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Abstract

Much attention has recently been given to the statistical significance of topological features observed in biological
networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues
as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this
purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to
capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a
variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a
structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare
the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that
model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the
strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and
thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented
structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a
null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further
graph-based studies of protein conformation space and have important implications for protein structure comparison and
prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein
folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized
null model for RIGs, by comparing various RIG definitions against a series of network models.
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Introduction

Background and motivation
Network-based analyses of protein structures have received much

attention in recent years. In such a framework, protein structures

are modeled as ‘‘residue interaction graphs’’ (RIGs) where nodes

represent amino acid residues and edges describe pair-wise contacts

between residues. A contact between two residues is defined if the

distance between any pair of their heavy atoms is within a specified

distance cut-off. Several studies have related network topological

properties, such as network centrality, to protein folding and

binding mechanisms, as well as to protein stability and function. For

example, betweenness-centrality, the number of shortest paths that

pass through a node, can be utilized to identify key residues that act

as nucleation centers in protein folding [1], or that are involved in

protein-protein interactions [2]. On the other hand, closeness-

centrality, the average shortest path distance between a node and all

the other nodes in the network, suggests critical residues for protein

function [3,4] and viable circular permutants [5]. Conserved

residues that are responsible for maintaining a low average shortest

path length have been shown to be important for allosteric

communication [6], while conserved clusters of residues or highly

connected residues have been associated to protein stability [7,8].

Moreover, protein folding kinetics are topology-dependent. It has

been shown that contact order, the average sequence separation

over all contacting residues, as well as the number of non-local

contact clusters in residue interaction graphs (RIGs) correlate well

with folding rates [9,10]. The probability of a given conformation to

fold has also been linked to network topology [11]. Non-network-

topology-based, but related approaches model the geometry of

amino acid packings by a random packing of hard spheres from

condensed matter physics [12], or the geometry of the packing

around individual residues by the regular lattice model for sphere

packing [13].

Modeling biological networks is of crucial importance for any

computational study of these networks. Only a well-fitting network

model that precisely reproduces the network structure and laws

through which the network has emerged can enable us to

understand and replicate the underlying biological processes. A

good null model can be used to guide biological experiments in a

time- and cost-optimal way and to predict the structure and

behavior of a system. Since incorrect models lead to incorrect

predictions, it is vital to have as accurate a model as possible.

Thus far, graph null models that take into account the network

size and the overall degree distribution have been formulated in

the field of protein-protein interaction networks [14,15]. These

random models were utilized as the reference state to identify

interaction patterns that are over-represented in the experimen-
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tally observed networks [15] and to compare the behavior of

certain topological properties [14]. It has been argued that such a

realistic but simple approach for defining a null model might

wrongly identify as significant the motifs that result from other

topological features not taken into account by the null model [16].

Similarly, network analyses of protein structures have been

mainly focusing on the degree distribution. It has been shown that

the Poisson probability model best describes the degree distribu-

tion of RIGs [2,17,18]. However, when only long-range

interactions are considered, an exponential distribution with a

single-scale, fast decaying tail is observed. This distribution

exhibits, to some extent, scale-free properties [17]. Characteristic

path lengths and clustering coefficients of RIGs have been

modeled by a variant of small-world networks [19]. However, a

random rewiring of RIGs, that keeps the number of contacts of

each residue fixed, affects the characteristic path length and

clustering coefficient and thus such random networks lose the

observed small-world character of RIGs [18]. Therefore, the

choice of an appropriate network null model is of crucial

importance when determining the statistical significance of

network properties [18,20]. Despite the fact that previous network

analyses of RIGs have provided valuable insight, a null model that

captures the network organization of protein structures has not

been established. The only related work suggested that a coarser

representation of protein structures, in which nodes correspond to

secondary-structure elements, has the same network motifs as does

a variant of geometric graphs [21].

Our approach
Here, we address this important challenge of finding an

appropriate null model for protein structure networks. Geometric

random graphs model spatial relationships of objects: two objects

that are close enough in space will interact, whereas two distant

objects will not. For this reason, they are expected to mimic well

the underlying nature of packed residues in a protein. Motivated

by this premise, we assess the fit of this model to protein structure

networks and demonstrate that it indeed fits RIGs better than any

of the other analyzed network models. In addition to 3-

dimensional geometric random graphs (‘‘GEO-3D’’) [22], we also

used the following network models: Erdös-Rényi random graphs

(‘‘ER’’) [23], random graphs with same degree distribution as the

RIGs (‘‘ER-DD’’), Barabási-Albert type scale free networks (‘‘SF-

BA’’) [24], and stickiness-index based networks (‘‘STICKY’’) [25]

(see Methods).

Exact comparisons of large networks are computationally

infeasible due to the underlying subgraph isomorphism problem,

which is a problem of determining whether a graph contains a

given subgraph, and which can not be solved in polynomial time

[26]. Thus, to evaluate the fit of the data to the model networks,

we compare the RIGs to the model networks with respect to easily

computable network properties. We use GraphCrunch, our software

tool for large network analyses and modeling [27], to model RIGs

and to evaluate the fit of different models to the data. To overcome

the limitations introduced by using a single network property (such

as the degree distribution), we perform a fine-grained analysis of

RIGs that is based on a emphmultitude of network properties

(described in Methods). We use two highly-constraining graphlet-

based measures of structural similarity between two networks,

where graphlets are small substructures of large networks [28]:

relative graphlet frequency distance (RGF-distance) [28] and graphlet degree

distribution agreement (GDD-agreement) [29]. Additionally, we use five

standard network properties: the degree distribution, the clustering

coefficient, the clustering spectrum, the average network diameter, and the

spectrum of shortest path lengths.

We perform systematic analysis on various RIG definitions. In

addition to a series of distance cut-offs and the all-atom protein

representation, we examine two more protein representations.

First, we consider the sub-network that only takes backbone atoms

into account and is dominated by short-range contacts reflecting

secondary structure preferences. Second, we use the side-chain-side-

chain interaction network that considers side-chain directionality

and in which interacting residues are close in space but usually not

close in sequence (see Section ‘‘Data Sets’’).

Overall, the main question we address here is determining

which random graph model keeps the observed topological

characteristics of RIGs. We demonstrate that geometric random

graphs provide an excellent fit to RIGs of all fold-types and

contact definitions considered in this study. Also, we examine how

protein size, structural class, protein thermostability, and quater-

nary structure affect the strength of the fit. We show that

geometric random graphs capture the network organization of

RIGs better for larger than for smaller proteins. Moreover, for

proteins of the same size, the fit is better for proteins with low

helical content. Furthermore, the tighter packing of the solvent

accessible surface in thermostable proteins [30] leads to a worse fit.

Additionally, we conclude that the quaternary association of

proteins has no impact on the fit of geometric random graphs.

Finally, to illustrate the importance of using an appropriate

network null model, we perform network motif search in RIGs

with respect to different random graph models. We show that it is

important to choose GEO-3D model, to identify as specifically as

possible subgraphs that are statistically significantly over- and

under-represented. This might lead to unraveling of the important

features of the protein structural space.

Results and Discussion

Data Sets
First, we analyze single chain RIGs for nine structurally diverse

proteins: 1agd, 1fap, 1ho4, 1i1b, 1mjc, 1rbp, 1sha, 2acy and 3eca.

We construct multiple RIGs as undirected, unweighted graphs for

each of these proteins as follows. Two residues in a protein are

considered to interact if any heavy atom of one residue is within

the specified distance cut-off of any heavy atom of the other

residue. We set distance cut-offs to range from 4.0 to 9.0 Å

(Section S1.1). We examine various representations of residues,

hereafter referred to as contact types. We denote by ‘‘BB’’ (‘‘SC’’) the

RIGs that contain as edges only the residue pairs that have heavy

backbone (side-chain) atoms within the given distance cut-off. We

denote by ‘‘ALL’’ the most commonly used RIG representation, in

which all heavy atoms of every residue are taken into account

when determining residue interactions. Thus, in this data set, we

analyze 513 RIGs for the nine proteins constructed for 19 distance

cut-offs and the three contact types of ‘‘BB’’, ‘‘SC’’, and ‘‘ALL.’’

Henceforth, we refer to this data set as Data Set 1.

Next, to ensure that our results are applicable to a wide range of

proteins, we analyze an additional data set of 1,272 RIGs

corresponding to a non-redundant data set of 1,272 proteins, pre-

compiled by the PISCES server [31]. These RIGs are constructed

with the most commonly used ‘‘ALL’’ contact type and distance cut-

off of 5 Å. Henceforth, we refer to this data set as Data Set 2. Proteins

in this data set are of different size and they belong to four different

protein structural classes according to the Structural Classification

of Proteins (SCOP) [32] (Section S1.1): all-a proteins (class ‘‘A’’)

consisting entirely of a-helices, all-b proteins (class ‘‘B’’) consisting

entirely of b-sheets, a=b proteins (class ‘‘C’’) consisting of alternating

a-helices and b-strands along the backbone with b-strands
therefore being mostly parallel, and azb proteins (class ‘‘D’’)
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consisting of a-helices and b-strands that occur separately along

the backbone with b-strands therefore being mostly antiparallel.

Also, proteins in this data set have different quaternary structure

and are of different oligomerization order, as predicted by the

Protein Interfaces, Surfaces and Assemblies (PISA) server [33].

Finally, to examine the effect of RIG structure of thermostable

proteins to the fit of GEO-3D, we analyze a high quality data set of

94 pairs of proteins where in each pair, one protein comes from T.

maritima, a representative of thermophiles, and the other is its close

homolog from a mesophilic species [34]. Thermophilic proteins

are on average shorter and have higher average connectivities and

clustering coefficients compared to mesophilic ones [34]. For these

proteins, we construct RIGs using ‘‘ALL’’ contact type and

distance cut-off of 4.5 Å; the same criteria was used by Robinson-

Rechavi et al. [34]. We refer to this data set as Data Set 3. Details

about the analyzed data sets can be found in Section S1.1.

In total, we analyze 1,973 RIGs corresponding to 1,469

proteins. Below, we first evaluate the fit of GEO-3D to these

RIGs and then we analyze effects of protein size, class,

thermostability, and quaternary structure to the fit of GEO.

Topological Analysis
We find that all network properties offer support to the

superiority of the GEO-3D network model to a large number of

RIGs that correspond to a wide range of structurally diverse

proteins, constructed using various contact types and a wide range

of distance cut-offs. Given that RIGs considering only backbone or

side-chain atoms as interacting sites are quite different from one

another with respect to the set of interacting residues, the

robustness of our result across various RIG definitions is quite

surprising.

For all of the RIGs in Data Set 1, RGF-distances and GDD-

agreements between the RIGs and the model networks strongly

favor geometric random graphs (Figure 1 and Figure S1.1 to

Figure S1.9). Based on RGF-distances (with minimal exceptions

described below), the fit of the GEO-3D model is the best for all

nine proteins, all three contact types and all of the distance cut-

offs; the exceptions are the lowest distance cut-offs ([4.0–4.2]) Å for

‘‘SC’’ contact type for four out of nine proteins only. GDD-

agreement favors GEO-3D model for all proteins, all three contact

types, and all of the distance cut-offs lower than about 6.5 Å.

When larger distance cut-offs are used to construct RIGs, RIGs

become well-fitted by Erdös-Rényi (ER) random graphs, while it is

widely believed that ER random graphs are not a good model for

any real-world networks. We regard an overlap of the fit of GEO-

3D with ER random graphs in all nine proteins to be the

discriminative factor when suggesting the distance cut-off

threshold of 6.5 Å, since we observed it for most of the proteins

that we analyzed (Figure 1 A and Figure S1.1 to Figure S1.9 A–C).

Since choosing an optimal distance cut-off is an important

problem in network-based analyses of protein structures, our

results imply that distance cut-offs lower than 6.5 Å might need to

be used for RIG construction. Note however that a data set larger

than nine proteins might need to be analyzed before such a

generalization could be made.

The magnitude of GDD-agreement between RIGs and GEO-3D

graphs seems to be related to protein size. The two smallest proteins,

1mjc and 1fap, have GDD-agreements of up to around 0.7, while

the largest protein, 3eca, has much higher GDD-agreements of up

to 0.85. Following this observation, we analyze below the effect of

protein size on the strength of the fit of GEO-3D to RIGs in more

detail. Moreover, the RGF-distances between the RIGs and the

geometric random graphs are usually higher (meaning worse fit) for

‘‘SC’’ networks compared to networks of other contact types. Since

side-chains are more mobile compared to the rigid backbone [35],

we expect that ‘‘SC’’ networks form more complex interaction

patterns compared to networks that contain backbone interactions.

There is also a general trend that RGF-distance decreases with

increasing distance cut-off, independent of the network model.

Equivalently, GDD-agreement increases as the distance cut-off

increases for most of the models. Since both the smaller RGF-

distance and the larger GDD-agreement indicate improved fit of the

network model to RIG, these observations might suggest that for

higher distance cut-offs, graphlets of higher order are needed to

improve the quality of the fit to the data.

We also examine the fit of the network models to the RIGs with

respect to five standard network properties. Illustrations showing

Pearson’s correlation coefficients between the degree distributions

of the 513 RIGs constructed for the nine proteins and the

corresponding model networks are presented in Figure S1.10 to

Figure 1. The fit of network models to RIGs corresponding to 1i1b protein. (A) GDD-agreements and (B) RGF-distances between model
networks (ER, ER-DD, GEO-3D, SF-BA, and STICKY) and RIGs corresponding to 1i1b protein, that are constructed for ‘‘ALL’’ contact type and a series of
distance cut-offs between 4.0 and 9.0 Å. The larger the GDD-agreement in panel A, the better the fit. The smaller the RGF-distance in panel B, the
better the fit.
doi:10.1371/journal.pone.0005967.g001
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Figure S1.18. ER and GEO-3D models both have Poisson degree

distributions and thus are tied in that they both reproduce well the

degree distributions of all of the 513 RIGs. ER-DD networks have

exactly the same degree distribution as the data by construction

and thus they reproduce this property perfectly. Similarly,

STICKY model networks are constrained to have the expected

degree distribution of real networks (see [25] for details). Only BA-

SF networks have power-law degree distributions by construction

and thus are expected to have worse fit to RIGs with respect to this

property. Indeed, all of these are observed for all of the 513 RIGs

that we analyzed (Figure S1.10 to Figure S1.18).

Also, GEO-3D model networks reproduce well the clustering

spectra of the RIGs for distance cut-offs smaller than 8 Å (Figure

S1.10 to Figure S1.18). Similarly, the average clustering coefficients of

almost all of the 513 RIGs are generally best reproduced by GEO-3D

networks (Figure S1.19 to Figure S1.27). There exist very few

exceptions to this observation. For a very small number of distance

cut-offs lower than 5.0 Å in the ‘‘SC’’ RIGs of five proteins, the

clustering coefficients of BA-SF networks describe the best those of

the corresponding RIGs. Interestingly, all small proteins with size less

than 105 residues (1agd, 1fap, 1mjc, 1sha, 2acy) are included in the

set of these five proteins. Also, we notice the trend that for all proteins

and all contact types, the higher the cut-off, the better the fit of

clustering coefficient between the GEO-3D model and the data. The

average diameters of all RIGs are best reproduced by the GEO-3D

networks for all distance cut-offs of ‘‘BB’’ and ‘‘ALL’’ contact types

(Figure S1.19 to Figure S1.27). The same is true for almost all of the

RIGs of ‘‘SC’’ contact type; only for the lowest distance cut-offs of

several proteins, ER and ER-DD models provide a better fit. Note

also that for these ‘‘SC’’ RIGs of low distance cut-offs, the diameters

of the RIGs are close to being within one standard deviation of the

average diameters of GEO-3D networks. Finally, GEO-3D model

provides the best fit to RIGs with respect to shortest path length

spectra. This is true for all nine proteins, all three contact types, and

all 19 distance cut-offs with the exception of the lowest distance cut-

offs for ‘‘SC’’ contact type (Figure S1.28 to Figure S1.36).

To examine the fit of model networks to RIGs corresponding to a

larger number of proteins, we analyze Data Set 2 (described in

Section ‘‘Data Sets’’). We summarize the results of the fit of each of

the five network models to these 1,272 RIGs with respect to each of

the above described network properties, by measuring the percentage

of RIGs for which a given network model is the best-fitting null model

for a given property, the percentage of RIGs for which a given

network model is the second best-fitting null model for a given

property, etc. (Figure 2). GEO-3D is the best-fitting null model for

almost all RIGs with respect to all network properties except for the

degree distribution where the fit is as described for Data Set 1 above.

Similar results are obtained for all RIGs in Data set 3: GEO-3D

is the best-fitting null model for almost all RIGs corresponding to

both mesophilic (Figure S1.37) and thermophilic proteins (Figure

S1.38). This is true for all network properties, with the exception of

the degree distribution, which behaves as explained above.

From the above analyses, we conclude that GEO-3D graphs are

the best-fitting null model for various graph representations of

protein structures. This result is encouraging, since GEO-3D

graphs model spatial relationships of objects, and therefore, they

are expected to mimic well the underlying nature of packed

residues in proteins. Furthermore, our result concurs with previous

studies focusing on degree distributions and small-world characters

of protein structure networks [2,17,18].

The quality of the fit of geometric random graph model
We first analyze whether the strength of the fit of GEO-3D to

RIGs changes with RIG size. Here, we consider all 1,272 RIGs

from Data Set 2. Our data points are network property values

describing the agreement of RIGs of a given size and the GEO-3D

model. We find that the fit of GEO-3D is strongly correlated with

RIG size and that this correlation can be expressed as a power-law

function. We find such function that fits the data in the least-

squares sense, for each of the network properties. By quantifying

the goodness of fit of such functions to the observed correlation

data using R-Square measure, we observe that their fit is good for

most network properties (Section S1.2.1 and Figure S1.39 to

Figure S1.41).

Specifically, as protein size increases, the fit also noticeably

increases with respect to GDD-agreement and degree-distribution.

This trend is also observed, in a somewhat less pronounced way,

with respect to RGF-distance. Surface residues are less well packed

compared to buried residues, leading to a heterogeneous density

distribution. However, for larger proteins, the percentage of buried

residues, as well as the packing density of the solvent-exposed

residues increase [36]. Therefore, for larger proteins, the degree

distribution and the interaction patterns of the residues become

more homogeneous, and thus, the network topology is better

reproduced by the geometric random graphs. The fit of GEO-3D

improves rapidly up to approximately 200 residues and then it

slowly converges (Figure S1.39). This behavior has also been

observed in the average protein packing as a function of the size

and has been attributed to the size distribution of mono-domain

proteins [36].

Average diameters of both RIGs and GEO-3D graphs increase

with protein size, while clustering coefficients slightly decrease

(Figure S1.39 E and F). Thus, the fit of GEO-3D to RIGs with

respect to these properties is independent of protein size. Similarly,

the fit of GEO-3D shows no correlation with protein size with

respect to clustering spectrum and spectrum of shortest path

lengths (Figure S1.39 D and G).

Second, we examine whether the strength of the fit of GEO-3D

depends on the protein secondary structure. We analyze RIGs in

Data Set 2 that belong to four structural classes described in

Section ‘‘Data Sets.’’ We show that within each of the structural

classes, there exists a strong correlation between the fit of GEO-3D

and protein size with respect to most network properties (Figure

S1.40 and Figure S1.41). We evaluate the statistical significance of

the difference of the fit of GEO-3D across structural classes by

performing ANOVA statistical test; low p-values indicate that the

fit of GEO-3D to proteins of a given size belonging to the classes

being compared is significantly different (Section S1.2.2). Since

GDD-agreement is not only the most constraining network

property, but also encompasses all other network properties [29],

we perform this analysis with respect to GDD-agreement only.

The difference in the fit is statistically significant over all class pairs

(p-values,0.077) apart from A–C and B–D pairs (Section S1.2.2

and Figure S1.42 A). In class C proteins, the percentage of residues

that are in a-helices is higher than the percentage of residues that

are in b-strands compared to class D proteins (Figure S1.43 A).

That is, classes A and C have higher helical content than classes B

and D, and therefore, they are structurally more similar to one

another than to the remaining two classes. This further validates

the correctness of our GEO-3D model, since it successfully

distinguishes between structurally different classes.

Moreover, for larger proteins with more than 300–350 residues,

the fit of GEO-3D is the highest for class B proteins, followed by

class D, class C, and class A proteins (Figure S1.42 B). This implies

that the fit of GEO-3D decreases with a decrease in b-strand
content in a protein. On the other hand, for smaller proteins with

less than 300–350 residues, the fit of GEO-3D to class D proteins

is higher than to class B proteins, even though they have lower
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b-strand content compared to class B proteins. Nonetheless, this

could be attributed to the higher percentage of non-regular

secondary structural elements, being neither helix nor strand (e.g.,

loop) in class B proteins of small size (Figure S1.43 B).

Additionally, we verify that class C proteins are more compact

compared to proteins of equal size from other structural classes

(Figure S1.44 B and C), confirming a previous result by

Galzitskaya et al. [37].

Third, after verifying that GEO-3D is the best-fitting model for

both mesophilic and thermophilic RIGs from Data Set 3 (Section

‘‘Topological Analysis’’), we evaluate the effect of the structural

features responsible for protein thermostability on the strength of

Figure 2. The fit of network models to RIGs in Data Set 2. The ranking of five network models (ER, ER-DD, GEO-3D, SF-BA, and STICKY) for
1,272 RIGs corresponding to the 1,272 proteins, constructed with ‘‘ALL’’ contact type and distance cut-off of 5 Å. The ranking is based on: (A) GDD-
agreements between RIGs and model networks, (B) RGF-distances between RIGs and model networks, (C) agreements between clustering spectra of
RIGs and model networks, (D) agreements between clustering coefficients of RIGs and model networks, (E) agreements between spectra of shortest
path lengths of RIGs and model networks, and (F) agreements between average diameters of RIGs and model networks.
doi:10.1371/journal.pone.0005967.g002
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the fit of GEO-3D. It has been shown that thermophilic proteins are

on average shorter and have higher average connectivity and

clustering coefficient compared to mesophilic ones [34]. We confirm

this although we use different RIG definition (Table S1). Moreover,

the increase in packing density is observed for highly connected

residues [34] and for solvent-exposed ones [30]. We observe the

difference in the fit of GEO-3D graphs to thermophilic and the

corresponding mesophilic proteins (Figure S1.45). We examine the

statistical significance of the difference using Student’s pairwise t-test

(Section S1.2.3). We demonstrate that the fit is significantly higher

for mesophilic than for thermophilic proteins with respect to GDD-

agreement, degree distribution, and clustering coefficient (Table

S1). Thus, the tighter packing of the solvent accessible surface in

thermostable proteins seems to lead to a worse fit. Additionally,

consistent to our results described above, it is possible that higher fit

of GEO-3D to mesophilic proteins is due to their larger size.

Similarly, we examine the effect of the quaternary structure to

the fit of GEO-3D to RIGs. The network topology on the surface

of a protein is expected to differ between monomers and

multimers. Protein-protein interfaces tend to be more hydrophobic

than the non-interface surface, while interface residues are more

well packed [38]. We analyze 75 pairs of monomeric and

multimeric proteins from Data Set 2. Proteins in each pair have

equal size and belong to the same structural class, eliminating any

bias due to these structural features. Although we show that

monomers have significantly higher number of contacts per

residue and lower average diameter compared to multimers, we

observe no significant difference in the fit of GEO-3D between

monomers and multimers, with respect of any of the network

properties (Section S1.2.4 and Table S2).

Application to Motif Detection
To illustrate the importance of the choice of the appropriate

null model to a network-based analysis of protein structures, we

examine the issue of identifying network motifs in RIGs. Since

motifs (anti-motifs) are over-represented (under-represented)

subgraphs that appear in a real-world network at frequencies that

are much higher (lower) than those of their corresponding random

graph models [15], motif discovery requires comparing real-world

networks with model networks. Using an inadequate model may

identify as over-represented (under-represented) subgraphs that

otherwise would not have been identified as motifs (anti-motifs).

For example, all non-geometric models that we analyzed, which

preserve only some topological properties of RIGs, tend to identify

as significantly (under-) over-represented almost all analyzed

subgraphs (Figure 3). Therefore, it is questionable whether these

non-discriminative network models could be used to accurately

assess the statistical significance of subgraphs in RIGs that are

relevant with respect to network structure. We show that among

all analyzed models, GEO-3D model exhibits the highest

‘‘specificity’’ in the selection of network motifs: only 5–11 out of

29 subgraphs, depending on a protein, are identified as (anti-)

motifs when GEO-3D graphs are used as the null model (Figure 3

and Figure S1.47). Since we have shown above that GEO-3D

networks provide the best fit to RIGs, this is an additional

validation that GEO-3D is an optimal null model for RIGs.

Figure 3. Motif counts for RIGs in Data Set 1 using different network null models. The total number of motifs and anti-motifs identified in
nine RIGs corresponding to the nine proteins (1adg, 1fap, 1ho4, 1i1b, 1mjc, 1rbp, 1sha, 2acy, and 3eca), constructed with ‘‘ALL’’ contact type and
5.0 Å distance cut-off. The motifs and anti-motifs were identified with respect to the eight network models (ER, ER-DD, GEO-3D, BA-SF, STICKY, UA-ER-
DD, CLUST, and MET). The threshold values used for motif selection are displayed within the colored textbox (P-value lower than 0.01 and M-factor
greater than 0.1).
doi:10.1371/journal.pone.0005967.g003
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More specificaly, we use mfinder [39] to search for all

undirected subgraphs on 3, 4, and 5 nodes (Figure S1.46) in

RIGs corresponding to the nine proteins in Data Set 1. In addition

to our five network models, we use the three standard models

supported by mfinder (Section S1.3). In Figure S1.48 to Figure

S1.56, we present the absolute Z-scores and M-factors (described

in Section S1.3), i.e., the motif selection criteria, for all 3- to 5-

node subgraphs in each of the nine RIGs, with respect to each of

the eight network models. We do not attempt to relate the

identified network motifs with protein 3-dimensional structure or

function; the purpose of our analysis is to demonstrate that non-

geometric null models, that do not fit well the RIG network

structure, might wrongly identify numerous subgraphs as impor-

tant with respect to network structure. Furthermore, we

demonstrate that the results obtained by using a geometric

network model can not be reproduced with other network models

by simple adjustment of the motif selection criteria (Section S1.3).

Comparison with Other Studies
Raghunathan and Jernigan focused on examining the packing of

residues around each individual residue, by analyzing the distribution

of the number and the regularities in the directions of sequentially

non-adjacent residues around a central residue [13]. They found that

the geometry of this packing around a residue conforms almost

perfectly to the regular lattice model of dense packing of uniform

spheres. Their conclusion holds for a single distance cut-off (6.5 Å )

and for ‘‘non-bonded,’’ i.e., sequentially non-adjacent, residue

interactions only. The authors provide a limited evaluation, on four

proteins only, of the fit of the ‘‘layered lattice’’ obtained by forming an

array of repeated residue-centered lattice points in space to the overall

protein structures. In contrast, we examine the fit of GEO-3D to

1,973 RIGs constructed for a set of 1,469 structurally different

proteins using a series of distance cut-offs and RIG definitions.

Furthermore, their study differs from ours in the following: when

evaluating the fit of residue packing to the layered lattice, the authors

simply compute RMS deviation between the corresponding pairs of

actual residue positions in a protein and points in the lattice. Thus,

they compute the distances between the corresponding points in the

real-world 3-dimensional space. They do not compare the structure of

the two networks (the RIG and the lattice) from the aspect of graph-

theory. For our GEO-3D model and for RIGs, we do not care about

the exact spatial positions of the nodes, but about their graph

structure. Thus, GEO-3D graphs could be viewed as existing in an

‘‘abstract’’ (or ‘‘latent’’) space and the comparison of the topologies of

GEO-3D and RIG networks is based on network structural

properties rather than on spatial distances between nodes.

Soyer et al. analyze the packing of residues in proteins by

modeling protein structures with Voronoı̈ tessellation (VT), i.e., by

dividing the real-world 3-dimensional space occupied by a protein

structure into a set of VT cells, one cell per residue [12]. The mean

distances between amino acids in their study are in the 6.8–7.5 Å

range. They observe that two of the characteristics of the VT cells,

averaged over all 40 proteins that they analyze, are similar to those

of random packing of hard spheres in condensed matter physics.

The good fit of random hard sphere packing to protein structures

could be explained by our finding that residue distances above

6.5 Å yield RIGs whose structure is consistent with the structure of

Erdös-Rényi random graphs (see ‘‘Topological Analysis’’ section

above). Similar to Raghunathan and Jernigan [13], Soyer et al. do

not perform graph-theory-based network structural comparisons,

which makes it hard to directly compare their study with ours.

Finally, Bartoli et al. explicitly use network-based approaches to

examine RIGs [19]. However, they do not model RIGs in the

same way we do: whereas we generate GEO-3D random networks

using a generation process that does not require any knowledge

about a real-world RIG other than its size, Bartoli et al. simply

create randomized contact maps (i.e., RIGs). Thus, their

‘‘necklace’’ model is not a network model, but a RIG

randomization strategy: in the ‘‘necklace’’ model, all residues on

the backbone of a RIG are connected as on the thread of a

necklace, and also non-backbone-adjacent residues interact with a

probability proportional to their proximity on the thread (i.e., on

the protein sequence). Thus, the necklace model is not 3-

dimensional, since it is based on sequence distances between

residues rather than on their spatial distances. Therefore, this

model could be considered as a distorted version of 1-dimensional

geometric random graph, or as a variant of the Watts-Strogatz

small-world network [40]. Since proteins exist in 3-dimensional

space, it is not to be expected that a 1-dimensional network model

would provide a better fit to them than a 3-dimensional network

model. The reported wellness of fit of the ‘‘necklace’’ model is

likely due to the examination of only the clustering coefficients and

characteristic path lengths averaged over all analyzed proteins. In

contrast, we examine a much more comprehensive set of network

properties and do not average them over all RIGs.

Future Directions
Our geometric random graph null model may facilitate further

graph-based studies of protein conformation. This analysis may

also have important implications for protein structure comparison

and prediction. For example, Contact Map Overlap (CMO)

problem [41] measures protein structural similarity based on a

graph alignment of contact maps; a contact map is simply the

adjacency matrix of a RIG, while contact map similarity is the

maximum number of common contacts that can be efficiently

approximately computed. A correct random graph model could

provide means of assessing the statistical significance of contact

map similarity. Expectation scores (E-values) express the proba-

bility that the observed similarity could have arisen by chance. E-

values for the traditional structural alignment are derived by using

the background information, i.e., the distribution of alignment

scores for random proteins that are structurally dissimilar to the

query protein. Instead, given our null model, expectation scores

can be defined based on the alignment of the query contact map

against a random contact map generated according to our model.

Additionally, specific topologies of secondary structure elements

or their parts have already been shown to constitute known

structural or functional motifs, such as the helix-turn-helix motif

found in DNA-binding proteins [42], or the catalytic triad of the

serine proteases [43]. Our results may further facilitate the discovery

of such important motifs from the network structure of RIGs, even

in the absence of homologs. Instead of comparing the protein of

interest against existing structures, it might be sufficient to compare

the observed RIG against the randomized counterparts.

Finally, it would be interesting to investigate to which extent our

analysis could contribute to reliable discriminatory functions that

can distinguish near-native conformations from non-native ones.

Graph properties of RIGs have been already utilized in this

direction [44]. Similarly, the strength of the fit of geometric

random graphs to the RIG of a predicted conformation might

indicate how native-like the specific protein conformation is.

The null model proposed here is only topologically similar to

protein structure networks. A possible area for improvement is to

refine it based on additional biophysical properties. According to

the model, nodes correspond to points in space distributed

uniformly at random and without any preference. In reality, two

residues prefer to be connected based on their sequence

separation, their residue type, their secondary structure, or even
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their neighborhood. Moreover, the chain connectivity imposes

constraints that are currently neglected. Thus, further refinements

of the geometric model, that would incorporate these biological

properties, are expected to yield an even better fitting null model

for protein structure networks.

Methods

Network Models
For each RIG, we evaluate the fit of five different random graph

models. The network models are implemented as follows. Erdös-

Rényi random graphs (‘‘ER’’) are generated by using the LEDA

[45] implementation of Gn,m, a random graph G with n nodes and

m edges. These networks typically have small diameters, Poisson

degree distributions, and low clustering coefficients. Random

graphs with the same degree distribution as the data (‘‘ER-DD’’)

are generated by using the ‘‘stubs method’’ (see section IV.B.1 of

[46] for details). This model captures the degree distribution of a

real-world network while leaving all other aspects as in ER model.

Scale-free (‘‘SF-BA’’) networks are generated by using the Barabási-

Albert preferential attachment model [24], in which newly added

nodes preferentially attach to existing nodes with probabilities

proportional to their degrees; this model results in networks with

power-law degree distributions. Geometric random graphs

(‘‘GEO’’) are defined as follows: nodes correspond to uniformly

randomly distributed points in a metric space and edges are created

between pairs of nodes if the corresponding points are close enough

in the metric space according to some distance norm. A variant of

geometric random graphs in this study (‘‘GEO-3D’’) uses 3-

dimensional Euclidean boxes and the Euclidean distance norm.

Finally, ‘‘stickiness network model’’ (‘‘STICKY’’) is based on

stickiness indices, numbers that summarize node connectivities: the

probability that there is an edge between two nodes in STICKY

model networks is directly proportional to the stickiness indices of

the nodes, i.e., to the degrees of their corresponding residues in real-

world RIGs (see [25] for details). Networks produced by this model

have expected degree distributions of real-world networks.

Model networks were generated and compared to RIGs using

GraphCrunch [27]. For all random graph models, parameters are

chosen in such way that each of the generated model networks that

corresponds to a RIG has the same number of nodes and the

number of edges within 1% of those in the RIG. We generated 30

networks per random graph model for each of the 1785 RIGs.

Thus, in addition to analyzing 1785 RIGs, we also analyzed

563061785 = 267,750 model networks corresponding to the

RIGs and compared them to the RIGs (see Section ‘‘Network

Comparisons’’).

Network Comparisons
RIGs are compared to the corresponding model networks with

respect to two graphlet-based local and five standard global network

properties.

Local Network Properties. We used the following two

measures of local structural similarities between two networks:

relative graphlet frequency distance (RGF-distance) [28] and

graphlet degree distribution agreement (GDD-agreement) [29]

(defined below). They are based on graphlets, small connected

non-isomorphic induced subgraphs of large networks [28].

Graphlets differ from network motifs [15] since they must be

induced subgraphs, whereas motifs are partial subgraphs. An

induced subgraph must contain all edges between its nodes that

are present in the large network, while a partial subgraph may

contain only some of these edges. Moreover, graphlets do not need

to be over-represented in the data when compared with

‘‘randomized’’ networks while motifs do. Since the number of

graphlets on n nodes increases exponentially with n, the RGF-

distance and GDD-agreement computations are based on 2- to 5-

node graphlets (see Figures 1 in [28] and [29], respectively).

RGF-distance compares the frequencies of the appearance of all 2-

to 5-node graphlets in two networks. GDD-agreement generalizes the

notion of the degree distribution to the spectrum of graphlet degree

distributions (GDDs). The degree distribution measures the number of

nodes of degree k, i.e., the number of nodes ‘‘touching’’ k edges, for

each value of k, where an edge is the only graphlet with two nodes.

GDDs generalize the degree distribution to other graphlets: they

measure for each graphlet on 2 to 5 nodes, the number of nodes

‘‘touching’’ k graphlets at a particular node. The node at which a

graphlet is ‘‘touched’’ is relevant, because it is topologically

important to distinguish between nodes ‘‘touching’’, for example,

a linear path on three nodes at an end-node or at the middle node.

Thus, the ‘‘symmetries’’ between nodes of a graphlet need to be

taken into account. This is summarized by 73 automorphism orbits for

2- to 5-node graphlets (see [29] for details). For each of the 73 orbits

j, we measure the jth GDD, i.e., the distribution of the number of

nodes ‘‘touching’’ the corresponding graphlet at orbit j (thus, the

degree distribution is the 1st GDD). We compare the jth GDDs of

two networks for each j and combine the values of the comparisons

into the GDD-agreement of two networks (see [29] for details);

GDD-agreement is scaled to be between 0 and 1, where 1 means

that the two networks are identical with respect to GDD-agreement.

Since GDD-agreement encompasses the fit of each of the 73 GDDs

of the networks being compared, it is a very strong measure of

structural similarity between two networks.

Global Network Properties. We used the following global

network properties: the degree distribution, the average clustering

coefficient, the clustering spectrum, the average network diameter,

and the spectrum of shortest path lengths. They are defined as

follows. The degree of a node is the number of edges incident to the

node. The degree distribution, P(k), describes the probability that a

node has degree k. The clustering coefficient of node z in a network,

Cz, is the probability that two nodes x and y connected to the

node z are themselves connected. The average of Cz over all nodes

z of a network is the clustering coefficient, C, of the network. The

distribution of the average clustering coefficients of degree k nodes

is the clustering spectrum, C(k). The smallest number of links that have

to be traversed to get from node x to node y in a network is called

the distance between nodes x and y and a path through the network

that achieves this distance is called the shortest path between x and

y. The average of shortest path lengths over all pairs of nodes in a

network is called the average network diameter. The spectrum of shortest

path lengths is the distribution of shortest path lengths between all

pairs of nodes in a network.
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