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Abstract

Knowledge of specific domain-domain interactions (DDIs) is essential to understand the functional significance of protein
interaction networks. Despite the availability of an enormous amount of data on protein-protein interactions (PPIs), very
little is known about specific DDIs occurring in them. Here, we present a top-down approach to accurately infer functionally
relevant DDIs from PPI data. We created a comprehensive, non-redundant dataset of 209,165 experimentally-derived PPIs by
combining datasets from five major interaction databases. We introduced an integrated scoring system that uses a novel
combination of a set of five orthogonal scoring features covering the probabilistic, evolutionary, evidence-based, spatial and
functional properties of interacting domains, which can map the interacting propensity of two domains in many
dimensions. This method outperforms similar existing methods both in the accuracy of prediction and in the coverage of
domain interaction space. We predicted a set of 52,492 high-confidence DDIs to carry out cross-species comparison of DDI
conservation in eight model species including human, mouse, Drosophila, C. elegans, yeast, Plasmodium, E. coli and
Arabidopsis. Our results show that only 23% of these DDIs are conserved in at least two species and only 3.8% in at least 4
species, indicating a rather low conservation across species. Pair-wise analysis of DDI conservation revealed a ‘sliding
conservation’ pattern between the evolutionarily neighboring species. Our methodology and the high-confidence DDI
predictions generated in this study can help to better understand the functional significance of PPIs at the modular level,
thus can significantly impact further experimental investigations in systems biology research.
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Introduction

Proteins rarely function alone; a vast majority of proteins must

interact with other proteins to perform their intended functions. In

recent years, determination of protein-protein interactions (re-

ferred to henceforth as PPIs) has been at the forefront of systems

biology research resulting in high-throughput generation of such

interactions for many proteomes of model organisms [1]. When

proteins interact, the binding interface of the interaction is

generally localized to specific conserved segments of the

interacting proteins that are broadly known as domains. These

domains create the interface of an interaction through highly

specific recognition events. Thus, knowledge on domain-domain

interactions (referred to henceforth as DDIs) is very important for

understanding the nature and the significance of PPIs. For

instance, DDIs have been used to gain a better understanding of

protein networks [2], for predicting the effects of mutations [3] and

alternative splicing events that effect interacting domains [4], for

developing drugs to inhibit pathological protein interactions [5,6],

and for designing novel protein interactions [7].

Despite the availability of abundant PPI data, little is known

about interactions at the domain level because the PPI data is

available as ‘binary’ data, i.e. interaction between a given pair of

proteins is either ‘found’ or ‘not found’. In the case of multi-

domain proteins, which constitute about 65–70% of the eukaryotic

proteomes [8,9], binary interaction data is not very informative,

because it does not reveal which two domains form the binding

interface(s) in an interaction. Moreover, it is tedious to determine

DDIs using experimental methods; thus, computational methods

are essential for inferring domain-domain interactions from the

vast amount of available protein-protein interaction data. Deng et

al. [10] have attempted to infer DDIs from a small number of two-

hybrid interactions in yeast (Y2H), using association rules and

maximum likelihood estimations (MLE), resulting in low specificity

of prediction. Ng et al. [11] employed an integrated method to

predict DDIs from disparate data sources that include Y2H data

from the DIP database, protein complexes from the Protein Data

Bank (PDB) and domain fusion data from Rosetta Stone

sequences. Another method, known as domain pair exclusion

analysis (DPEA), has been developed based on MLE method using

DIP data from 68 different species, and domain definitions from

the Pfam database [12]. The same dataset was also used to predict

DDIs based on a parsimony approach [13,14]. Nevertheless, a

large number of domains of unknown function (DUFs) were used

in these studies. Nye et al. [15] have developed a statistical

approach to measure the strength of evidence for physical contact
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between domains in interacting proteins. An integrated scoring

method that uses multiple scoring criteria with multiple datasets

was also reported recently to predict DDIs [16]. Domain

interactions have also been inferred from protein structure data

using information based on geometric association of domain

interaction interfaces [17], conserved binding mode analysis from

the docking patterns of interacting domains [18], or co-

evolutionary analysis [19]. Hence, it is clear that computational

methods for inferring domain-domain interactions have been

constantly evolving to integrate and take advantage of the vast

amount of updated annotation data emerging in many dimen-

sions.

Several PPI databases from high-throughput experimental

studies are available online, including the Database of Interacting

Proteins (DIP, http://dip.doe-mbi.ucla.edu), IntAct (http://www.

ebi.ac.uk/intact), BioGrid (http://www.thebiogrid.org), BIND

(http://www.bind.ca), MINT (http://mint.bio.uniroma2.it/mint)

and HPRD (http://www.hprd.org). Though each database uses a

different set of criteria for collection and curation of interaction

data and each covers a variety of species, there is a significant

overlap among them [20]. The quality of predictions generated by

any computational method depends squarely on the scoring

algorithm and the datasets used for training the method. Most of

the current methods for inferring DDIs from PPIs are based on

one or a few scoring features that were trained on limited sets of

PPI data. In this study, we use a robust PPI dataset representing

2,725 species, and implement a top-down approach based on a

probabilistic model using five independent scoring features. The

scoring algorithm implemented in this study is based on a novel

combination of orthogonal scoring features that could map the

interaction propensity of two domains in many dimensions. The

proposed scoring features are derived both from tested as well as

novel approaches to maximize the prediction accuracy of

functionally-relevant interactions, and to efficiently filter out

random or irrelevant interactions. Using this method, we predict

and analyze DDIs from eight model species to understand the

conservation patterns of DDIs across species. A recent study has

compared DDI conservation across five species using a small set

(,3000) of structurally known DDIs [21]. In contrast, here we

predict a large-scale dataset of over 65,000 high-confidence DDIs,

and use these data to perform cross-species comparison of DDIs

from eight organisms. To our knowledge, this study is the first of its

kind to explore and compare a vast domain interactome space

covering a broad evolutionary spectrum of species.

Methods

Interacting and non-interacting protein datasets
We created a comprehensive, non-redundant dataset of

experimentally-derived interacting proteins by combining multiple

datasets (downloaded in the PSI MI 2.5 format) from five major

protein interaction databases that include DIP (Database of

Interacting Proteins) (http://dip.doe-mbi.ucla.edu/), IntAct

(http://www.ebi.ac.uk/intact), BIND (Biomolecular Interaction

Network Database, http://www.bind.ca), HPRD (Human Protein

Reference Database, http://www.hprd.org/) and MINT (Molec-

ular Interaction database, http://mint.bio.uniroma2.it/mint).

These source databases use a combination of ‘spoke’ and ‘matrix’

models for expanding binary PPI interactions from complexes.

These datasets were fairly overlapping both within and across

databases, and protein sequences in these databases were

originally indexed with different source identifiers from UniProt,

DIP, GenBank, etc. To remove redundancy, we first created

datasets of unique sequences (based on full-length protein

sequence string comparison) within each database and then

merged them to create a non-redundant dataset of interacting

protein sequences, each indexed with our internal identifier. Note

that this internal identifier can be used to map all the original

identifiers for a given sequence in their source database(s). Finally,

we obtained 70,769 unique protein sequences (denoted as P)

representing 209,165 unique PPIs (denoted as Pint). Note that

proteins in P still exhibit some level of redundancy because splice

variants with minimal sequence differences are included as unique

proteins due to the fact that protein-protein interactions are

isoform-specific.

Experimental datasets are not available on non-interacting

protein pairs. Hence, we generated a set of putative, non-

interacting protein pairs (denoted as P*int) using the proteins in P,

after excluding the PPIs in Pint and by imposing certain

biologically-relevant restrictions. To assemble this set, we could

have assumed that any pair of proteins in P that are not present in

Pint are non-interacting. However, such an approach would

generate numerous false negatives given the incomplete nature of

Pint, resulting in a very large set of P*int. Instead, we imposed two

restrictions to define a non-interacting protein pair: first, the two

proteins must be present in the same species; second, the two

proteins should be localized into different subcellular locations,

where the majority of protein-protein interactions are spatially

constrained. The subcellular localization information was derived

from Swiss-Prot annotations which are based on experimental

evidence. Based on these restrictions, we obtained about ,16.7

million putative negative PPIs in this study.

Domain Definitions and domain mapping
Domain definitions were used from the InterPro domain

database (release 16.0, http://www.ebi.ac.uk/interpro). Some of

the InterPro entries are as small as 3 residues that represent active

sites, binding sites and prints. We filtered out these entries with a

length cutoff of at least 10 residues to eliminate potential noise in

the datasets. We mapped the remaining domains onto the set of

proteins in P.

Rosetta stone proteins
Rosetta stone proteins are those that have two or more fused

domains encoded by a single gene in one species, but whose

constituent domains are encoded by separate genes as single

domain proteins in the same or another species [22]. In this study,

we defined single domain proteins as those with only one InterPro

domain annotation and with at most 30 amino acids outside of the

domain boundaries on either end of the protein. Based on this

criterion, the set of domains occurring in all single domain proteins

(denoted as Dsdp) were identified from the entire UniProt protein

database (collected by August 7th, 2007). Proteins containing at

least two domains from Dsdp were considered as Rosetta stone

proteins, and pairs of such domains that co-occur on Rosetta stone

proteins were considered as Rosetta domain pairs (RDPs). Out of

4,015,827 protein sequences from UniProt containing InterPro

mapping, we found 1,095,580 single domain proteins (27%)

corresponding to 9,403 unique InterPro domains. Of these, 7,551

domains were found to co-occur in Rosetta stone proteins in

129,236 binary combinations (RDPs). Out of these, only 34,006

RDPs were found to match with the DDIs used in the current

study.

DDI datasets for testing and comparison
We downloaded a dataset of positive DDIs (based on Pfam

database version 21.0) from the iPfam database (http://www.

sanger.ac.uk/Software/Pfam/iPfam) [23], which provides known

Species Comparison of DDIs
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DDIs curated from X-ray crystal structure data in PDB. Predicted

DDIs from two recent methods were downloaded to compare

against the prediction performance of our method. These include

25,352 DDIs from Lee et al’s method [16] that were predicted with

a Bayesian likelihood score of 0.25 or more, and 24,625 DDIs

from GPE method [14] which were predicted with a probability of

0.25 or more. Both of these methods use domain definitions from

the Pfam database. In contrast, our method uses domain

definitions from the InterPro database, and a different scoring

system that ranges from 212.4 to 38.4. Hence for comparison

against the above methods, we used only 147,453 predicted DDIs

that have both Pfam domain mapping available and fall in the

positive score range (more than zero).

Curated true negative DDIs are required to test the perfor-

mance of our method, but such experimentally-derived datasets do

not exist. Hence, we created a putative set of negative DDIs by

considering all the unknown interactions among the domains of

iPfam as negative. In other words, the same domain space is used

for obtaining both positive and negative DDIs which ensures

consistency in feature score coverage for DDIs in both datasets.

Initially, we obtained about 3.8 million negative DDIs, of which

only 93,129 DDIs had scores available in Dint and hence are usable

for testing the current method.

Notations for datasets
We adopt definitions from set theory, where the term set is used

when each element in the set is distinct, and the term collection is

used when the multiplicity of each element is important. For a

given set S, the notation |S| means the cardinality (number of

elements) of the set.

N Pint = set of non-redundant PPIs, |Pint| = 209,165.

N P = set of all proteins from Pint, |P| = 70,769.

N P,int = set of non-interacting protein pairs derived from P,

|P,int| = 16,738,143

N D = set of domains occurring in P, |D| = 10,389.

N Dint = set of candidate interacting domain pairs (DDIs)

constructed by considering all possible domain pairs that

could occur in Pint, |Dint| = 614,579.

N D,int = a set of putative non-interacting domain pairs extracted

from P, i n t that were a l so matching with Di n t ,

|D,int| = 360,739. Note that D,int represents only those DDIs

from Dint that exist in P,int.

N fij – Frequency of domain pair ij in Dint.

N f,ij – Frequency of domain pair ij in D,int.

N ftotal – Total number of domain pairs in Dint.

N f,total – Total number of domain pairs in D,int.

N pij – Average (expected) probability that domain pair dij is an

interacting pair, from all protein pairs in Pint where dij occurs.

N p,ij – Average (expected) probability that domain pair dij is a

non-interacting pair, from all protein pairs in P,int where dij

occurs.

Algorithm
The domain set considered in this study is D (|D| = 10,389);

where in theory, all-to-all domain interactions among D can

generate ,54 million unique domain pairs. Nevertheless, such

random interactions are not possible in biological systems due to

evolutionary, spatial, temporal and functional constraints. The

goal of this algorithm is to develop a scoring system that uses a top-

down approach for inferring functionally meaningful DDIs from

all possible interactions. First, all possible DDIs were extracted

from all PPIs in Pint. As illustrated in Figure 1, if AB, AC, AD and

BB are interacting protein pairs where the domains in respective

proteins are denoted as A(m-p), B(n), C(m-p) and D(n-m-r), then

possible set of DDIs from {AB, AC, AD, BB} are {mn, pn, mm, mp

pp, mr, pr, nn}. It is possible that only mn, pp and nn are true

interacting domain pairs in {AB, AC, AD, BB}, but this is not

obvious from the ‘binary’ interaction data, except for the

interaction BB. To discriminate functionally relevant DDI(s) in

Figure 1. Schematic diagram showing the derivation of datasets. This example shows a set of PPIs, denoted Pint, from which the set of all
interacting proteins, denoted P are derived. Using P, a set of putative non-interacting protein pairs, denoted as P,int are generated with some
constraints as described in methods. The last section of this figure shows how all possible DDIs (Dint) are derived from Pint. D,int is created from P,int

(not shown in the figure) essentially the same way as Dint is derived from Pint, with an additional step of filtering out domain pairs that do not exist in
Dint.
doi:10.1371/journal.pone.0005096.g001

Species Comparison of DDIs
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a given PPI from all possible ones, we developed an integrated

scoring system that employs five discriminatory features. Each

one of these features, denoted Si, have some measure of

correlation with an aspect of the occurrence of interaction at

the domain level. A score is derived for each feature

independently. Scores are either based on log ratios between

probabilities of features calculated from Pint and P,int, or based

on probabilities estimated from Pint combined with prior expert

knowledge (annotations). We assume that each individual score is

an independent descriptor related to the domain pair being

scored. Hence, each score reflects the individual probability of

one descriptor and the final probability is a product of all five

individual probabilities. We use log probabilities to aid in

creating a more uniform score, thereby yielding a final score as a

sum of the individual log measures.

FinalScore dij

� �
~
X5

k~1

Score Skij

� �

The maximum score for each feature is adjusted at 10 resulting

in a maximum final score of 50. See Figure 2 for a pictorial view

of the method, illustrating the scoring function and the

derivation of datasets. The following section describes the

rationale for selecting each scoring feature, and explains how

the feature scores (S1–S5) for each observed domain pair (dij) are

derived.

S1 – Ratio of expected frequency of occurrence. Feature

S1ij represents the event that domain pair dij is interacting based on

the expected frequency of occurrence estimated from a given set of

protein pairs. Previous methods that performed similar analysis

showed that such a measure can be used to infer DDIs [11,16,24].

We derive a score for dij based on a ratio of the expected frequency

of occurrence in Pint against the expected frequency of occurrence

in P*int.

The expected frequency of occurrence for dij is calculated as the

average probability of occurrence of dij multiplied by the observed

number of times that dij occurs in the dataset. If a protein contains

repeats of the same domain, each unique domain is counted only

once for calculation of dij probability in a PPI. The probability is

estimated empirically from the data. For example, based on the

example described in the above paragraph (Figure 1), in PPI AB,

the two possible DDIs are mn or pn. Similarly in PPI AD, six DDIs

(mn, mm, mr, pn, pm, pr) are possible. So, domain-domain

interaction mn is possible in multiple PPIs, but with different

probabilities. Hence, the probability of occurrence is estimated by

calculating the average probability of interaction dij over all protein

pairs in Pint (or P,int) where dij occur. We denote this value as pij (or

p,ij when estimated from P,int). Before the calculation is complete,

all observed frequencies of occurrence fij (or f,ij) are normalized

with respect to the size of each dataset due the disproportionality

in the sizes of Pint and P,int, resulting in a value between zero and

one. The score for S1ij is then calculated as:

Figure 2. Flow diagram illustrating the scoring system and methodology.
doi:10.1371/journal.pone.0005096.g002
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Score S1ij

� �
~log

pij

p*ij

zlog
fijP

Vdkl[Dint

fkl

{log
f*ijz1P

Vdkl[D*int

f*klz Dintj j

ð1Þ

This score gives a log ratio of the expected number of times that

putative DDI dij will be found in the set of interacting proteins,

against the number of times that the same pair is expected to be

found in the set of non-interacting proteins. It was developed with

the idea of balancing the average probability of a single occurrence

of a domain pair against the actual frequency of occurrence over

interacting and non-interacting protein datasets. We normalize

each S1ij score to a maximum of 10 by dividing with the maximum

S1ij value observed in the set and by multiplying the result with 10.

A problem with this calculation arises when determining a score

for a domain pair dij that does not occur in P,int. Normally, this

would cause the average probability p,ij to be zero. In this case,

the first term in Equation (1) is replaced by:

log
1zpij

1{pij

The value of 12pij has the desired property of simulating a

probability estimate for p,ij that is inversely proportional to pij,

thus allowing a ratiometric score to be determined even if the

domain pair did not occur in P,int. In this event only, we limit the

maximum observed value for pij to be 0.99 in order to prevent the

score from dominating the other scores and to prevent a divide by

zero error. This problem also causes the observed frequency f,ij to

be zero. To overcome this problem, we apply the Laplace

correction, a well known method used to handle situations where

zero frequencies would cause an error in probability estimates

[25]. It makes an assumption that all domain pairs in Dint occur at

least once in P,int, effectively initializing all domain pairs in Dint to

have an initial frequency count of one occurrence in D,int. This

method requires the addition of a corresponding constant in the

denominator of the normalization calculation to compensate for

this bias and ensure that all normalized values are still between

zero and one. This has a desired effect of preventing zero

frequency and probability calculation, which would cause errors in

the calculation of the log score.

S2 – Co-occurrence in Rosetta stone proteins. This

feature uses evolutionary reasoning to infer the likelihood of two

domains to interact. Fusion of multiple domains on a single

polypeptide (known as Rosetta stone proteins) has been considered

as the evolutionary solution to facilitate interactions among them.

It has been shown that domains that co-occur on Rosetta stone

proteins are more likely to interact than those that do not [22,26].

Let Prdp be the set of all known Rosetta stone proteins. We say

that domain pair dij is a Rosetta domain pair if domains of dij co-

occur in at least one Rosetta stone protein. Let RDP be the set of

all Rosetta domain pairs determined from Prdp, and let RDPij be

defined as the number of proteins in Prdp where domain pair dij is

found. We let S2ij represent the event that domain pair dij is

interacting based on the occurrence of dij in Prdp. Each dij has an

observed number of occurrences in Prdp, with the possible range of

0–52996. A simple function of RDPij is used to simulate a

probability density function for the probability of dij interacting

based on information about its occurrence in Rosetta stone

proteins. This probability, denoted P(S2ij), is calculated as follows:

P S2ij

� �
~

RDPij

RDPijzaS2

The constant aS2 was set to a value of 5.0 based on a simple

empirical analysis of observing the behavior of the score over a

wide range of values. This value approximately corresponds to the

median frequency of occurrence of dij in Prdp. This has the effect of

returning probability estimates that are directly proportional to its

frequency of occurrence in Rosetta stone proteins. The resulting

probability values are multiplied by 10 to allow a maximum score

of 10 for S2.

S3 – Frequency of occurrence in multiple species. This

measure is based on the assumption that if domain pair dij occurs

in interacting proteins from multiple species, then there is an

increase in the likelihood that the pair is potentially interacting.

This measure also helps to contain the detrimental effects of false

positives and false negatives that exist in the PPI datasets, as

evidence is being drawn from the interaction data of multiple

species. Thus, the effect of a false negative protein interaction in

one species can be nullified by accurate data if the same

interaction is found in many other species, and similarly for false

positive data.

Let S3ij represent the event that domain pair dij is interacting

based on the number of occurrences of dij in multiple species in Pint

and P,int , denoted as #speciesij and #,speciesij, respectively. The

score for S3ij is estimated as a ratio of the occurrence of species in

Pint and P,int. For consistency, each frequency of occurrence over

observed species is converted to a probability distribution. The

value of #,speciesij can be zero for some domain pairs in Dint that

do not occur in P,nt, which causes an error in the score

calculation. To handle this, we apply the Laplace correction in the

same manner as in score S1. For each domain pair dij, the score for

S3 is based on a log ratio, estimated as:

Score S3ij

� �
~log

#speciesijz1P
Vdik[Dint

#speciesikz Dintj j

{log
#*speciesijz1P

Vdik[D*int

#speciesikz Dintj j

The majority of PPIs in Pint were observed from only 6 model

species that include human, mouse, Drosophila, C. elegans, yeast and

E. coli, while a small portion of PPIs were observed from a much

larger range of species. The resulting log ratio was multiplied by a

fixed constant to allow a maximum score of 10 for S3.

S4 – Co-localized domain interactions in subcellular

space. Co-localized domains in a subcellular organelle are

likely to interact more often than those localized across different

organelles, because they are generally associated with a common

pathway or a sub-pathway that is specifically carried out by that

organelle. For instance, more than a dozen domains associated

with ATP synthesis (ATPases) are found only in mitochondria of

eukaryotic animal cells (with the exception of vacuolar ATPase

domain, IPR008388) because they are needed only in

mitochondria for energy production. The domain datasets used

in our previous study [27] show that about 76% of all eukaryotic

domains are localized to only one subcellular organelle (see Table

S1).

We developed a method for the prediction of protein subcellular

localization, called ngLOC [28]. It uses a Naı̈ve Bayes

classification model based on frequent n-gram occurrence in the

Species Comparison of DDIs
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primary structure of a protein. The ngLOC method generates a

probabilistic measure that a protein sequence is localized into a

specific location in a cell. We extended the ngLOC method to

predict the localization of proteins over 10 subcellular locations in

animal cells, 12 locations in plant cells, five locations in Gram

negative and four in Gram positive bacterial cells. These four

evolutionary groups are loosely referred to as kingdoms in this

work. We let K represent the set of kingdoms. For any given

kingdom in K, we assume a distinct set of subcellular localization

classes that are appropriate for that kingdom.

Letting Sk represent the set of all subcellular localization classes for

kingdom k, we use the ngLOC method to generate a separate

probability distribution over Sk, where P(sclmk|di) denotes the

probability that domain di is localized into location sclmkMSk . The

problem with prediction of subcellular localization at the domain

level is that the same domain can exist on multiple proteins which

can be localized to different subcellular locations. We solved this

problem by taking an average probability of the predictions from all

sequences or subsequences representing a given domain, and

renormalizing to ensure the new predictions still represent a

probability space, i.e.,
P

m[Sk
P sclmk dijð Þ~1. We will refer to this

probability distribution as a ‘‘subcellular profile’’ for a given domain.

Our goal is to calculate a single measure that can capture the

similarity between subcellular profiles for any arbitrary domain di

and dj. First, we sum the absolute value of the difference between

the probabilities of each localization. If di and dj have an identical

probability distribution, then the difference between them is 0. If

they are predicted to localize into different locations with

probability of 1, then the measure would be 2. Then we use

simple arithmetic (multiply by 0.5) to scale the measure to be

between 0 and 1, where 1 implies 100% similarity. We calculate a

similarity measure between two domains di and dj in kingdom k as:

SCLsimijk~0:5 2:0{
X

m
P sclmk dijð Þ{P sclmk dj

��� ��� ��� �

This measure was chosen as it allows similarity to be captured

based on the probability over all localization classes considered,

and not solely on the most likely prediction. The theoretical

possible range for SCLsimijk is between 0–1, where a value of 1

implies that domains di and dj have 100% identical subcellular

profiles, and a value of 0 implies that domain di and dj are both

predicted to localize into entirely different compartments with a

probability of 1.

For each prediction for domain di, ngLOC outputs two

confidences scores: CS(di) – a confidence measure for the most

probable prediction, and MLCS(di) – a confidence measure for the

likelihood that di is localized into multiple organelles. The first

score is equivalent to the probability of the predicted localization.

The second score was developed to aid in predicting when a

protein is multi-localized as well as which compartments the

sequence is localized into. This is important, as we showed that

about 24% of domains localize into more than one organelle

(Table S1). We chose a CS threshold of 40 and an MLCS of 60 to

obtain only predictions of moderate to high confidence for use in

building the subcellular profile for each domain.

Using the subcellular profile, we recalculate the CS and MLCS

according to the same calculation employed in the ngLOC

method. Using these confidence scores, we calculate a weight for

each domain pair dij in kingdom k, denoted wSCLijk. The purpose

of the weight is to allow high confidence predictions to have more

influence on the final score than moderate confidence predictions.

For domain pair dij in kingdom k, we first determined minCSijk – the

minimum confidence score observed between CS(di) and CS(dj) in

kingdom k. Similarly, we also determined minMLCSijk – the

minimum MLCS value observed for both predictions. The weight

is then simply computed as the maximum of minCSijk and

minMLCSijk:

wSCLijk~max minCSijk,minMLCSijk

� �

Finally, we can factor in the number of occurrences in each

kingdom because, for each domain di, we know the frequency of

occurrence that the domain was found to occur in each of the four

kingdoms separately. We incorporate this information in score S4

by first calculating a probability density modeling the event that

any arbitrary domain di in D occurs in kingdom k. This is

computed as the fraction of instances of domain di that are found

in species belonging to kingdom k.

P k dijð Þ~ # of occurrences of di in kingdom k

total # of occurrences of di

Using this value, we can compute P(k|dij) as the probability that

domain pair dij is found in kingdom k. We can make a simplifying

assumption that the probability of any two arbitrary domains

being found in a particular kingdom are independent. Then,

P(k|dij) is simply:

P k dij

��� �
~P k di,dj

��� �
~

P k dijð ÞP k dj

��� �
P

l[K P l dijð ÞP l dj

��� �

Using these calculations, the final calculation for score S4 is

computed as follows:

S4ij~10:0
X

k[K
wSCLijk � SCLsimijk � P k di,dj

��� �� �

This function was designed to allow high score values that are in

proportion to high similarity measures which are captured through

comparison of the subcellular profiles between di and dj. The

P(k|di, dj) term can counteract the similarity measure if both

domains are found in entirely different kingdoms. The design

criteria is that if the subcellular localization for each domain is

predicted to be two distinct locations with high confidence, then

they are not likely to interact, and thus the integrated score should

be reduced accordingly. The multiplier 10.0 is used for scaling

purposes, thereby allowing a maximum score of 10.

S5-Semantic similarity of GO annotations. This scoring

feature was implemented based on the semantic similarity of GO

annotation between the two domains in domain pair dij. The idea

is that if two domains are associated with similar cellular processes

and/or involved in similar function, they are more likely to

interact. This concept has been successfully used for determining

the functional similarity of PPIs [29]. The GO annotation (GOA)

for a domain can be based on three concepts i.e., biological

process (P), molecular function (F) and cellular component (C). In

this scoring feature, we use only the first two concepts (P and F).

Concept C is similar to the subcellular location feature used for

score S4, and hence is not used here. Since each InterPro domain

has a specific function, finding identical GOA for two interacting

domains is unlikely, unless it is a homotypic interaction, i.e.

interaction between two identical domains. Therefore, we

compute a semantic similarity measure between the GO terms

of interacting domains within a GO concept, using the method

reported by Brown and Jurisica [29].

Species Comparison of DDIs
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The GO terms associated with all InterPro domains were

obtained from ‘Interpro2Go’ mapping (an expert-curated map-

ping available at http://www.ebi.ac.uk/interpro). The probability

of minimum subsumer, Pms was determined separately for

biological process (P) and molecular function (F) GO concepts

using the following derivation. Let g1 and g2 represent the set of

GO terms from domains i and j, respectively; let S(g1, g2) represent

the set of shared parental GO terms of g1 and g2, and let Gc

represent GO concept P or F. Then, Pms is calculated as the

minimum frequency of occurrence of the set of shared GO terms

over biological process or molecular function concepts:

Pms g1,g2ð Þ~ min
S g1,g2ð Þ Gcj

p gið Þf g

A similarity measure based on this probability is then calculated as

the negative log probability of minimum subsumer, using the

following equation.

Sim g1,g2ð Þ~{ln Pms g1,g2ð Þð Þ

In brief, the similarity score between two GO terms is higher if

they share a common parent with a more specific GO term (less

frequent), and vice versa. The total similarity score is the sum of

similarity scores from concepts P and F. Hence, S5 can range from

0–10, where 0 indicates no match in GO terms and 10 indicate

perfect match of GO terms in both concepts.

Conservation similarity of domains or DDIs across species
We derive a similarity measure between all pair-wise combina-

tions of species based on the predicted proportion of domains or

DDIs that are shared between species, by using the basic

probability set theory. Let A and B represent the set of DDIs

that were predicted to interact in species A and B, respectively.

The union of these two sets represents our sample space of all

domain pairs that are predicted to interact in either species A or B,

denoted as the set A < B. We assume a uniform probability

distribution across the sample space. The number of domain pairs

that are shared between two species is the intersection of A and B,

denoted as A > B. The probability of each species is then the

fraction of domain pairs in that particular set over all domain pairs

in the union, where the size of the union is determined as:

A|Bj j~ Aj jz Bj j{ A\Bj j.
Using the sample space of predicted interacting domain pairs

between species A and B, we assume a uniform probability over

the sample space, and assume that P A|Bð Þ~1. Basic set

probability allows us to derive a similarity measure for two species

A and B, called Sim(A,B), as:

Sim A,Bð Þ~ P A\Bð Þ
P Að ÞP Bð Þ~

A\Bj j
A|Bj j

Aj j
A|Bj j

Bj j
A|Bj j

This was adopted from a measure in information theory called

‘‘specific mutual information’’, which gives the relative amount of

information shared between two random variables when these

variables take on specific values [30], and is defined as:

SI X~x,Y~yð Þ~log
p X~x,Y~yð Þ

p X~xð Þp Y~yð Þ

� 	

In the context of this study, it is interpreted as the amount of

information shared between two specific species, based on the

shared DDIs or domains observed between these species. The

value of Sim(A,B) will always be between 0 and 1, where 0 implies

no similarity between A and B, and 1 implies that the two species

have 100% identical domain interaction patterns over all possible

interactions observed between the two species.

Results

Interaction datasets and domain mapping
We created a comprehensive, non-redundant dataset of

experimentally-derived PPIs by combining data from five major

interaction databases that include BIND, DIP, HPRD, IntAct and

MINT. This dataset contains 70,769 unique interacting protein

sequences (denoted as P) from 2,725 species, representing 209,165

unique binary PPIs (denoted as Pint). Domain definitions were used

from the InterPro domain database, which provides the most

comprehensive, expert-curated set of protein domains. Out of

70,769 proteins in P, 58,999 (83.4%) have at least one InterPro

domain mapped in our study. Thus, out of 209,165 PPIs in Pint,

only 166,259 are usable, i.e. where each partner protein has at least

one InterPro domain mapping with a domain length of at least 10

amino acids. The InterPro database contains 15,064 entries, of

which about 69% (10,389 domains) were found at least once in our

comprehensive dataset, covering over two-third of the entire

domain space.

Experimentally-determined negative PPIs are not available

other than a few sporadic literature-based instances. Hence, we

generated a set of putative non-interacting protein pairs (P,int)

from the proteins in Pint, using criteria that minimize the likelihood

of interaction between a selected protein pair (see methods).

Additionally, P,int is established over similar protein space and

domain space as Pint, which justifies the ratiometric feature scores

obtained from Pint and P,int. Sets of all possible DDIs (denoted as

Dint) and putative non-interacting domain pairs (denoted as D,int)

were derived from Pint and P,int, respectively. The size of Dint is

614,579 while the size of the original D,int is about 8.4 million;

however, there are only 360,739 DDIs at the intersection of Dint

and the original D,int, which are the useful ones for calculating

ratiometric feature scores for Pint against P,int. Hence, the size of

usable D,int is only 360,739.

Scoring algorithm
We selected five orthogonal scoring features that include: (S1)

ratio of expected frequency of occurrence, (S2) co-occurrence in

Rosetta stone proteins, (S3) frequency of occurrence in multiple

species, (S4) co-localized domain interactions in subcellular space,

and (S5) semantic similarity of GO annotations. The maximum

value for each feature score is set at 10 to ensure even contribution

of each score to the final integrated score. Scores S1 and S3 are

determined as ratios of feature values in Pint versus P,int, while S2,

S4 and S5 are calculated from the feature values of the domain

pair in consideration. The sum of these five scores gives the

integrated score (IS) for each DDI in a given PPI. Note that only

S1 and S3 scores could be determined for the entire set of DDIs in

Dint, while the coverage of S2, S4 and S5 varies widely across Dint.

The coverage for S2 is rather low at 5.5%, while S4 and S5 have

79.6% and 39.2% coverage, respectively. The reason for the

sparse nature of these scores is due to the fact that they are based

on the evolutionary (S2), spatial (S4) and functional (S5) knowledge

attributed to domains from experimental studies, and such

information is not available for all protein domains. As a result,

only 1.8% (11,269) of the Dint has a score available for all the five

features.

Species Comparison of DDIs
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Validation of prediction performance
We used two positive datasets and one putative negative dataset

of DDIs for validating the prediction performance of our method.

The first positive dataset contains DDIs from the iPfam database

which has been widely used as a ‘gold standard’ for validating

predicted DDIs [13,14,16,19,21]. Out of 4,030 DDIs in the iPfam

database, only 3,947 were usable for testing the current method

and the rest were eliminated due to lack of InterPro mapping. We

have created the second positive dataset from the single-domain

PPIs as described in the methods. Since each partner protein in a

single-domain PPI has only one domain, corresponding domains

are expected to interact (unless the PPI is a false positive). This

dataset has 728 overlapping DDIs in the iPfam dataset, which are

removed to obtain 2,790 DDIs from the single-domain PPIs. As

described in the methods, a set of 93,129 ‘putative negative’ DDIs

were used for testing the current method.

First, we compare the performance of individual feature scores

and the integrated score using the iPfam DDIs (see Figure S1 for

more details on individual feature scores). Due to unbalanced

coverage of feature scores across Dint, we used the percentile

method to sort the total predictions by each feature score alone,

and to compare their accuracy. Prediction accuracy by individual

scores was fairly good, ranging from 62–80% in the 80th

percentile, while the integrated score has clearly excelled by

predicting 86% of the iPfam DDIs in the same percentile, and

77% in the 90th percentile. These results confirm that each one of

the selected scoring features (S1–S5) is capable of discriminating

functionally relevant DDIs from random interactions.

Figure 3 shows the cumulative distribution of positive (iPfam

and single-domain DDIs) and negative DDIs against the

integrated score. At the point where the iPfam and negative

DDI lines intersect in this chart (at a score threshold of 8.5), about

85% of the negative DDIs score less than about 85% of the

positive iPfam DDIs. The single-domain DDI line shows a similar

pattern with slightly lower performance at the upper score

thresholds, yet a stronger performance at the lower thresholds

compared to the iPfam DDIs. These results clearly demonstrate

that the integrated score developed in this study is very effective in

discriminating functionally-relevant DDIs from the random pairs.

The integrated score will also allow us to predict DDIs at different

accuracy levels by adjusting the score threshold. To test the

performance of this method at various score thresholds, we created

an ROC curve (Receiver and Operating Characteristics) by

plotting the true positive rate against the false positive rate

(Figure 4). The area under the ROC curve is a good indicator of a

good classifier and our ROC curve demonstrates that a large

fraction of true positives can be predicted with a low rate of false

positives at higher score thresholds.

Table 1 shows the cumulative percentage of score distributions

for positive and negative test set DDIs over the entire range of

scores. Though the theoretical maximum for the integrated score

is 50, we observed that none of the DDIs scored more than 38.4;

this is because the score coverage is sparse by some scoring

features, or because those DDIs that are covered by all feature

scores did not achieve maximum scores from all. As seen in

Table 1, most of the DDIs in iPfam and single-domain test sets are

predicted at higher score thresholds. For instance, at a score

threshold of 9, 80.5% of iPfam and 76.5% of single-domain DDIs

were accurately predicted, while only 12.7% of the negative DDIs

were falsely predicted at this threshold. On the other end, only

4.3% of the iPfam DDIs scored below 3, while 50% of the negative

DDIs scored below the same score threshold. Based on the results

shown in Figure 3, Figure 4 and Table 1, we conclude with

confidence that there is a significant relationship between the

integrated score for a domain pair and the likelihood that the

domain pair interacts. For further analysis of DDIs, we used a

conservative score threshold of IS . = 10 to select 65,515 top

scoring DDIs. This score cutoff roughly corresponds to the top 10

percentile of our predicted DDIs with an accuracy of 78% and a

false positive rate of 10%. These predictions along with domain

names, scores and species can be accessed from the supporting

dataset (Data Sets S1).

Figure 3. Cumulative distribution of positive and negative test datasets against the entire range of prediction score. Positive test sets
include iPfam DDIs and DDIs in single-domain PPIs, while negative test set includes DDIs created from random combination of domains in iPfam
excluding the iPfam DDIs.
doi:10.1371/journal.pone.0005096.g003
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Comparison of prediction accuracy against existing
methods

We compared the performance of our method against two

recently published methods that include a generalized parsimoni-

ous explanation (GPE) method [13,14] and an integrated method

by Lee et al. [16]. Prediction results from these three methods can’t

be compared directly because they use different scoring systems

with varying DDI coverage space, and their accuracies were tested

against different versions of the iPfam DDI dataset. To make a fair

comparison of their predictive performance, we used percentile

ranking of all predicted DDIs by each method and adjusted their

coverage to the size of the iPfam dataset version used by

corresponding method. Figure 5 shows the cumulative fraction

of the coverage of iPfam DDIs predicted by each method across

different percentile thresholds. Our integrated method (IM) clearly

shows superior performance compared to the Lee et al’s method,

while results obtained from the GPE method are far below. The

overall coverage of the iPfam DDIs by our method is 86.2%

compared to 80.62% by Lee et al and 21.3% by GPE method.

Indeed, our method predicted 3,401 iPfam DDIs (86.2% of 3,947)

compared to 2,080 (80.6% of 2,580) predicted by Lee et al;

however, the percentages are calculated with respect to the size of

the iPfam version used in each method. These results emphatically

suggest that the current integrated method is robust with superior

accuracy and coverage compared to the existing methods.

Prediction of DDIs from eight model organisms
We used a conservative score threshold of IS . = 10 to predict

potential DDI(s) in a given PPI of each species. This score roughly

corresponds to a true positive rate of 78.1% and a false positive

rate of 10.3%. For comparative analysis of DDIs, we selected 8

model organisms including a bacterial and a plant species. These

species include human (Homo sapiens), mouse (Mus musculus),

Drosophila melanogaster, Caenorhabditis elegans, yeast (Saccharomyces

cerevisiae), Plasmodium falciparum, Escherichia coli, and Arabidopsis

thaliana.

Table 2 shows some vital statistics on the analysis of predicted

DDIs from eight species. The fraction of usable interacting

proteins (those with at least one InterPro domain mapping) varies

widely across species from 3.1% to 75.5% due to the unbalanced

nature of available experimental PPI datasets. The proteome

coverage of usable interacting proteins is excellent in yeast (75.5%)

and E. coli (74%) followed by Drosophila (41.6%), and human

(32.4%) presumably due to their extensive use as model organisms.

Consequently, these proteins are well annotated resulting in high

number of usable PPIs (where each partner protein has at least one

InterPro domain mapping) in these species. The domain space

covered by interacting proteins is the highest in human (5099

unique domains) followed by Drosophila, yeast and E. coli. The

number of unique DDIs in each species predicted with a score

threshold of 10 or more vary widely and there appears to be no

correlation between the number of covered domains and the

number of predicted unique DDIs. This can be explained by the

power law behavior where a few domains have many interacting

partners and a majority of other domains interact with only a few

partners. The scale-free behavior of domain interaction networks

is well documented in the literature [31,32].

We calculated species-specific DDIs that are found exclusively

in a particular species, which range from 19.8–80.3%, with the

exception of mouse which has only 7.2%. This is presumably

because the coverage of PPIs in mouse is very small relative to its

Figure 4. ROC curve plotting true positive rate against false positive rate across the entire range of score thresholds.
doi:10.1371/journal.pone.0005096.g004

Table 1. Cumulative distribution of DDIs in iPfam, DDIs from single-domain PPIs and the negative DDIs across the entire score
range of all possible DDIs in Dint.

Score Threshold ,26 26 23 0 3 6 9 12 15 18 21 24 . = 27

Cumulative % of iPfam DDIs 100.0 100.0 99.8 98.8 95.7 89.0 80.5 68.6 54.0 38.2 24.9 13.7 6.0

Cumulative % of single-domain PPIs 100.0 100.0 99.8 97.7 89.8 85.1 76.5 38.5 27.6 18.6 10.7 5.9 2.4

Cumulative % of negative DDIs 100.0 99.2 92.4 73.5 50.1 26.8 12.7 6.4 2.4 1.0 0.4 0.2 0.0

Each column shows the cumulative % of data scoring the value in that column and higher. The entire range of all observed scores fell between 212.43 and 38.37.
doi:10.1371/journal.pone.0005096.t001
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proteome size , and mouse is very closely related to human than any

other pair of species in this study resulting in a number of DDIs

shared between these two species. The converse effect is not true in

human because the PPI coverage is over ten-fold higher in human

compared to mouse. The highest percentage of species-specific DDIs

are preserved in E. coli (80.3) followed by yeast (61.9%), human

(60%) and Drosophila (35.5%). These results appear to be correlated

with the PPI coverage in corresponding species.

Cross-species comparison of domain-domain interactions
The results shown in Table 2 left us with several questions, i.e.

are DDIs conserved among species, and if so, to what extent? To

understand the patterns of DDI conservation within and across

species, we carried out an all-to-all comparison of predicted DDIs

across eight species. Table 3 shows a matrix of conserved DDIs

between all pairs of species in the upper diagonal. The highest

number of DDIs were conserved between human and yeast (5682)

followed by human and Drosophila (4139) and human and mouse

(3759). In general, human, yeast and Drosophila showed higher

conservation of DDIs with other species, which is at least in part

attributed to the higher coverage of PPIs in these species. Yet E.

coli, despite having the highest coverage of PPIs relative to its

genome size, appears to have poor conservation of DDIs with

other species. Itzhaki et al [21] have reported similar results with E.

Figure 5. Comparison of the prediction accuracy of the current integrated method (IM) with Lee et al’s method and GPE method.
doi:10.1371/journal.pone.0005096.g005

Table 2. Species-wise analysis of predicted domain-domain interactions.

Species 1 2 3 4 5 6

Proteome
size

Usable interacting
proteinsa

Usable
PPIs b

Domain
coverage in Pint

c
Unique
predicted DDIs d Species-specific DDIse

Total % Total %f

Human 37,993 12,311 32.4 47,837 5,099 (76%) 25,287 14,918 60.0

Mouse 32,745 3,173 9.7 4,258 2,400 (36%) 4,197 304 7.2

Drosophila 16,273 6,775 41.6 20,578 3,643 (76%) 7,226 2,568 35.5

C. elegans 22,515 2,488 11.1 3,934 2,025 (45%) 2,340 463 19.8

Yeast 5,800 4,381 75.5 43,403 3,303 (90%) 19,083 11,820 61.9

Plasmodium 5,250 730 13.9 1,246 828 (36%) 858 218 25.4

E. coli 4,330 3,205 74.0 10,589 3,221 (82%) 12,044 9,670 80.3

Arabidopsis 35,011 1,070 3.1 2,642 749 (16%) 1,288 383 29.7

aA usable interacting protein is the one that has at least one InterPro domain mapped to it.
bUsable PPIs are those whose partner proteins have at least one InterPro domain mapped on each.
cPercentage value in parenthesis is calculated against the total number of InterPro domains mapped in the entire proteome of each species.
dA score threshold of 10 is used to predict DDI(s) in a given PPI and those DDIs that are unique within a species are selected.
eSpecies-specific DDIs are those that are found only in a particular species.
fPercentage of species-specific DDIs over the unique predicted DDIs in column 5. This number indicates the extent of preservation of DDIs within a species that were
not found in any other species.

doi:10.1371/journal.pone.0005096.t002
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coli, where they compared DDI conservation of E. coli against four

eukaryotic species. However, it is difficult to draw conclusions

based solely on these raw numbers because the experimental

coverage space of PPIs is highly unbalanced across these species.

Hence, we further computed a similarity measure to accurately

determine the similarity of DDI conservation between a pair of

species by considering the total DDI coverage space, and the

number of species-specific and overlapping DDIs. This measure

outputs a value between 0–1, where 1 implies absolute

conservation of DDIs between the two species and 0 implies no

conservation.

The lower diagonal of Table 3 shows the similarity measure

between species, which are sorted based on their descending

evolutionary order from human to E. coli. Hence, the similarity

measure values closer to the diagonal correspond to evolution-

arily closer species, and values further away from the diagonal

correspond to distant species. Despite the unbalanced coverage

of PPI datasets for different species, this table shows that the

computed similarity values mostly correlate with the expected

evolutionary distance between a pair of species. The values

closer to the diagonal are higher compared to those away from

the diagonal in each column, indicating that the DDI

conservation is more prominent between evolutionary neighbor-

ing species and the conservation gradually disappears as the

species become more distant. Note that the similarity between E.

coli and any other species is the smallest indicating that the

bacterial domain-domain interactions are the least conserved in

eukaryotic species. This ‘sliding conservation’ pattern of DDIs

along the evolutionary path is expected because domain

evolution is thought to be the primary evolutionary force for

speciation [33].

We performed a global analysis of 52,492 DDIs that are

observed in eight model organisms. Figure 6 shows a pie

distribution of conserved and non-conserved DDIs in eight

species. About 77% of the DDI analyzed are found in only one

species, while 23% are found to be conserved in at least two

species and only 3.8% are conserved in at least four species. Of the

conserved DDIs, about 63% are found only in two species

corroborating the ‘sliding conservation’ pattern explained above.

These results suggest that conservation of DDIs across species is

rather low despite the fact that corresponding domain conserva-

tion similarity is higher (see Table S2). These results led us to

examine which DDIs are conserved in more species, and what

functions are associated with these conserved DDIs?

Functional significance of conserved DDIs
We sorted all the conserved DDIs into eight conservation

groups based on the number of species containing those DDIs

Thus, the first group contains only those DDIs that are

conserved in all the 8 species and similarly, the last group

contains only those that are found in only one species. Analyzing

the functional role of all conserved DDIs is beyond the scope of

this study; hence, we looked at the functional role of domains

that are associated with the top 5 DDIs in each conservation

group. Table 4 lists short descriptions of functions associated

with the top five DDIs in each conservation group (ranging from

1–8 species). Most of these conserved DDIs are either

homotypic, or those occurring between domains involved in

similar functions even if they are heterotypic. As expected, most

of these functions are associated with basic cellular processes that

maintain genomic integrity (transcription factors, polymerases,

etc.) and core metabolism of the cell (kinases, ATPases, etc). For

example, the top five DDIs that are conserved in 7 or 8 species

include homotypic interactions of Homeodomain-like domain,

AAA+ ATPase core domain, Thioredoxin fold domain, etc., and

heterotypic interactions among Protein kinase core domain,

DNA/RNA helicase C-terminal domain, Map kinase domain,

GST- N and C terminal domains. Similarly, domains associated

with the top five DDIs conserved in 6 species include several

transcription factors, basic helix-loop-helix dimerisation do-

mains, proteosome domains, etc.

Table 3. Cross-species comparison of domain-domain interactions from eight model organisms.

Species HUMAN MOUSE DROME CAEEL YEAST PLAF7 ARATH ECOLI

HUMAN 3759 4139 1672 5682 515 669 1389

MOUSE 0.91 1603 803 1230 189 284 215

DROME 0.64 0.52 1254 2210 338 387 363

CAEEL 0.73 0.47 0.62 1120 217 253 285

YEAST 0.46 0.34 0.39 0.51 577 662 1893

PLAF7 0.61 0.26 0.42 0.32 0.68 85 207

ARATH 0.53 0.27 0.34 0.28 0.53 0.16 233

ECOLI 0.16 0.07 0.08 0.14 0.24 0.25 0.20

HUMAN-Homo sapiens; MOUSE-Mus musculus; DROME-Drosophila melanogaster; CAEEL-Caenorhabditis elegans; YEAST-Saccharomyces cerevisiae; PLAF7-Plasmodium
falciparum; ARATH-Arabidopsis thaliana; ECOLI-Escherichia coli. The upper diagonal shows the number of overlapping DDIs between specific pairs of species. Values in
the lower diagonal represent DDI conservation similarity between specific pairs of species.
doi:10.1371/journal.pone.0005096.t003

Figure 6. Pie distribution of conserved and non-conserved
DDIs in eight model organisms.
doi:10.1371/journal.pone.0005096.g006
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On the other end, DDIs that are conserved in only one or two

species contain domains which are mostly involved in specific

functions related to an evolutionary group. For instance, the

‘transcription factor - K box’ domain is found exclusively in

plant species and our method predicts that this domain interacts

with the ‘transcription factor-MADS box’ domain, only in

Arabidopsis. Similarly, domains such as Integrase and Integrase-

like catalytic core, RNA polymerase sigma-70, etc. are

predominantly bacterial domains and interactions between these

domains are predicted only in E. coli. The Haemoglobin-beta

domain is present only in chordates and the interactions between

this domain and the Globin-subset domain is predicted only in

human and mouse species. The complete list of conserved DDIs

with prediction scores, names of partner domains, and the

species conserved can be found in the supporting dataset (Data

Sets S1).

Table 4. Top five predicted DDIs that are conserved in multiple species, sorted by the number of species conserved.

sps# Domain-1 Name Domain-2 Name Species Score

8 IPR009057 Homeodomain_like IPR009057 Homeodomain_like HMDCYPAE 25.7

8 IPR000719 Prot_kinase_core IPR001650 DNA/RNA_helicase_C HMDCYPAE 13.5

8 IPR000719 Prot_kinase_core IPR003593 AAA+_ATPase_core HMDCYPAE 13.3

8 IPR003593 AAA+_ATPase_core IPR003593 AAA+_ATPase_core HMDCYPAE 11.7

8 IPR012335 Thioredoxin_fold IPR012335 Thioredoxin_fold HMDCYPAE 10.5

7 IPR001353 Proteasome_A_B IPR001353 Proteasome_A_B HMDCYAE 35.3

7 IPR012287 Homeodomain-rel IPR012287 Homeodomain-rel HMDCYAE 31.1

7 IPR004045 GST_N IPR010987 GST_C_like HMDCYAE 23.4

7 IPR000719 Prot_kinase_core IPR003527 MAP_kin HMDCYPA 22.9

7 IPR004045 GST_N IPR004045 GST_N HMDCYAE 20.6

6 IPR004827 TF_bZIP IPR011700 bZIP_2 HMDCYA 37.4

6 IPR000426 Proteasome_alpha IPR001353 Proteasome_A_B HMDCYA 36.9

6 IPR001356 Homeobox IPR012287 Homeodomain-rel HMDCYA 36.6

6 IPR001092 HLH_basic IPR011598 HLH_DNA_bd HMDCYA 30.5

6 IPR013088 Znf_NHR/GATA IPR013088 Znf_NHR/GATA HMDCYE 29.9

5 IPR000243 Pept_T1A_subB IPR001353 Proteasome_A_B HMCYA 36.3

5 IPR008331 Ferritin_Dps IPR008331 Ferritin_Dps HMDCE 32.5

5 IPR001114 AdlSucc_Synth IPR001114 AdlSucc_Synth HMYAE 31.8

5 IPR001163 LSM_snRNP_core IPR010920 LSM_related_core HMDCY 31.6

5 IPR009078 Ferritin/RR_like IPR012347 Ferritin_rel HMDCE 29.6

4 IPR008946 Nucl_hrmn_rcpt_lig_bd IPR013088 Znf_NHR/GATA HMDC 38.4

4 IPR000793 ATPase_a_b_C IPR004100 ATPase_a_b_N HYAE 37.3

4 IPR007860 MutS_II IPR007861 MutS_IV HCYE 37.1

4 IPR001628 Znf_hrmn_rcpt IPR008946 Nucl_hrmn_rcpt_lig_bd HMDC 36.7

4 IPR011261 RNAP_dimerisation IPR11262 RNAP_insert HDYE 36.4

3 IPR002398 Pept_C14_p45 IPR011600 Pept_C14_cat HMD 37.2

3 IPR009025 RNA_pol_RBP11-like IPR011261 RNAP_dimersation HDY 36.5

3 IPR013506 Topo_IIA_B_2 IPR013760 Topo_IIA_cen HYE 36.0

3 IPR009025 RNA_pol_RBP11-like IPR011262 RNAP_insert HDY 35.5

3 IPR002205 Topo_IIA_A/C IPR013757 Topo_IIA_A_a HYE 35.4

2 IPR002314 AA-tRNA-synt_IIb IPR015805 His-tRNA_synth HE 37.4

2 IPR000971 Globin_subset IPR002337 Haemoglobin_b HM 34.6

2 IPR001217 STAT IPR013800 STAT_alpha HC 34.5

2 IPR009056 Cyt_c_monohaem IPR012282 Cytochrome_c_R HY 34.5

2 IPR007120 RNA_pol_Rpb2_6 IPR007644 RNApol_bsu_protrusn HY 34.3

1 IPR002100 TF_MADSbox IPR002487 TF_Kbox A 38.4

1 IPR004516 His-tRNA_synth_IIA IPR015805 His-tRNA_synth E 38.3

1 IPR002104 Integrase_cat-core phage IPR013762 Integrase-like_cat-core_phage E 37.6

1 IPR007627 RNA_pol_sigma70_r2 IPR014284 RNA_pol_sigma-70 E 36.4

1 IPR001576 Phosphoglycerate_kinase IPR015824 Phosphoglycerate_kinase-N Y 35.9

H-human, M-mouse, D-Drosophila, C-C.elegans, Y-yeast, P-Plasmodium, A-Arabidopsis, E-E. coli.
doi:10.1371/journal.pone.0005096.t004
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Discussion

Method development
The comprehensive, non-redundant dataset of PPIs compiled

by us in this work contains 209,165 PPIs that has an extensive

coverage of domain space (two-third of the entire domain/family

space in InterPro). To our knowledge, such a large size dataset has

not been used before for computational inference of DDIs. This

robust dataset has enabled us to develop the current universal

method without the biases associated with using smaller datasets

that are skewed toward a few species.

Experimentally-determined datasets representing non-interact-

ing protein pairs are virtually lacking; thus limiting the

development of negative models by computational methods to

compare against the positive datasets. As a result, numerous

approaches have been used to establish potential negative PPIs

including the use of random protein interactions [11,21,34], use of

any unobserved interactions at the protein and/or domain level

[12,16], or by assuming a false positive rate and a false negative

rate to establish an estimate of negative interaction data in their

model [10,16]. Nevertheless, these approaches treat any unknown

interaction as non-interacting, thus potentially label a number of

unknown positives as true negatives. In this study, we first

generated non-interacting protein pairs (P,int) from the same set of

proteins (P) involved in known interactions (Pint ) after filtering the

PPIs in Pint . By doing so, we ascertain that these proteins are

expressed (not hypothetical) and involved in at least one known

PPI. We then imposed a constraint that the two interacting

proteins in a PPI must not be localized to the same subcellular

location, where the chances of interaction are higher. This

constraint effectively filters out most of the unlikely negative

interactions in our putative dataset of negative PPIs.

Despite the origination of both Pint and P,int from the same

protein set (P), the set of PPIs differ between them. Yet, due to the

modular architecture of proteins, the same DDI can be found in

PPIs belonging to either dataset, but with a different probability.

By using the same domain space for comparison, our scores ensure

that the probability of interaction between a domain pair in Pint is

fairly validated against P,int, Hence we are able to effectively

contain false positive DDIs from obtaining higher scores as shown

in the ROC plot (Figure 4).

The final integrated score developed in this study is a

probabilistic measure of five independent scores. Scores are being

viewed as random variables, where each variable is modeling the

event that some given domain pair will interact. In cases where we

can apply negative data from P,int to improve our score (i.e. S1

and S3), we can directly compute a log odds ratio, further

improving on the ability of the score to distinguish between

interacting and non-interacting domains. Despite the fact that the

remaining three scores do not use negative data, they are still

found to be quite effective at distinguishing between interacting

and non-interacting domain pairs (see Figure S1). The range of all

scores were scaled between 0–10 to ensure no one score

dominated the final score calculation.

Eukaryotic cells have structured subcellular organization; thus,

functionally-relevant PPIs, to a larger extent, are expected to occur

within their subcellular boundaries. As a consequence, domain

interactions are not ‘free-for-all’ in the domain space of a

proteome; more often they are under spatial constraints in the

cell. This notion is represented by our S4 score (co-localization of

domain pairs), which is a novel scoring feature used in this study

based on the localization predictions from our ngLOC method

[28]. This scoring feature shows one of the best independent

performances in predicting iPfam DDIs (Figure S1). Different

variants of some of the scoring features used in this study have

been used in other studies to infer DDIs [10,11,16,35] or to predict

PPIs [29]. Nevertheless, our comprehensive datasets of positive

and negative PPIs and our selection of a new combination of

scoring features (especially S4) have attributed higher accuracy

and coverage to the current method.

We predicted 5,035 homotypic interactions in the 90th

percentile that corresponds to 48% of all possible homotypic

DDIs in this study (the size of domain set is 10,389). These results

corroborate previous observations that homotypic DDIs are very

abundant in PPIs [21].

Comparative analysis of DDIs across model organisms
Comparison of large datasets of DDIs across eight model

organisms has revealed interesting insights into the conservation

patterns within and across species. About 80% of the high

confidence DDIs (52,492 out of 65,515) were also predicted in

these eight species giving us abundant DDI space to compare

across species. A previous work by Itzhaki et al. was the only other

similar study, which compared the conservation of about 3000

DDIs across five model organisms [21]. The major methodological

difference between these two studies is that we used a top-down

approach in contrast to their bottom-up approach. In other words,

Itzhaki et al. [21] started with the known DDIs in iPfam [23] and

3DID databases [36], and mapped them to the PPIs across 5

species. In contrast, our method considers all theoretically possible

DDIs (|Dint| = 614,579) in the known PPIs, and systematically

filtered out random interactions using five scoring features to infer

high-confidence DDIs. Table 2 shows that the number of DDIs

that are exclusively conserved within a species (species-specific)

varies significantly across species. We found that our results have

little in agreement with those previously reported by Itzhaki et al.

We report 80% (E. coli), 62% (yeast), 20% (C. elegans), 36%

(Drosophila) and 60% (human) of species-specific DDIs, while

Itzhaki et al. report 62% (E. coli), 18% (yeast), 10% (C. elegans), 3%

(Drosophila) and 41% (human) of such DDIs. The disagreement of

results between these two studies may be as a result of a 15-fold

difference in the number of DDIs used for analysis in our study.

Due to the incomplete and unbalanced nature of PPI datasets

used from different species, it is a challenging task to make a fair

comparison of cross-species conservation. The similarity measure

we developed in this study to compare the DDI conservation

similarity has provided a normalized value to facilitate pair-wise

comparisons among all eight species. Cross-species comparison

(Table 3) reveals that conservation among species shows a sliding

pattern, where neighboring species along the evolutionary path

show higher conservation and distant species show lower

conservation. The conservation of DDIs across multiple species

is very low (Figure 6) given the number of house keeping processes

common to all cellular organisms. We speculate that this

observation is, at least in part, as a result of the unbalanced

coverage of PPI datasets across species, rather than the lack of real

conservation. Nevertheless, our results are in accordance with

earlier reports; that there is only a small overlap of interactions

across multiple species at the PPI level [37,38] On the other hand,

comparison studies using the iPfam database show that a good

number of DDIs are conserved across species [21,39]. Our

observation suggesting the lack of reasonable conservation of DDIs

across species is based on the use of a large set of high-confidence

DDIs (52,492 from 8 species) in contrast to only about 3000 gold-

standard iPfam DDIs used by other methods. Additionally, we

used a normalized measure to determine the conservation

similarity of DDIs to eliminate the bias that originates from

unbalanced coverage of PPI datasets across different species. The

Species Comparison of DDIs
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differences in the data size and in the methodology might explain,

at least in part, the discrepancies between our results and those

from other studies. The scoring algorithm developed in this study

was able to recover 77% of iPfam DDIs in the 90th percentile and

about 86% in the 80th percentile; thus helped to identify a large

number of high-confidence DDIs that lack structural coverage in

the protein data bank.

As expected, DDIs conserved across multiple species appear to

perform the essential core of functions to sustain genome integrity,

including binding, unwinding, replication, and repair of nucleic

acids and other vital enzymatic processes by kinases, proteinases,

ATPases, dehydrogenases, and oxido-reductases, etc. (Table 4).

We believe that our methodology and the high-confidence DDI

predictions generated in this study will help to interpret the

functional significance of PPIs, and thus enhance the utility of vast

amount of the ‘binary’ protein interaction data generated from

high-throughput experiments. Some potential applications of this

work include better understanding of PPI networks at the modular

level, conferring new functions for domains of unknown function

(DUFs), inferring novel protein-protein interactions, etc.

In conclusion, the top-down approach developed in this study is

able to predict high-confidence DDIs that will have a multitude of

applications in biomedical research. Comparison of the current

method with two other methods showed that the prediction

accuracy and coverage of our method is strikingly higher. Despite

the incomplete and unbalanced nature of available datasets, this

method performed very well because (i) the PPI dataset used for

training this method is very comprehensive, (ii) the negative PPI

dataset contains the same domain space as the positive dataset

providing the basis for an effective comparison, and (iii) the scoring

algorithm includes a novel combination of orthogonal scoring

features that could map the interacting propensity of two domains

in many dimensions. Since S2, S4 and S5 scores are based on

additional annotation from protein sequences, this method has a

high potential to perform better as more experimental annotations

become available in the future. This method has generated large-

scale datasets of high-confidence DDIs which are effective for

cross-species comparison of DDI conservation. This has opened

up new opportunities to investigate DDI conservation patterns at

various sub-classes of species in the evolutionary spectrum. The

methodology and data generated in this project, complemented by

experimental validation, can have a significant impact on systems

biology research.
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