

fold, see Materials and Methods) [33].

Quantification of the structure-function relationship
We argue that a rigorous evaluation of the ability of structure-

based models to predict function for unseen proteins is the best

way to quantify the degree to which function depends on structure.

To this end, we estimated the predictive performance of the

models using cross-validation and Receiver Operating Character-

istic (ROC) analysis, and report the Area Under the ROC Curve

(AUC) [34] for each class of molecular function, biological process

and cellular component (Figure 2, Table S3).

Both the local and the global structure-based methods are better

at predicting molecular function than at predicting biological

process and cellular component (Figure 2). This is not unexpected

since proteins sharing a cellular location or being part of a broad

biological process need not be structurally related. This adds

complementary evidence to other studies that have shown that

gene-expression time profiles are needed to explain biological

processes [35]. Consequently, we will focus our detailed analysis

on molecular function.

For a selected set of decision thresholds, the local substructure

approach correctly predicts 51% of the annotations, and at least

one annotation for 56% of the proteins, with 37% of the

predictions being correct (i.e., precision). The local approach

consistently outperforms the global approach (Figure 2B) due to

the flexibility associated with combining several local substructures

to obtain function-specific rules. In particular, we see a

pronounced difference for proteins with the same fold, but

different function. For example, 69% of 169 proteins with the

Rossmann fold had one function correctly predicted by the local

substructure method (precision = 27%), compared to only 17% for

CATH (precision = 9%), while corresponding numbers for the 50

TIM barrel proteins were 66% (precision = 21%) for local

substructures and 50% (precision = 12%) for CATH. Clearly,

the use of local substructures increases the resolution and allows us

to functionally discriminate proteins with the same fold.

Catalytic activities rely on conserved structure
Using local substructures, we obtain significant AUC values (i.e.

AUC.0.7) for 82 of the 113 GO molecular function classes.

However, not all aspects of molecular function are equally

dependent on structure. When the predictive quality of GO

classes was investigated in relation to groups of wider functional

categories given by the hierarchical nature of GO, we found that

53 of the 63 GO molecular function classes located under

GO:0003824: catalytic activity were significantly predicted

(P,0.0020). On the other hand, 15 of 37 classes under

GO:0005488: binding (P,0.027) and all four classes located under

GO:0030528: transcription regulator activity (P,0.0049), three of

which also were located under binding, were not significantly

predicted. The same tendency was observed in the CATH-based

predictions. Our results thus indicate that properties related to

binding are difficult to model from the employed representations

Protein Function Prediction
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Table 1. Gene Ontology annotations for molecular function, biological process and cellular component.

Gene Ontology Number of proteins/annotations Number of classes/proteins/annotations

Molecular function 2549/4963 113/1747/2815

Biological Process 2477/5082 139/1533/2573

Cellular Component 1379/1978 30/561/688

The second column gives the number of annotated proteins and the number of annotations for these proteins. The third column gives the number of GO classes
selected and the related numbers of proteins and annotations.
doi:10.1371/journal.pone.0006266.t001

Figure 1. Local substructure group with central descriptor 1qama_#37. Descriptors are named: ‘PDB protein domain name’#‘central amino
acid’. A) Cartoon of the secondary structure of the central descriptor and its structural alignment with the ten closest descriptors in the group. B) The
sequence alignment resulting from the structural alignment in A. C) Location in Gene Ontology of the significantly overrepresented (FDR controlled
at 0.05 [39]) molecular functions annotated to the 68 proteins matching the local substructure in A (marked in red). In total, 28 molecular functions
were annotated to the 68 proteins. D) The rule IF (1qama_#37 AND 1xvaa_#68) THEN (GO:0008757 OR GO:0000287) combining the substructure
1qama_#37 in A with the substructure 1xvaa_#68 to uniquely describe 12 of the proteins annotated with GO:0008757: S-adenosylmethionine-
dependent methyltransferase activity. Two of these proteins are additionally annotated with GO:0000287: magnesium ion binding. The rule thus
effectively combines local substructures to address only one of the three statistically significant GO classes related to 1qama_#37.
doi:10.1371/journal.pone.0006266.g001

Protein Function Prediction
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of structure while catalytic mechanisms seem to associate well with

conserved structural similarity (Table S4). This may be related to

the fact that the catalytic action of enzymes is not restricted to the

catalytic site, but is connected to inner protein dynamics [36].

CATH folds and, to some degree, local substructures primarily

describe protein cores. Thus they may be well suited for modeling

catalytic activity. Binding, on the other hand, mainly requires that the

protein has a surface with appropriate properties as defined by

electrostatic-, hydrophobic- and van der Waals-interactions, and

such a surface may be generated by alternative structures.

Exceptions from the observation that binding is hard to predict

include some of the interactions with metal ions (AUCs of 0.95,

0.92, 0.80, 0.75), which are often involved in the catalytic

mechanism, and GTP and ATP binding (AUCs of 0.89 and 0.77),

which play very important roles in the enzymatic activity.

Local descriptors that co-occur in rules in the model are selected

because they are function-specific. Hence, it is intriguing to

observe that such co-occurring substructures, significantly more

often than randomly selected substructures (P,2.2610216), form

connected complexes in which one or more residues from each

substructure are within 5 Å of each other (see Materials and

Methods for details). The recently published contact between a

loop region and a hydrophobic cluster associated with the inner

dynamics of the enzyme cyclophilin A (CypA) is exactly described

by one of our rules (Figure 3A) [36]. We expect that rules that

combine local substructures representing stable contact surfaces

found in many proteins may turn out to describe general

mechanisms behind protein functions (Figure 3B). The fact that

local substructure complexes emerge from rules that can predict

protein function indicates that the approach chosen here is

capable of generalizing and describing protein function beyond

approaches based on global similarity. This also demonstrates the

advantage of modeling structure-function relationships using

explicit and legible IF-THEN rules.

Protein disorder
It has become increasingly more clear that some protein

functions require intrinsic disorder [37]. By using gaps of three or

more residues in X-ray characterized proteins in PDB as an

indication of disorder (http://www.disprot.org/), we found a

significant correlation between the AUC value of each molecular

function class and the degree of disorder in proteins from these

classes (correlation coefficient of 20.36, which is different from no

correlation at P,9.961025). Furthermore, we found that for

wider functional categories in GO such as catalytic activity and

binding, GO classes that are not significantly predicted display a

consistently higher degree of disorder compared to proteins in GO

classes that are well predicted (Table S5). The same tendency was

observed in the CATH-based prediction. This indicates that some

aspects of protein function violate the assumption that sequence

determines a specific structure as a prerequisite for function, and is

in line with other results reported recently [38]. Examples include

Figure 2. Model prediction performance using cross-validation and ROC analysis. A) List of the ten best predicted GO molecular function
classes as measured by the AUC and its standard error [34]. We also report sensitivity (SENS), specificity (SPEC), and the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN) at one specific decision threshold (THR). See Materials and Methods for details. (B, C
and D) Performance for all GO classes and all three GO subontologies using local substructures or CATH folds at different decision thresholds
(resulting from varying the costs on false positives, see Materials and Methods for details). Coverage is the percentage of proteins with at least one
correct prediction or the percentage of annotations correctly predicted, and precision is the percentage of predictions that are correct. Numbers
corresponding to the decision thresholds in A are circled.
doi:10.1371/journal.pone.0006266.g002
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GO:0046983: dimerization activity (AUC = 0.69, disorder = 9.8%),

GO:0005261: cation channel activity (AUC = 0.42, disorder = 8.1%)

and GO:0003713: transcription coactivator activity (AUC = 0.58,

disorder = 8.1%). Thus, such functions may only be predicted

correctly by incorporating information in the rules on disorder.

Complementarities of sequence and structure in function
prediction

The ultimate validation of predictions is done experimentally.

However, in silico validation offers advantages in that a much

larger number of hypotheses may be tested and statistically sound

conclusions may be drawn. We applied our model to functionally

characterized proteins that were not structurally solved at the time

of model induction. We divided this test set into proteins with a

weak but statistically significant sequence similarity to the training

set and proteins with no statistically significant similarity.

We predicted the molecular function of 429 protein structures

(with 634 annotations) with a weak but statistically significant

sequence similarity (less than 40% sequence identity and E-score

less than 0.05) to the training set. For these proteins we were able

to predict 45% of all the annotations, and at least one correct

annotation for 53% of the proteins, with a precision of 29%. Since

this performance is comparable to the cross-validation estimates

obtained from the training set (Figure 2), we may conclude that

rules based on the library of local substructures generalize well to

unseen structures across the whole continuum of sequence

similarity. By combining the predictions from the local descriptor

approach with predictions derived from the annotations of the

closest sequence-neighbor in the training set (detected by PSI-

BLAST [1], see Materials and Methods for details), we could

correctly predict 70% of all the annotations, and at least one

correct annotation for 76% of the proteins, with a precision of

30%. Of all 444 correct predictions, 398 were made by PSI-

BLAST (62%) while the remaining 46 were made exclusively by

the descriptor-based method. Thus the approach that combines

PSI-BLAST and our structure-based method predicts correctly

more annotations than using PSI-BLAST alone, even when

sequence similarity exists.

We finally challenged the system to predict function for 167

unseen proteins (with 224 annotations) with no significant

sequence similarity to the training set (E-score greater than

0.05). For these rather demanding targets, the local descriptor

method obtained coverage and precision of only around 10%,

showing that the model is not independent from sequence even

though it is based purely on structure. However, automatic

annotations constitute 92.4% of the database and these annota-

tions are generally known to be incomplete. Hence, we manually

validated all predictions made by the descriptor approach of these

167 targets. This analysis revealed that out of 190 predictions

made for 93 proteins, 91 predictions made for 57 proteins found

some support in the scientific literature (Table S6). One example is

the protein alanyl-tRNA synthetase (PDB id. 1riq) with four

predictions: GO:0000049: tRNA binding, GO:0000287: magnesium

ion binding, GO:0005524: ATP binding and GO:0004812: tRNA ligase

activity. Only the last two predictions were annotated. However, all

of them were verified as correct by literature search. Furthermore,

the fold of this protein was not represented in the training set and

thus this protein could not have been correctly predicted using

global structural similarity. The fact that the local substructure

method is fully automatic is also an advantage over methods that

rely on manual assignments since predictions can be made for

newly solved structural genomics targets. Only 58 of the 167

recently solved structures discussed here have so far been assigned

a fold in CATH. Finally, although structural similarity in the

Figure 3. Rules combining local substructures into connected complexes. A) Structure of CypA (PDB id: 1aka). The loop region represented
by Phe 67 is correlated with the dynamics of the core represented by the hydrophobic cluster including Leu 39, Phe 46, Phe 48 and Ile 78 [36]. The
rule combining local substructures 1elva1#604 and 1bif_2#398 describes exactly this mechanism. 1elva1#604 (yellow) matches the loop region
including Phe 67 (space filled yellow), while 1bif_2#398 (blue) matches parts of the core including Leu 39 (space filled blue). The overlap between
the two local substructures is in green. Although all the residues in the hydrophobic cluster are described in our local substructure library, the
minimal IF-THEN rule only needs one residue in the cluster to discriminate the function. B) Two local substructures in the rule in Figure 1D matching
the enzyme Cytosine-N4-Specific (PDB id: 1boo): 1qama_#37 in yellow, 1xvaa_#68 in blue, the overlap in green and the residues in contact as space
filled. The combined local substructures have a very similar number of residues in contact in the 12 matching proteins (the average contact surface
included 25% of the non-overlapping residues in the two local substructures with standard deviation 6.4).
doi:10.1371/journal.pone.0006266.g003
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absence of sequence similarity may be a result of convergent

evolution, our results clearly show that local substructures can

provide useful functional hypotheses even for these proteins.

Discussion

Since protein function in nature depends on the global

architecture, the inner dynamics of folds, and the subtle surface

properties that give binding specificity, we expect that computa-

tional methods that incorporate information on all levels will be

superior to exclusively sequence derived methods. Here we present

a general approach for representing protein function in terms of

local and global structural similarity and for quantifying the

structure-function relationship. This greatly differs from any

previously published work in terms of completeness, the use of

multi-fragment local substructures, and the fact that the

relationship to function was explored using no information about

functional sites or sequence patterns. Rules are easy to interpret

and allow for different types of data to be included in the model. In

the future we would like to in-cooperate this approach into a meta-

method where global structure similarity and sequence informa-

tion is also included.

Concerns have been raised whether predicted structures will

help in function prediction since these in silico methods mainly

predict correctly the protein core while function often depends on

surface-properties [3]. However, our results show that local

substructures, mainly related to the core, associate strongly with

some aspects of molecular function and in particular catalytic

activity. Our evaluations show that purely structure-based predic-

tions serve as a complement to predictions derived from sequence,

and that correct prediction also can be provided when no

sequence similarity exists. Hence, we have provided substantial

support for the viability of the goal of structural genomics, i.e.,

reducing the number of functionally uncharacterized proteins

through structure determination and function prediction.

Materials and Methods

Figure 4 gives a schematic overview of our method for function

prediction. Details are given in this section.

Library of local substructures of proteins
A local descriptor of protein structure is a set of short backbone

fragments centered in three dimensions around a particular amino

acid [25,26]. A local descriptor is built by a) identifying all close

amino acids within a radius of 6.5 Å (an amino acid is represented

as the point on the vector [Ca,Cb] that lies 2.5 Å away from Ca), b)

for each close amino acid, adding four sequence neighbors, two

from each side, to obtain continuous backbone fragments of five

amino acids, and c) merging any overlapping fragments into

segments. We computed local descriptors from all amino acids in a

representative set of protein domains from PDB with less than

40% sequence identity to each other (ASTRAL version 1.57 [30]).

This resulted in 374,558 descriptors from 4006 domains. We then

constructed a library of commonly reoccurring local descriptors by

a) for each local descriptor identifying a group of structurally

similar local descriptors and b) selecting a set of 4197

representative, partially overlapping descriptor groups. We only

considered groups with at least seven descriptors with at least

three non-overlapping sequence fragments.

Proteins in this study were represented as strings of 0’s and 1’s

indicating whether the protein structure matched the correspond-

ing local substructures or not. This was done for proteins with

domains in ASTRAL 1.57 (i.e., training set) as well as for proteins

in ASTRAL 1.67 with less than 40% sequence identity to the

training set (i.e., external test set).

Gene Ontology annotations
GO is an organism-independent controlled vocabulary for

describing the cellular role of genes and gene products in terms of

molecular functions (i.e., tasks performed by individual gene

Figure 4. Overview of the function prediction method. A library of local descriptors of protein structure is built from a representative subset of
PDB (i.e. training set). The library is used to represent protein structures, and a model that discriminates classes of Gene Ontology annotations is
induced using combinations of local substructures. The model is evaluated both internally and on an external test set.
doi:10.1371/journal.pone.0006266.g004
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products), biological processes (i.e., broad biological goals

accomplished by an ordered assembly of molecular functions),

and cellular components (i.e., locations where gene products are

active).

We obtained annotations from the GO homepage (http://www.

geneontology.org) [32] for the proteins used to build the local

substructure library described earlier (2878 proteins with 4006

protein domains in ASTRAL). We distributed these annotations

(upwards) in the GO graph (version 1.419), and discarded all GO

terms (nodes) used to annotate less than ten proteins. We then

selected, among the remaining terms, the most specific terms as

our training classes (Table 1, Table S3). By only considering GO

terms used to annotate at least ten proteins, some annotations were

lost. However, a majority of the proteins kept at least one

annotation, indicating that there is a set of large classes providing

at least one annotation for almost every protein, and that the

additional annotations often are from less populated GO terms.

Furthermore, selecting specific classes as training classes resulted in

the loss of some general annotations.

Significant GO classes in descriptor groups
We used the hypergeometric distribution to calculate p-values

reflecting to which degree proteins annotated to a particular GO

class were over-represented in the descriptor group. We then used

false discovery rate (FDR) [39] controlled at 0.05 to define statistically

significant local descriptors. FDR is a method for correcting for

multiple hypotheses in statistical hypothesis testing.

In the library, 84% of the descriptor groups had a significant

overrepresentation of proteins annotated to at least one of the 113

molecular function classes (FDR controlled at 0.05). Correspond-

ing numbers for the 139 biological processes and 30 cellular

components were 77% and 29%, respectively. All GO classes for

all three parts of GO were significantly overrepresented in at least

one descriptor group (with the exception of the cellular component

GO:0005938: cell cortex). See Table S1 for details.

It is a fundamental principle in machine learning that a higher

ratio of examples to features produces models that perform better

on unseen cases (given the same class separability). To cope with

the large number of structural features (i.e., 4197 local

substructures) compared to the number of proteins (2815 for

molecular function) in this study, we only used FDR significant

descriptor groups to induce rule models.

CATH
CATH [33] (version 2.6.0) is a classification tree that classifies

domain structures, in increasing specificity, according to class (C),

architecture (A), topology (T) and homologous superfamily (H).

Class is assigned according to the secondary structure composition

and packing of the structure domain. This is done automatically in

90% of the cases. Architecture refers to the overall shape of a

domain structure in terms of the relative orientations of the

secondary structure elements. Architecture is assigned manually.

Topology refers to the connectivity of the secondary structure

elements in otherwise similar architectures, and the assignment is

done automatically. Finally, homologous superfamily refers to the

proteins that are homologues as determined by sequence

similarity. These assignments are also done manually.

Local descriptors are classified into groups according to the

relative positioning and orientation of their segments. Hence this

corresponds to architecture in CATH. However, CATH archi-

tecture is too general for function prediction (results not shown).

Moreover, CATH homologous superfamily would introduce

sequence similarity into the analysis and would therefore obscure

the pure structure-function signal. Hence we opt for using CATH

topology (i.e. fold) in this paper rather than CATH homologous

superfamily or other, more manually inferred databases [11].

Sequence-based predictions
The sequence comparison program PSI-BLAST [1] was used to

obtain sequence-based predictions. Each domain in the external

test set was blasted against the training set with a sequence profile

obtained using the non-redundant sequence database of NCBI

(ftp://ftp.ncbi.nlm.nih.gov/blast/db/nr) (PSI-BLAST was run

with three iterations and an E-value threshold of 0.005 for

including a sequences in the model). The annotations for the

closest match in the training set (determined by E-value) were used

as predictions, and predictions for a protein were taken to be the

predictions for all its domains.

Contacts between local substructures
For each rule and each matching protein, we computed the

average fraction of residues in pairs of local substructure that were

in contact (residues common to both of the local substructures

were not considered). We defined two residues to be in contact if

the shortest distance between atoms in these amino acids was less

than 5 Å. This threshold is based on the hydrophobic contact

distance between ligands and proteins [40]. Hence, for each rule

we obtained the average number of contacts between pairs of

substructures in matching proteins and the standard deviation

indicating the stability of these contact surfaces over different

proteins. The average contact surface of a pair of local

substructures in rules encompassed 11% of the non-overlapping

residues in this pair with an average standard deviation of 9.3. For

comparison, we randomly sampled 1000 pairs of local substruc-

tures matching at least two proteins and where the substructures

occurred in at least one of the rules. The contact surfaces for

function-specific rules were significantly greater than for these

randomly sampled pairs (at P,2.2610216 using the Kolmogorov-

Smirnov test), while the standard deviations were significantly

smaller (also at P,2.2610216). Some large contact conformations

were particularly stable; 8.5% of the rules were associated with an

average contact surface that included more than 20% of the

residues and where the standard deviation was less than 5%. This

was only true for 2.8% of the randomly sampled local substructure

pairs.

Rule-learning
The rough set theory [27,28] constitutes a mathematical

framework for inducing rules from examples. We used this

framework, as implemented in the ROSETTA rough set system

[28] (http://rosetta.lcb.uu.se), for learning IF-THEN rules

associating combinations of local substructures of proteins with

particular GO classes. The framework has previously been used to

learn GO biological process from gene-expression time profiles

[35,41] (see Hvidsten et al. (2003) for a more theoretical/

mathematical treatment of the rule-learning method).

In principle, the method finds the minimal sets of local

substructures that discern a particular protein from all other

proteins annotated to a different GO class. One rule is then

constructed from each such set, so that the IF-part is the

combination of these local substructures and the THEN-part is

all GO classes used to annotate proteins matching the IF-part. If

the rule includes several GO classes, it means that the

corresponding protein is annotated with a GO class that cannot

be uniquely defined from the local substructure data (i.e., the class

is said to be rough). In this study, we used a genetic algorithm to

find approximate minimal sets that discern each protein from a

sufficiently large fraction (at least 90%) of the proteins from other
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GO classes. Rules from such approximate solutions are less likely

to overfit the data and handle noise better than exact solutions.

We compared the approach using rules based on minimal,

discerning subsets of local substructures, with the approach of

using all rules based on one single local substructure. Such very

simple decision rules, called 1R rules, were proposed by Holte

[42]. Using this approach we found that combinations were

important for the local descriptor approach, but did not help when

using CATH folds.

Prediction and evaluation
We tested the generalizing capability of our rule approach using

ten-fold cross-validation. The set of proteins was randomly divided

into ten equally sized subsets. A rule classifier was induced from

nine subsets (the training set) and used to classify the proteins in

the remaining subset (the test set). This procedure was repeated ten

times, so that each protein was in the test set once and in the

training set nine times.

A protein was classified by letting each matching rule cast votes

to the GO classes specified by the rule. The number of votes cast

by each rule to each class corresponded to the number of proteins

in the training set from that class that matched that rule (i.e., the

rule support). A p-value was then calculated for each class based

on the votes using the hypergeometric distribution. These p-values

were obtained during cross-validation and a ROC curve was

computed for each class plotting sensitivity against specificity for

all possible p-value thresholds. Sensitivity is TP/(TP+FN) and

specificity is TN/(TN+FP) where TP is True Positives, FP is False

Positives, TN is True Negatives and FN is False Negatives. The

ROC curve evaluates the threshold-independent performance of

the classifier. We reported the area under the ROC curve (AUC)

as a measure of performance. This value is between 0 and 1, where

1 signifies perfect discrimination while 0.5 signifies no discrimina-

tory power at all. When doing actual function predictions we used

p-value thresholds from the ROC curves corresponding to the

points maximizing sensitivity plus specificity (specificity was always

greater than 0.90 to control the number of false positives due to

the large number of classes).

By randomly shuffling the molecular function annotations we

showed that cross-validation AUC values equal to or greater than

0.7 are unlikely to be obtained by chance (P,0.01). Thus

AUC$0.7 was denoted statistically significant in this study.

Supporting Information

Table S1 All FDR significant local descriptor-GO class pairs. (a)

Molecular function: All FDR significant local descriptor-GO class

pairs. (b) Biological process: All FDR significant local descriptor-

GO class pairs. (c) Cellular component: All FDR significant local

descriptor-GO class pairs. PARAMETERS refer to the parame-

ters in the hypergeometric distribution used to compute the p-

values: N,n,k,x, where N is the number of protein-GO class pairs

in the data set, n is the number of proteins matched by the local

descriptor, k is the number of proteins in the GO class and x is the

number of proteins matched by the local descriptor and in the GO

class.

Found at: doi:10.1371/journal.pone.0006266.s001 (1.28 MB

PDF)

Table S2 All induced rules for molecular function. For each

Gene Ontology molecular function class in the THEN-part, the p-

value is given together with the parameters for the hypergeometric

distribution used to compute the p-values: N,n,k,x, where

N = 2725 is the number of protein-GO class pairs in the data

set, n is the number of proteins matched the IF-part of the rule, k is

the number of proteins in the GO class and x is the number of

proteins matched by the rule and in the GO class.

Found at: doi:10.1371/journal.pone.0006266.s002 (1.16 MB

PDF)

Table S3 Prediction performance. (a) Prediction performance.

10-fold cross-validation AUC estimates for all molecular function

classes (b) Prediction performance. 10-fold cross-validation AUC

estimates for all biological process classes (c) Prediction perfor-

mance. 10-fold cross-validation AUC estimates for all cellular

component classes

Found at: doi:10.1371/journal.pone.0006266.s003 (0.04 MB

PDF)

Table S4 The overrepresentation of GO classes with significant

AUC values. (a) Local substructures. The overrepresentation of

GO classes with significant AUC values (AUC. = 0.7) and not

significant values (AUC,0.7). P-values are calculated based on the

number of proteins and the number of GO classes in each of the

more general GO terms. (b) CATH folds. The overrepresentation

of GO classes with significant AUC values (AUC. = 0.7) and not

significant values (AUC,0.7). P-values are calculated based on the

number of proteins and the number of GO classes in each of the

more general GO terms.

Found at: doi:10.1371/journal.pone.0006266.s004 (0.01 MB

PDF)

Table S5 Protein disorder. (a) Local substructures. Protein

disorder. Average disorder in the top level of Gene Ontology

and correlation between predictive performance in terms of AUC

cross validation and protein disorder. (b) CATH folds. Protein

disorder. Average disorder in the top level of Gene Ontology and

correlation between predictive performance in terms of AUC cross

validation and protein disorder.

Found at: doi:10.1371/journal.pone.0006266.s005 (0.03 MB

PDF)

Table S6 Literature evaluation. Predictions and literature

evaluation of the 167 proteins with no homology to the training

set.

Found at: doi:10.1371/journal.pone.0006266.s006 (0.06 MB

PDF)
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