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Abstract

Background: Non-coding RNAs (ncRNAs) have important functional roles in the cell: for example, they regulate gene
expression by means of establishing stable joint structures with target mRNAs via complementary sequence motifs.
Sequence motifs are also important determinants of the structure of ncRNAs. Although ncRNAs are abundant, discovering
novel ncRNAs on genome sequences has proven to be a hard task; in particular past attempts for ab initio ncRNA search
mostly failed with the exception of tools that can identify micro RNAs.

Methodology/Principal Findings: We present a very general ab initio ncRNA gene finder that exploits differential
distributions of sequence motifs between ncRNAs and background genome sequences.

Conclusions/Significance: Our method, once trained on a set of ncRNAs from a given species, can be applied to a genome
sequences of other organisms to find not only ncRNAs homologous to those in the training set but also others that
potentially belong to novel (and perhaps unknown) ncRNA families. Availability: http://compbio.cs.sfu.ca/taverna/smyrna
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Introduction

A non-coding (nc)RNA is any RNA that is transcribed but not

translated into a protein. ncRNAs have diverse functionalities in

the cell such as regulation of gene expression by means of

interacting with target mRNAs and prohibiting their translation

[1]. Recent discoveries have pointed to the abundance of ncRNAs;

for example up to 62% of the mouse genome sequence seems to be

transcribed but not translated [2,3]. Determining the sequence,

structure and functionality of ncRNAs provides a major scientific

challenge that will need to be addressed in the coming years.

The advent of novel sequencing technologies (such as the

pyrosequencing based technology developed by 454 Life Sciences

[4]) promises a significant growth in the number of available

ncRNA sequences. Unfortunately, the size limitations on the

fragments that can be sequenced by these technologies necessitate

the development of alternative, in particular computational

approaches to the exploration of longer ncRNAs.

Discovering ncRNA genes on a given genome sequence is a

challenging task, quite different from that of discovering protein

coding genes. Unlike protein coding RNAs, ncRNAs lack key

sequence signals such as start and stop codons, codon bias or

promoter regions [5]. Furthermore, protein coding RNAs are

resistant to frame shifts and they have many more silent mutations

than other parts of genome; such observations which can be used

towards the discovery of protein coding genes are not valid for

ncRNA genes. Thus existing computational models and tools for

protein coding gene discovery can not be applied directly to

ncRNA genes discovery; novel approaches are needed.

In [5] three main computational problems related to the

exploration of ncRNAs are identified: (i) ncRNA validation: given

one or more input sequences, determine whether they are ncRNAs

or not; (ii) ncRNA homolog search: given one or more members of

an ncRNA family (with or without structural information), search

for other members of the same family on a geneome sequence; (iii)

ab initio ncRNA discovery: given general sequence and structural

properties of ncRNAs discover novel ncRNA sequences (which

may not belong to any known ncRNA families) in a genome

sequence. Following [5] we overview known approaches to each

one of these problems, discuss the main challenges and finally

summarize our contributions.

ncRNA validation
Arguably the most successful set of computational tools for

ncRNA exploration have been developed for the problem of

ncRNA validation. Many of these tools aim to detect conserved

structures among functionally similar ncRNAs of related species.

For example,the QRNA program by Rivas and Eddy [6] looks at

covariation patterns in an alignment of two sequences and decides

whether they are ncRNAs, protein coding RNAs or neither. The

probability of an ncRNA is calculated through the distribution of

covarying mutations (and the structure they imply) modeled via a a

stochastic context free grammar. Coding region probability is

calculated using a Hidden Markov Model (HMM) which considers

mutations that do not change the final protein product. The

probability of the sequences being neither an ncRNA nor a protein

coding RNA is calculated by another HMM which considers
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mutations that take place independent of position. The final

classification is performed by a Bayes classifier.

A follow-up to QRNA by Bernardo et al. is ddbRNA [7], a

program for finding all potential stems that are conserved in an

alignment of multiple sequences. The program commits itself to a

particular stem according to its composition especially with respect

to the number of covarying mutations in it. If the number and

distribution of such stems are significantly different from those that

can occur in the randomly shuffled version of the alignment, then

the alignment and thus the sequences are declared as ncRNAs.

Another paper in this direction by Coventry et al. presents a

similar tool, MSARI [8] for identifying conserved stems in an

alignment of a number of (10–15) potential ncRNA sequences. In

contrast to ddbRNA, MSARI uses the RNAfold program for

predicting the independent secondary structures of the input

sequences. For each predicted stem MSARI considers all 7 nt

blocks which are aligned to each other (to produce potential

common stem loops); each such alignment is considered to be of

interest as a function of its composition, especially the number of

covarying mutations it involves. A distribution mixture model is

then used to determine if the resulting set of stem loops are

significant.

The program EvoFold [9] by Pedersen et al. extends QRNA -

which works on a pair of sequences- to multiple sequences by a

phylogenetic footprinting approach. The paper [9] constructs a

whole-genome alignment of the human with 7 other species (with

varying evolutionary distances to human), to obtain over 1 million

conserved regions covering 3.7% of the whole human genome.

From these regions, EvoFold was able to return over 48000

candidate conserved structures; approximately 18500 of these

structures are estimated to be true positives, forming about 10000

ncRNA transcripts.

Recently, Washietl et al. developed the program RNAz [10]

which incorporates structural conservation with thermodynamic

stability. RNAz uses up to 6 sequences from various species to

decide if the sequences are indeed ncRNAs from the same family.

A secondary structure for each input sequence is predicted via

RNAfold and a consensus structure is obtained by aligning the

sequences using alifold [11]. A structure conservation index (SCI),

a measure of secondary structure conservation among input

sequences, is derived from these two outputs. A z-score for each

sequence is calculated with the help of SVM regression, which

gives a statistical quantification for the thermodynamic stability of

the input sequences compared to random sequences. Another

SVM is then used to classify the input as ncRNA or not.

ncRNA homolog search
Existing tools for detecting members of a known ncRNA family

in a genome sequence typically use covariance models (CM),

probabilistic models that can describe a family of RNA secondary

structures. In the context of CMs an RNA secondary structure is

represented as an ordered tree where nodes are states representing

base pairs, single nucleotides, insertions or deletions. Each state

has symbol emission probabilities which correspond to probabil-

ities of observing each nucleotide (or base pair) at that state and

transmission probabilities which correspond to probabilities of

switching from the current state to a following state or not

switching at all. Special bifurcation, begin and end states are used

for defining the tree structure itself. The model parameters and

tree structure is trained with members of an ncRNA family. The

CM can then be aligned to a given sequence to determine

homologs.

CMs were first introduced by Eddy and Durbin in 1994 [12].

Since then, various methods have been proposed which take

advantage of CMs in ncRNA discovery. One such example is the

INFERNAL package [13] which is used for annotation in the

Rfam database [14] that includes over 500 ncRNA families coded

by more than 13000 ncRNA genes. A small set of representative

known ncRNA sequences are annotated in seed alignments by

human curators with secondary structure information for each

ncRNA family. The remainders of the Rfam ncRNAs were

annotated using the INFERNAL package.

Ab initio ncRNA discovery
As mentioned earlier this paper focuses on the problem of ab

initio ncRNA discovery, which, given a genome sequence and a

set of ncRNAs asks to discover novel ncRNAs that may or may not

belong to known ncRNA families. As a recent survey on RNA

gene prediction [5] states ab initio gene prediction is the most

challenging case of RNA gene prediction: ‘‘In the general case ab

initio RNA gene prediction is still a more or less unsolved

problem’’.

The only general approach for ab initio ncRNA discovery so far

is based on thermodynamic stability. NCRNASCAN program,

developed by Rivas and Eddy [15] aims to use structural stability

as an indicator of ncRNA presence. The program employs three

different models for assessing the structural stability, each of which

can be used to scan the input genome sequence towards

identifying stable structures. Unfortunately, because ncRNAs in

general are not significantly more stable than random genome

sequences the applicability of NCRNASCAN is very limited. The

only ncRNA family for which this approach has been reported to

attain success is micro (mi)RNAs, which indeed have significantly

more stable structures in comparison to random sequences [16].

The RNALfold program by Hofacker et al. [17] can in fact

effectively discover miRNAs by detecting short locally stable

structures in a genome sequence. Given any number of

evolutionary related RNA genes SimulFold [18] predicts novel

RNA genes based on the evolutionarily conserved RNA structure

rather than the thermodynamic or MFE structure.

Carter et al. [19], by using a machine learning approach based

on differences in compositional and structural parameters present

in known RNAs compared to non-coding sequences, achieved an

improvement in RNA genes identification in bacterial and

archaeal genomes.

In a recent approach [20], which does not require a multiple-

sequence alignment as input, RNA motif prediction with RNA

homolog search has been integrated. This approach was able to

improve the quality of the RNA motifs discovery in prokaryotes.

It is tempting to apply some of the available techniques on

ncRNA validation and ncRNA homolog search to the problem of

ab initio ncRNA discovery. Unfortuantely: (1) ncRNA validation

techniques, in general, rely heavily on the availability of some

good initial sequence alignment between two or more potential

ncRNAs. However, homologous ncRNAs typically have poor

sequence conservation which considerably limits the applicability

of conserved region detection towards discovery of species specific

ncRNAs [5,21]. (2) In addition, the number of conserved regions

in a given genome is far too large for a genome-wide scan. Thus,

conserved structure search methods make use of readily available

data sets: RNAz makes use of conserved structure databases

covering only a small portion of the genome [10], MSARI needs

alignments of conserved sequences from as much as 10 different

species [8] and EvoFold needs a costly genome-wide alignment of

several genome sequences [9]. (3) ncRNA homolog search

methods, especially those employing covariance models, clearly

aim to discover members of known ncRNA families and are not

applicable to ab initio ncRNA discovery.

smyRNA
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Methods

smyRNA (structural sequence motifs yielding to ncRNAs) is a

simple ab initio ncRNA discovery tool which is based on the

premise that certain sequence motifs act as important determi-

nants of ncRNA structures and have differential distribution

among ncRNAs and the background genome sequences.

Given a genome sequence G, let G[j] denote the jth nucleotide of

G, and let G[i, j] denote the substring including G[i]…G[j]. Now

denote by N, the set of all ncRNAs known in G and by fN mð Þ the

total number of occurrences of a k-mer motif m (for a specific value

of k) among all ncRNA sequences in N. Similarly let fG mð Þ be the

total number of occurrences of m in G. Thus the frequency of m in

N and G can respectively be defined as

FN mð Þ~ fN mð ÞP
Vm’ fN m’ð Þ and FG mð Þ~ fG mð ÞP

Vm’ fG m’ð Þ :

The log-likelihood ratio for m residing in an ncRNA is thus

r mð Þ~log
FN mð Þ
FG mð Þ. A positive value for r mð Þ implies the motif is

more frequent in ncRNAs, and a negative implies the contrary.

Thus, the log-likelihood score of a substring S being (a part of)

an ncRNA, in terms of the frequencies of all k-mer motifs it

includes can be defined as R Sð Þ~
PSj j{kz1

i~1

r S i : izk{1½ �ð Þ where

S[i : i+k21] is the k-mer sequence motif starting at position i

in subsequence S.

Given G and r the following dynamic programming formulation

can identify those substrings S for which R(S), the log-likelihood

score, is maximum possible; i.e., it is not possible to increase R(S)

by extending such an S in any direction.

H jð Þ~
H j{1ð Þzr G j{kz1, j½ �ð Þ, H j{1ð Þw0

r G j{kz1, j½ �ð Þ, otherwise

� �

Here H(j) denotes the maximum possible R(G[i, j]) among all

substrings G[i, j] for which i#j. Let ij~arg maxl R G i,l½ �ð Þ, i.e.,

the value of i which maximizes the log-likelihood score for G[i, j].

We leave it to the reader to observe that for any location h on G,

if ijvhj then ih~ij . Thus for a given location i~ij on G, one

can define li~arg maxl R G i,l½ �ð Þ, i.e. the location for which

R(G[i,l]) is maximized. Consider those locations i for which i~ij
for some j, and then for each such i consider the corresponding

location l~li. The substring G[i,l] will have the property that no

substring G i’,l’½ � which overlap with R(G[i,l]) can have

R G i’,l’½ �ð ÞwR G i,l½ �ð Þ; thus G i,l½ � will be a maximally scoring

substring. Once the above values of H(j) are obtained, it is

possible to obtain all maximally scoring substrings of G in linear

time through a simple greedy algorithm.

For training, given a genome sequence G and a set of ncRNAs

N, smyRNA processes G and all sequences in N to calculate

F_G(m) and F_N(m) for all k-mer motifs m. Then

r(m) = log(F_N(m)/F_G(m)) is calculated for each k-mer motif m.

Note that the number of all possible k-mer motifs for the 4 letter

DNA alphabet is 4k. Thus the time and memory requirement for

training is O(|G|+4k) which is linear in length of G for small values

of k.

Based on the trained log-likelihood ratio r, smyRNA can locate

other ncRNAs on an input genome sequence G by determining the

maximally scoring substrings of the input sequence G. Those

substrings whose score is over a user defined threshold t are then

declared as ncRNA candidates.

Results

For assessing the predictive power of smyRNA, we applied the

following testing strategy: (1) We trained smyRNA on a given

genome sequence and its collection of known ncRNAs and then

tested it on another genome sequence. To ensure that the genome

sequences include no unknown ncRNA genes we randomly

shuffled the bases on the background sequence while leaving the

known ncRNA genes intact. More precisely, we used the following

shuffling algorithm for genome sequence G:

1. Remove all known ncRNA genes from genome sequence.

2. Generate a large random integer a (a.c.|G|, c is a user defined

constant).

3. For a times repeat steps 4–5.

4. Generate two random integers i,j.

5. Swap G[i] and G[j].

6. Insert each ncRNA gene at some random position.

Once the PPV (positive predictive value) and sensitivity for

varying threshold values are determined, the ‘‘best possible’’

threshold value (providing a good tradeoff between the PPV and

sensitivity) is selected which is applied to discover novel potential

ncRNA genes later. (2) We also applied leave-one-out cross

validation experiments to a set of known ncRNAs of a genome. In

each iteration we removed one of the known ncRNAs from the

collection and trained smyRNA on the shuffled genome sequence

and remaining set of ncRNAs. We then applied smyRNA to the

unshuffled genome sequence and measured the PPV and

sensitivity. (3) Finally we applied smyRNA to the unshuffled

genome sequences. We verified the candidates for unknown

ncRNA genes through the use of existing ncRNA validation

techniques.

In our tests, we primarily used the E.coli K12 genome sequence,

perhaps the best studied organism with respect to ncRNAs. Rfam

database v8.1 [14] presents 164 ncRNAs from 63 different families

for E.coli K12. For cross validation purposes, we used the

S.flexneri 2a str. 301 a bacteria highly divergent from E.coli,

which has a rich set of ncRNA sequences in Rfam database v8.1

[14]. In Rfam database there are 183 ncRNAs from 64 families for

S.flexneri 2a str. 301.

Our first experiment aimed to (re)discover all known ncRNA

genes in the S.flexneri genome via smyRNA - which was trained

by the use of the complete set of known E.coli ncRNAs and the

E.coli genome. Note that we excluded all tRNAs from the training

set. As mentioned above, we randomly exchanged pairs of

nucleotides (exchanging each nucleotide at least once) in both

the training genome sequence (E.coli) and the test genome

sequence (S.flexneri) while retaining the known ncRNA genes

intact in both sequences.

For different values of k, we determined both the PPV (tp/

(tp+fp) where tp and fp are the number of true and false positives

respectively) and the sensitivity (tp/(tp+fn) where f n is the number

of false negatives) of smyRNA for all possible threshold values; the

results are shown for k = 5 (which gave the best results) in Figure 1.

As can be seen, a (log-likelihood score) threshold value of 9.6 gives

a PPV and sensitivity of 0.61 providing a reasonable trade-off

between the two measures. To obtain a ‘‘more meaningful’’ PPV

of 0.80, one has to increase the (log-likelihood score) threshold

value to 11 for which sensitivity drops only slightly to 0.58. As a

result we use the log-likelihood cutoff of 11 to determine putative

ncRNA sequence in the next set of experiments.

Perhaps it is not surprising that the E.coli trained smyRNA

achieved high PPV and reasonable sensitivity on (permuted)

smyRNA
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S.flexneri as 1024 possible pentamer motifs from the 4 letter DNA

alphabet have very similar log-likelihood scores in these two

species. Figure 2 depicts the comparative log-likelihood scores of

all possible pentamer motifs for the genome sequences and the

known ncRNAs of the two species. Notice that the distribution

does not deviate significantly from the x = y line, which

corresponds to perfect match between the log-likelihood scores

of pentamers in E.coli and S.flexneri. This distribution can not be

observed for the other values of k. Even k = 4 results in different

distribution.

In a separate experiment, we applied smyRNA to a set of

genomes with different types. We select genomes that have

reasonably short genome sequences and rich sets of ncRNA

sequences in Rfam database. We used a cutoff log-likelihood score

of 11 for the E.coli trained smyRNA. Table 1 shows the number

and percentage of discovered ncRNA genes by smyRNA on

different genomes. Note that unlike S.flexneri, the distribution of

the log-likelihood scores of pentamer motifs in these genomes does

not show a high similarity to that in E.coli. These genomes

(especially those from Eukaryotic species) are distinct from E.coli,

which has been used for training purposes, and smyRNA still

achieves high predictive power on rediscovering known ncRNAs.

More specifically about 74% of known ncRNAs were discovered

by smyRNA. Several of these ncRNAs belong to ncRNA families

which are not present in E.coli.

Next we performed leave-one-out cross validation experiments.

We trained smyRNA on a set of known ncRNAs and shuffled

genome sequence of E.coli, and tested it on unshuffled genome

sequence of E.coli. Among the complete set of all ncRNAs 65% of

them were discovered by smyRNA. To make sure that smyRNA is

not simply performing homology search, we repeat the experiment

by using one ncRNAs from each family. In this case smyRNA

discovered 42% of ncRNA sequences.

As mentioned earlier, the final experiment we performed aimed

to find novel ncRNAs in unshuffled genome sequences. We

trained smyRNA on the set of known E.coli ncRNA sequences as

well as the E.coli genome sequence. Then we tested smyRNA on

E.coli genome to determine both known and possibly unknown

Figure 1. Specificity and sensitivity values for different thresholds of smyRNA trained on E.coli and tested on S.flexneri based on
the highest 1,000 ranking predictions.
doi:10.1371/journal.pone.0005433.g001

smyRNA
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ncRNA sequences. As per above, we determined the putative

ncRNA sequences whose log-likelihood score was at least 11; so

that 34 out of 76 known ncRNAs (with the exception of tRNAs

and rRNAs) and 191 previously unknown ncRNA candidates were

identified. Among the unknown ncRNA candidates, 81 have

overlaps with ORFs. On average their GC content is 41.4% and

their length is 615 nt. To make sure that they are not coding

RNAs, we picked a random sample of them and BLASTed them

to see whether they have hits to coding RNA. None of these

referred a hit.

We applied RNAz v1.0 program, perhaps the best known

ncRNA validation tool, which is known to achieve significantly

higher specificity/sensitivity values than competitive methods [22]

to validate each such candidate as follows. We searched each

candidate sequence in the complete genomic BLAST databases

made available by NCBI. We used nucleotide collection database,

and identified up to 5 highly conserved sequences (RNAz requires

at least 2 and can take into account at most 6 sequences) with

conserved length greater than 20 nt, and E-value,10. (The very

fact that each of these candidates was highly conserved, yet not

perfectly conserved, in other species suggests functionality.) The

candidate ncRNA and its BLAST hits (which typically were from

other species with average Evalue less than 0.01) were first aligned

via the ClustalW v1.83 program [23] and then fed to the RNAz

v1.0 program for validation. Among the 191 candidates, 98 were

classified as ncRNAs by RNAz. Among them, 35 have overlaps

with ORFs. Also on average their GC content is 41.7% and their

length is 566 nt. The average returned ‘‘structure conservation

index (SCI)’’ by RNAz for all of the 191 candidates was 94% and

for those classified as ncRNA was 95%.

Note that Washietl et al., the developers of the RNAz program

were able to identify only 89 putative ncRNAs (fewer than what

smyRNA was able to find on the E.coli genome) in their study

which was based on the CORG database that includes 4263

(annotated) conserved non-coding regions from 5 species (hu-

man,mouse, rat, Fugu and zebrafish) [24].

Figure 2. Log-likelihood score comparison of pentamer log likelihood scores from S. flexneri and E. coli. Each data point corresponds to
a pentamer p positioned at (x, y) where x is the log likelihood score of p in E. coli and y in S. flexneri.
doi:10.1371/journal.pone.0005433.g002

smyRNA
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Discussion

This paper presents a novel ab initio ncRNA gene discovery

tool which exploits differential distribution of k-mer motifs (in

particular pentamer motifs) among ncRNAs with respect to the

background genome sequence. Based on the k-mer motif

distribution we showed how to compute log-likelihood scores for

a specific sequence to be in a potential ncNRA sequence and how

to identify maximally scoring subsequences of a genome which can

then be considered as a candidate ncRNA gene. We showed how

to train the resulting tool via a given set of ncRNAs and the

background genome sequence towards identifying the most likely

set of ncRNA genes in a test sequence. We trained our tool, which

we call smyRNA, on the complete set of E.coli ncRNAs and

applied it to the S.flexneri genome sequence on which was

randomly shuffled with the exception of known ncRNA genes.

smyRNA was able to identify a significant fraction of known

S.flexneri ncRNAs while returning only a small number of false

positives. We then applied the E.coli trained smyRNA again on

the unshuffled E.coli sequence towards identifying unknown

ncRNA genes. The 191 top ranking ncRNA candidates were

then verified by the RNAz program. Among them, RNAz

classified 98 of them (more than half) as ncRNAs. Thus we

conclude that smyRNA provides a simple, efficient and potentially

powerful approach to ab initio ncRNA gene discovery problem.
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Table 1. Predictive power of smyRNA on different genomes.

Genome Type Length(nt)
# of known
ncRNAs

# of known
ncRNAs returned
by smyRNA

# of all
subsequences
returned by smyRNA

Cyanophora paradoxa cyanelle Eukaryota 135,599 40 36(90%) 61

Kluyveromyces lactis strain NRRL Y-1140 chromosome B of
strain NRRL Y-1140 of Kluyveromyces lactis

Eukaryota 1,320,834 32 25(78%) 104

Yarrowia lipolytica chromosome A of strain CLIB122 of Yarrowia
lipolytica

Eukaryota 2,303,261 86 71(83%) 102

Yersinia pestis strain CO92 Bacteria 4,653,728 118 83(70%) 140

Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 Bacteria 4,755,700 159 109(69%) 141

Vibrio cholerae O1 biovar eltor str. N16961 chromosome I Bacteria 2,961,149 126 101(80%) 217

Shigella flexneri 2a str. 301 Bacteria 4,607,203 183 120(66%) 254

E. coli has been used for training and threshold score is set to t = 11. Number and percentage of discovered ncRNAs (presented in fifth column) shows the accuracy of
smyRNA in predicting ncRNA genes on different genomes.
doi:10.1371/journal.pone.0005433.t001
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