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Abstract

Measles is a highly contagious childhood disease associated with an immunological paradox: although a strong virus-
specific immune response results in virus clearance and the establishment of a life-long immunity, measles infection is
followed by an acute and profound immunosuppression leading to an increased susceptibility to secondary infections and
high infant mortality. In certain cases, measles is followed by fatal neurological complications. To elucidate measles
immunopathology, we have analyzed the immune response to measles virus in mice transgenic for the measles virus
receptor, human CD150. These animals are highly susceptible to intranasal infection with wild-type measles strains. Similarly
to what has been observed in children with measles, infection of suckling transgenic mice leads to a robust activation of
both T and B lymphocytes, generation of virus-specific cytotoxic T cells and antibody responses. Interestingly,
Foxp3+CD25+CD4+ regulatory T cells are highly enriched following infection, both in the periphery and in the brain,
where the virus intensively replicates. Although specific anti-viral responses develop in spite of increased frequency of
regulatory T cells, the capability of T lymphocytes to respond to virus-unrelated antigens was strongly suppressed. Infected
adult CD150 transgenic mice crossed in an interferon receptor type I-deficient background develop generalized
immunosuppression with an increased frequency of CD4+CD25+Foxp3+ T cells and strong reduction of the hypersensitivity
response. These results show that measles virus affects regulatory T-cell homeostasis and suggest that an interplay between
virus-specific effector responses and regulatory T cells plays an important role in measles immunopathogenesis. A better
understanding of the balance between measles-induced effector and regulatory T cells, both in the periphery and in the
brain, may be of critical importance in the design of novel approaches for the prevention and treatment of measles
pathology.
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Introduction

Measles is a highly contagious childhood disease resulting in an

acute respiratory infection, followed in certain cases by fatal

neurological complications. Measles Virus (MV) remains a major

cause of childhood morbidity and mortality in developing

countries and measles outbreaks occur regularly in industrialized

countries [1]. MV infection induces an efficient immune response,

leading to viral clearance and a life-long immunity against re-

infections [2,3]. In addition, MV infection gives rise to a non-

specific activation of the immune system characterized by a

spontaneous proliferation of peripheral blood mononuclear cells

and an up-regulation of activation-associated cell-surface markers

[4,5]. Along with this immune activation, MV induces a transient

but severe immunosuppression, which increases the susceptibility

of patients with measles to secondary bacterial and viral infections,

leading to high infant morbidity and mortality. Immune

abnormalities include the disappearance of the delayed type of

hypersensitivity responses [6,7], an impaired proliferation of

peripheral blood lymphocytes [8] as well as allospecific cytotoxicity

[9]. In experimentally infected monkeys, both activation of the

immune response and immunosuppression have been observed

[10]. However, the immunological mechanism responsible for this

apparent measles paradox remains elusive.

Measles was the first disease recognized to be a cause of virus-

induced immunodeficiency [6]. Multiple mechanisms have been

advocated to explain this immunosuppression. Type 2 polarization

of cytokine responses occurs during the late stages of measles with

an increase in the secretion of interleukin 4 (IL-4) and a decrease

of IL-2 and interferon c (IFN-c) levels [11]. The production of the

pro-inflammatory cytokine IL-12 is also markedly suppressed in

patients with measles [12] and the anti-inflammatory cytokine IL-

10 increased [13,14]. Furthermore, the importance of different

MV proteins in the induction of immunosuppression has been

demonstrated [15]. MV glycoproteins, hemagglutinin (H) and

fusion protein (F) could induce a surface-contact-mediated

signaling, leading to the disruption of Akt kinase activation and

inhibition of cell proliferation [16]. Moreover, the interaction of
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MV nucleoprotein with Fcc receptor on antigen-presenting cells is

implicated in the suppression of cell-mediated responses,

[17,18,19] and in the induction of the T regulatory immune

response, following a chronic exposure [20].

The generation of T cell immunity is regulated by multiple

cellular and molecular events. During the past years, the role of

Foxp3-expressing CD4+ T regulatory cells (Tregs) has become

more evident, not only in the prevention of autoimmunity, but also

in the control of antimicrobial immune responses, especially

against pathogens that induce a persistent infection [21]. However,

the influence of CD4+Foxp3+ Tregs in response to acute virus

infection is largely unknown. CD4+CD25+ T cells were recently

shown to be increased in adult measles patients, suggesting their

potential role during infection [13,14], although this finding has

been contradicted by the others [22]. We have, therefore, analyzed

the immunopathogenesis of an acute MV infection in mice

transgenic for the human CD150 molecule, a receptor for both

vaccine and wild-type MV strains [23]. Suckling CD150

transgenic mice are highly susceptible to intranasal MV infection

and develop clinical signs of neurological disease shortly after the

infection [24]. We show here, that following its natural route of

infection, wild-type MV induces a strong and broad activation of

the immune system, the generation of MV-specific humoral and

cellular anti-viral responses, accompanied by an increase in the

frequency of regulatory CD4+CD25+Foxp3+ T cells. Although

their suppressive function was not altered in vitro, the increased

frequency of Tregs observed after infection correlated with the

significant suppression of T cell response in mixed leukocyte

reaction. Moreover, we show that adult CD150 transgenic mice,

crossed into IFN a/b receptor deficient background, are highly

susceptible to MV infection and develop generalized immunosup-

pression characterized by an increased frequency of

CD4+CD25+Foxp3+ T cells and strong reduction of hypersensi-

tivity response. These results demonstrate the ability of an acute

MV infection to affect Foxp3+ Treg homeostasis and shed a new

light on the immunological basis of measles paradox, where the

strong anti-viral reaction is associated with a profound suppression

of responses to unrelated antigens.

Results

Measles virus infection induces a strong activation of the
immune system in CD150 transgenic mice

We have generated transgenic mice expressing the human MV

receptor CD150, which are highly sensitive to MV infection. In

contrast to nontransgenic mice, intranasal inoculation of suckling

CD150 transgenic mice with wild-type MV strains induces an

acute neurological syndrome, followed with high mortality [24].

Here, we analyzed the immune response in these mice after MV

infection. Following intranasal infection, the expression of MV

hemagglutinin was detected on both T and B lymphocytes, only in

infected CD150 transgenic mice (Fig. 1A). Similarly to the severe

lymphopenia observed in children [3,25], MV infection of suckling

CD150 transgenic mice greatly reduced the number of lymphoid

cells: the number of splenocytes 10–14 days after infection (dpi)

was regularly lower in infected transgenic mice (4.762.16107)

than in infected nontransgenic littermates (9.263.66107) (for 15

and 12 mice respectively, p,0.05, student t-test). The additional

changes in the spleen T cell-compartment of the immune system

included a two-fold increase in the percentage of CD4+ T cells and

a three-fold increase in CD8+ T cell percentage in infected

transgenic mice, in comparison to the all other 3 groups analyzed

(Fig. 1B, Table 1). The greatest increase in the percentage of T

cells in the spleen was found in mice with the most severe clinical

symptoms (weight loss, ataxia, seizures). In contrast, a moderate

but reproducible decrease in the percentage of B cells was

observed (230% as compared to controls) (Fig. 1C).

Numerous studies have reported that MV infection in humans

strongly activates the immune system, including both T [4,5,26]

and B lymphocytes [27]. We therefore analyzed different

activation markers on splenocytes from MV-infected transgenic

mice and observed highly activated phenotypes of both T and B

lymphocytes. The proportion of CD69+ cells in the CD4+T cell

subset was increased three-fold in infected CD150 transgenic mice

(Table 1). The activation phenotype was even more pronounced in

the CD8+ T cell subset, with a four-fold increase in the expression

of activation-associated marker CD69. This was associated with a

significant decrease in CD62L expression, a cell surface molecule

implicated in lymphocytes homing to peripheral tissue, suggesting

the migration of lymphocytes from the spleen to the periphery.

Finally, B cells, although less numerous, were strongly activated in

infected CD150 transgenic mice based on increased CD69 and

CD80 expression (Table 1).

MV-infected CD150 transgenic mice develop a specific
humoral and cellular response

The important activation phenotype of B and T lymphocytes,

observed in MV-infected CD150 transgenic mice, prompted us to

analyze anti-MV antibody production and cytotoxic activity in

Figure 1. MV infection induces a strong activation of the
immune response in CD150 transgenic mice. CD150 transgenic
mice and nontransgenic littermates (control) were inoculated i.n. with
MV or medium (uninfected). Spleens were harvested 13 dpi and cells
were analyzed by flow cytometry. (A) Expression of MV hemagglutinin
(H) antigen on the surface of spleen cells from uninfected (grey line)
and MV-infected (black line) CD150 transgenic mice, gated on CD19+ (B
cells) or CD3+ (T cells) cells. Numbers are percentages of cells expressing
MV H antigen in infected conditions. (B) Staining for CD4+ and CD8+ T
cells and (C) CD19+ B cells, among analyzed splenocytes. Results are
representative of 8 different experiments, each involving 3–6 mice.
Differences between CD150 transgenic infected mice and the other
groups were statistically significant (p,0.05, Student t-test).
doi:10.1371/journal.pone.0004948.g001

Measles and Foxp3+ Treg Cells
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these animals. When mice were infected with a low dose of virus

(200 pfu) to reduce the mortality observed in this model [24], all

mice developed N-specific antibodies by one month post-infection

and the majority of sera (5 out of 7 sera tested) had high

neutralization titers (Fig 2A). MV intra-nasal infection with the

high dose of the virus (103 PFU) induced the generation of

nucleoprotein (N)-specific IgG antibodies in 60% of infected

CD150 transgenic mice at 13 dpi (Fig. 2B). Furthermore, a strong

N-specific cytotoxic activity was detected in infected CD150

transgenic mice at 13 dpi, showing that these mice developed a

specific cellular anti-measles response (Fig. 2B). However,

differences in the IFN-c production were not observed (data not

shown). Thus, as observed in patients with measles, who developed

both neutralizing antibody and T cell specific responses [2,3],

infected CD150 transgenic mice are capable of mounting both

MV-specific humoral and cellular immune responses.

Enrichment of the Foxp3+ regulatory T cell population
after MV infection

The intensive immune activation observed both in measles

patients and infected CD150 transgenic mice may need to be

controlled by Treg cells to avoid tissue damage. This cell

population have been shown to regulate the outcome of the

infection having either beneficial or detrimental role for the host

[21,28]. We therefore studied the Treg cell population

(CD4+CD25highFoxp3+) in MV-infected CD150 mice. Interest-

ingly, we found a significant increase in the percentage of Tregs in

the spleen of infected transgenic mice (Fig. 3A). These

CD4+CD25highFoxp3+ cells presented a conventional phenotype,

based on the expression of CD69, CD62L and GITR, but we did

not detect IL-10 production (data not shown).

MV-induced brain infection is a serious complication of measles

and altered immune response may be implicated in this MV-induced

neuropathology. Therefore, we analyzed the frequency of regulatory

T cells (Foxp3+ CD25high CD4+) in the brain of MV-infected mice,

where the virus intensively replicates [24]. We crossed CD150

transgenic mice into Foxp3-GFP background [29] to facilitate the

follow-up of Foxp3+ Tregs. Although T lymphocytes represented a

minority of the harvested cells from the brain, the percentage of both

CD4+ and CD8+ T lymphocytes was two-fold increased in infected

transgenic brains (Fig. 3B). Infiltrating CD4+ lymphocytes presented

an activated phenotype, expressing a high level of the CD44 marker

(Fig. 2B), suggesting their recent migration to brain tissue. Moreover,

among CD4+ cells, a high enrichment (three fold) of CD25high

Foxp3+ T lymphocytes was observed (Fig. 3C). These CD25+

Foxp3+ T lymphocytes expressed the Treg markers ICOS (Fig. 3C)

and GITR (data not shown). In addition, immunohistofluorescence

experiments were carried out to analyze the localization of

regulatory T cells in infected brain parenchyma. In MV-infected

CD150-transgenic mice, both infiltrating CD4+ and CD8+ T cells

(Fig. 4A and 4B, respectively) were found in infected brain regions

revealed by a MV N-specific staining. These regions included mainly

olfactory bulbs and nuclei, hypothalamus and, at a lesser extent, the

midbrain, the brainstem and/or periventricular spaces (not shown).

In agreement with previous observations that Tregs are attracted to

the site of inflammation [21], we have detected Foxp3+ Treg cells in

the brain at the sites of MV infection (Fig. 4C and 4D). Neither MV

infection nor infiltrating Treg cells were observed in brains from

infected wild-type mice (Fig. 4E) or uninfected CD150-transgenic

mice (Fig 4F). Together, these results demonstrate that Tregs

accumulate in the brain in the areas of MV infection.

Characterization of the Treg cell function
To analyze the Treg suppressor activity, purified CD25+CD4+

T cells from infected and non-infected CD150 transgenic mice

were co-cultured with CD252CD4+ effector T cells in the

presence of irradiated CD4+ T cell-depleted antigen presenting

cells (APC) and concanavalin A (ConA). No significant difference

was observed in suppressor activity between MV-infected and

non-infected transgenic Tregs on proliferation of effector cells,

purified from either uninfected or infected CD150 transgenic mice

(Fig. 5A). Thus, MV-infection does not seem to modulate the

regulatory function of Tregs. Although the suppressive capacity of

Table 1. Measles Virus-induced activation of lymphocytes in CD150 transgenic mice.

Percentage of positive cells* Control CD150 tg

Uninfected Infected Uninfected Infected

CD4+ 13,3362,31 13,7561,81 15,5662,46 34,36614,71**

CD4+ CD69+ 2,7760,44 3,5160,40 3,3760,76 8,9362,39***

CD4+ CD62L+ 86,5562,57 83,6361,45 83,6062,89 71,42611,42

CD4+ CD44high 9,5761,37 9,0560,93 7,2760,31 8,6760,88

CD4+ CD25+Foxp3+ 7,2760,78 7,0860,38 7,2760,35 10,0261,20***

CD8+ 4,7460,79 4,5861,26 6,2461,86 13,9565,14**

CD8+ CD69+ 2,0860,46 2,5360,42 2,9061,10 10,0566,87**

CD8+ CD62L+ 76,8864,15 83,1862,17 73,7863,84 60,5468,24**

CD8+ CD44high 16,3061,08 16,2762,06 15,7363,09 9,5965,95

CD19+ 63,0764,24 71,9564,20 53,58613,64 38,02616,71

CD19+ CD69+ 1,8360,22 2,1160,23 2,3360,92 9,7765,60**

CD19+ CD80+ 1,4360,13 1,4660,56 1,2060,15 2,7760,83

*Mice were inoculated intranasally with either MV (500 to 1000 PFU) or with medium (uninfected). Splenocytes were prepared 13 days post-infection, stained with
indicated antibodies and analyzed by flow cytometry. Results are expressed as the mean percentage (+/2SD) of positive cells (CD69+, CD62L+, CD44high or CD80+) in a
given cell subset (CD4+, CD8+ or CD19+) (4 to 6 mice per group). These results are from one experiment representative out of three.

**p,0.05.
***p,0.01, Student t-test, calculated between CD150 infected and noninfected mice.
doi:10.1371/journal.pone.0004948.t001
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Tregs in vitro is not changed, their increased frequency in vivo

may induce the immunomodulatory effects in MV infection.

We next analyzed the ability of T lymphocytes isolated from either

MV-infected or noninfected CD150 mice to respond to MV-

unrelated alloantigens. We tested the ability of T lymphocytes to

proliferate in a mixed leukocyte reaction (MLR), a prototype of T cell

response against virus-unrelated antigens, shown to be under the

control of regulatory T cells [30]. Lymphocytes from uninfected

CD150 and wild type mice, both in C57Bl/6 background, responded

similarly in MLR against irradiated Balb/c splenocytes (Fig. 5B).

Strikingly, T lymphocytes harvested from MV-infected transgenic

mice were highly impaired in their response to alloantigens presented

by Balb/c APC, compared with non-transgenic littermates (Fig. 5B).

These results suggest that MV infection suppresses ex vivo T cell

responses against virus-unrelated antigens.

Figure 2. MV infection induces a specific antibody and
cytotoxic response in CD150 transgenic mice. (A, B) Production
of anti-MV nucleoprotein (N) antibodies (IgG) was measured in serum of
individual mice by ELISA and the number of tested animals is indicated
in parenthesis. Titers are expressed as relative units. (A) Mice were
immunized with low titre of MV (200 PFU) and serum was collected on
days 13 and 28, or (B) mice were immunized with higher dose of MV
(103 PFU) and serum was collected on day 13 post infection. (C) To
analyze cellular anti-viral response, splenocytes were harvested and
restimulated with target cells expressing MV N gene (P815-N) for one
week (3 to 8 pooled mice per group). Cytotoxic activity was measured
as described in Methods; results are expressed as the mean percentage
of N-specific cytotoxic activity from duplicate cultures (+/2SD) and the
data are from one representative experiment out of three. Cytotoxic
activity of lymphocytes obtained from MV-infected CD150 mice was
significantly higher compared to the other groups, (p,0.05, Mann-
Whitney U test).
doi:10.1371/journal.pone.0004948.g002

Figure 3. MV infection increases the proportion of
CD4+CD25+Foxp3+ Tregs. (A) Splenocytes from CD150 or nontrans-
genic mice (control), inoculated i.n. with either MV or medium
(uninfected), were harvested 13 dpi and stained for CD4 and CD25
followed by anti-Foxp3 intracellular staining and analyzed by flow
cytometry. (B, C) CD1506Foxp3-GFP transgenic mice and Foxp3-GFP
littermates (control) were inoculated i.n. with MV. Brains were harvested
8 dpi and analyzed by flow cytometry as described in Methods. (B)
Proportion of infiltrating CD4+ and CD8+ T lymphocytes in the brain
(two left panels); expression of the CD44 activation marker on CD4+ T
lymphocytes (right panel, CD150 transgenic in red and nontransgenic
control in blue). (C) Tregs detected by the co-expression of Foxp3 and
CD25 or ICOS. Results are representative of 4 independent experiments,
each involving 4–7 mice per group. Differences between infected and
noninfecetd mice were statistically significant (p,0.05, Student t-test).
doi:10.1371/journal.pone.0004948.g003
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The hallmark of MV-induced immunosuppression in children is

the strong inhibition of delayed type hypersensitivity responses.

Since it is possible to test this type of cellular immune response

only in adult mice, and as only suckling CD150 mice are

susceptible to MV infection, we then crossed these mice into the

IFN receptor type 1 deficient background and analyzed their

susceptibility to intranasal MV infection at different ages. Similarly

to the other transgenic models for MV infection [31] in the

absence of IFN type 1 signaling, mice remain highly susceptible to

MV at an adult age, providing an additional model to analyze

MV-induced immunomodulation (Fig. 6A). We have, therefore,

further analyzed the immunopathogenesis of MV infection in 6

week-old mice. In contrast to suckling mice, the proportion of

CD4+ and CD8+ lymphocytes did not change in adult mice (data

not shown). However, the percentage of CD4+CD25+Foxp3+ T

cells increased significantly after the infection (Fig. 6B), following

the same pattern seen in suckling mice (Fig. 3A). Furthermore,

these Foxp3+ cells expressed significantly higher level of the CD25

marker in infected mice (Fig. 6C). We then analyzed the capacity

of these mice to generate contact hypersensitivity response to the

hapten 1-fluoro-2,4-dinitrobenzene (DNFB) following MV infec-

tion. Interestingly, the contact hypersensitivity response was

greatly reduced in MV-infected mice, up to 48 h after sensibiliza-

tion (Fig. 6D), demonstrating the MV-induced inhibition of

cellular immune responses in vivo. Thus, MV infection in this

transgenic model induces a severe suppression of immune

responses to MV-unrelated antigens, associated with an increased

frequency of Tregs.

Discussion

The salient features of measles infections are characterized by a

robust activation of the immune system and the generation of anti-

viral responses, followed by a transient but profound immunosup-

pression to virus-nonrelated immune reaction [2,3]. In this study

we have analyzed the immunopathogenesis of measles in

transgenic mice expressing the human CD150 receptor. Similarly

to what has been observed in patients with measles, we show that

MV infection in these transgenic mice leads to the activation of the

immune system and the generation of effector cells in parallel to

the suppression of virus-unrelated T cell responses, including the

hypersensitivity reaction. Moreover, the increased frequency of

Foxp3+ Tregs was observed in both suckling and adult infected

transgenic mice. Although MV infection could induce different

and nonexclusive mechanisms that may contribute to the

generalized immunosuppression, the modulation of Foxp3+ Treg

homeostasis, may be the essential step in measles immunopatho-

genesis. An important role of Tregs was demonstrated in different

viral infections, where the outcome of an infection has been shown

to depend on the balance between T regulatory and effector

immune functions [28]. In chronic hepatitis C virus infection in

humans an excess number or function of Tregs can inhibit effector

immune responses and thus allow pathogen long-term persistence,

up to host cell destruction, leading sometimes to massive liver

damage [32]. In contrast, the low frequency of Tregs in severe

forms of an acute dengue virus infection in humans seems to be

insufficient to circumvent effector functions and the development

of immunopathology [33]. In measles, the interplay between

effector and regulatory response, shown in this study, could be

critical in the immunopathogenesis of this infectious disease and

the adequate balance between these two arms of immunity may

have an essential role in the outcome of the infection.

Virus may increase the frequency of host Treg cells by different

mechanisms, including their expansion, longer survival, conversion,

higher recruitment or retention at the site of infection or in the

periphery and may involve either direct mechanisms via cell-cell

contact or production of inhibitory cytokines such as IL-10 or TGF-ß

[28]. Although the MV-induced increase of the Treg frequency was

evident both in the brain and in periphery, the mechanisms still

remain to be defined. Interferon type 1 does not seem to be critical,

as mice deficient for this cytokine were strongly immunosuppressed

after MV infection in our study. In addition, the higher expression of

CD25 on CD4+Foxp3+ Tregs, seen in this study, reveals their

activated phenotype, potentially associated with cell expansion.

Several reports have suggested the implication of dendritic cells (DC)

in MV-induced immunosuppression [34,35,36]. DC play an

important role in the induction of Treg [37,38] and their role in

the control of Treg homeostasis in measles needs to be further

analyzed. Finally, MV glycoproteins H and F have been shown to

play the important role in T cell silencing by contact-mediated

inhibition of cell proliferation [39,40]. Although this mechanism

may contribute to the immunosuppression in measles, the inhibitory

role of MV glycoproteins was not found in the in vitro Treg assay in

this study, probably due to the low level of cell membrane expression

of glycoproteins, as shown in the figure 1A.

It is likely that measles-induced immunosuppression is not

beneficial for the virus, as it does not prevent the generation of

Figure 4. T lymphocyte infiltration at the sites of MV-brain
infection. Brain sections from suckling CD150-transgenic (A–E) and
nontransgenic littermate mice (F) infected with MV were analyzed by
immunohistofluorescence for MV nucleoprotein (N) localization (A–F, in
red) and the presence of CD4+ (A, in green), CD8+ (B, in green) and
Foxp3+ T cells (C–F, in green). Cell nuclei were counterstained with
DAPI (in blue). Infiltrating T CD4+ and CD8+ lymphocytes were detected
in brains from CD150 transgenic mice (A and B, respectively) at the sites
of MV infection identified by a N-specific labelling (red dots) but not in
their nontransgenic littermates (not shown). Images are shown at 406
original magnification and are representative of three to five mice per
group.
doi:10.1371/journal.pone.0004948.g004
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anti-viral immunity and virus clearance in a majority of patients.

We postulate that the immunosuppression is generated as a

consequence of the induction of the Treg system in host, in order

to limit collateral tissue damage potentially provoked by a virus-

induced vigorous activation of immune responses. This regulatory

mechanism does not suppress an anti-viral reaction already

initiated, as demonstrated clearly in measles [9], and therefore

allows the generation of anti-measles immune response. However,

it may prevent the initiation of new immune responses and

consecutively, increase the susceptibility to opportunistic infections

in patients. Thus, these results help in a better understanding of

the immunological paradox associated with MV infection.

Measles is occasionally accompanied by the development of

different forms of encephalitis, which is fatal in the majority of cases

[2]. The reasons why an individual preferentially develops persistent

MV brain infection after an acute infection, in spite of existing anti-

viral immune response, are currently unknown. It has been

suggested that a transient phase of immune suppression preceding

MV infection may allow later development of neurological

complications, like subacute sclerosing panencephalitis (SSPE)

[41]. This transient immunosuppression following an acute infection,

may also be due to MV-induced Tregs, which if induced to high

levels, may favor the development of the viral neuropathology. It is

thus tempting to speculate that the persistence of MV in the brain of

some patients may be the price paid to limit brain immunopathol-

ogy, induced by the immunomodulatory activity of Tregs recruited

in the infected brain parenchyma. As Tregs could control persistent

viral infections [40,42], they may thus play a role in the

establishment and maintenance of persistent MV infection in SSPE.

Efficient manipulation of Treg cell population may therefore, be of

critical importance in the prevention and treatment of measles-

induced pathology.

Materials and Methods

Infection of mice
Heterozygous transgenic mice crossed in C57Bl/6 background

and expressing human CD150 [24] and their littermate controls,

as well as CD150 transgenic mice crossed into Foxp3-GFP

background [29] or in IFN Receptor a/b deficient background

[43] were bred at the institute’s animal facility (PBES) and infected

at the age of 1 week. Protocols were approved by the Regional

ethical committee (CREEA). Mice were infected intranasally (i.n.)

by application in both nares with 10 ml of wild type MV G954

[24] (from 200 to 1000 PFU) which gives clinical symptoms

(ataxia, seizures, weight loss) in 75% of transgenic mice starting on

8 dpi. Control mice received the same amount of culture medium

(RPMI 1640) intranasally.

Cytofluorometric analysis
PerCP, FITC, PE and allophycocyanin-conjugated monoclonal

antibodies to CD4, CD8a, CD25, CD62L, CD69, CD44, CD19,

Figure 5. Characterization of Treg function following MV infection. (A) Analysis of suppressor activity of Tregs isolated from CD150 mice,
inoculated with MV (open symbol) or with medium (full symbol), in cocultures with CD4+CD252 effector T cells from either uninfected CD150 mice
(left panel), or infected CD150 mice (right panel) in the presence of irradiated CD4+ T cell–depleted splenic APCs and Con A (3 to 5 pooled mice per
group). Proliferation of Tregs from either control or CD150 infected mice in response to Con A was ,300–600 cpm. The results are shown as the
mean percentage of proliferation inhibition in triplicate cultures6SD. Results are representative of three different experiments. (B) Splenocytes
isolated from either uninfected (left panel) or MV-infected (right panel) CD150 mice and their nontransgenic littermates (wild type) were stimulated
with either irradiated Balb/c or C57Bl/6 splenocytes in MLR in triplicate cultures, as described in Methods. Proliferation is expressed as mean
proliferation index6SD and is representative from two independent experiments (* P,0,01, Student t-test).
doi:10.1371/journal.pone.0004948.g005
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Figure 6. MV-induced immunosuppression in adult transgenic mice. (A) Transgenic CD1506IFNa/bR KO mice were infected i.n. with MV at
different ages and monitored for survival by Kaplan-Meier analysis. (B, C) Groups of 5 mice, 6 to 7 week-old, were infected i.n. with MV or left
untreated. Splenocytes were harvested at 11 dpi and stained for CD4 and CD25 followed by anti-Foxp3 intracellular staining and analyzed by flow
cytometry. Results are presented: (B) as the percentage of CD25+Foxp3+ cells within CD4+ compartment, for each analyzed animal and (C) as a
percentage of CD25+ cells within the CD4+Foxp3+ population. Horizontal bars correspond to mean values. (D) Groups of 10 mice, 6 to 7 weeks old,
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GITR and ICOS were purchased from BD Biosciences and

eBioscience and MV hemagglutinin was stained using cl.55 mAb

[44,45]. Intracellular staining for Foxp3 was performed using APC

anti-mouse Foxp3 staining set (eBioscience), for IFN-gamma, using

PE anti-mouse IFN-c (BD Bioscience) and for IL-10 using PE anti-

mouse IL-10 (BD Biosciences), after treatment with PMA,

ionomycine and brefeldine A. Cells were analyzed on a

Facscalibur flow cytometer (Becton Dickinson).

Determination of MV specific antibodies in serum
Sera were tested for anti-MV nucleoprotein (N) specific IgG

antibodies by ELISA as previously described [24]. To determine

neutralizing antibody titers, serum dilutions were incubated with

200 pfu of MV for 1 h at 37uC, and transferred into plates with

confluent Vero-CD150 cell monolayers. The plates were read after

4 days by methylene blue staining and the dilution of serum

reducing 50% of the virus was recorded. The titer of N-specific

antibodies in each serum sample was determined using a standard

curve established with sera from mice immunized with MV in

complete Freund’s adjuvant and expressed in relative units.

MV N-specific CTL assay
Splenocytes from infected or non infected mice (107 per well)

were cultured in 24-well culture plates (Falcon) with Mitomycin C

(Sigma) (40 mg/ml) treated-P815-N cells [46] (106 per well) in

RPMI 1640 medium, supplemented as described [24]. Viable

lymphocytes were harvested 7 days later by density gradient

medium using Lympholyte M (Cedarlane laboratories) and CTL

assay was performed as described previously [47]. P815-N and

P815 cells were labeled by a 13 min incubation at 37uC with

7.5 mmol CFSE per 2.107 cells and 100 ml of various dilutions of

effector cells suspensions were mixed with target cells, P815-N or

P815 (2.104 cells/100 ml). After 4 h incubation, cells were

analyzed on a Facscan flow cytometer (Becton Dickinson). The

percentage of dying cells among CFSE+ cells was determined using

0.4 mg/ml propidium iodide. The assay was performed in

duplicate cultures and specific cytotoxicity was calculated by

substracting the mean percentage of non-specific lysis obtained

with P815 cells from the P815-N percentage of lysis.

Immunohistofluorescence
Anesthetized mice were perfused with PBS. Brains were rapidly

collected and snap-frozen in cold isopentane. Sections (10 mm) were

fixed in ice-cold acetone, dried and blocked with 1% BSA/PBS.

Biotin and avidin binding sites were blocked using Biotin/Avidin Kit

(Vector Laboratories), before incubation with either rat anti-mouse

CD4, rat anti-mouse CD8 (Serotec) or rat anti-mouse Foxp3

(eBioscience) and an anti-MV N protein mouse monoclonal Cl.120

biotinylated antibody overnight at 4uC. The specific labelling was

revealed by rhodamine-conjugated streptavidin and a FITC-

conjugated donkey anti-rat antibody (Jackson Immunoresearch) for

1 h at 37uC. Slides were viewed using a Axiovert 200 M microscope

(Zeiss) and analyzed with the Axiovision software (Zeiss).

Isolation of lymphocytes from the brain
Brains were harvested after perfusion with PBS. Lymphocytes

were obtained from brain tissue as described previously [48].

Briefly, brains were diced, mashed and washed with DMEM and

7 ml of supernatant was mixed with 3 ml of 90% Percoll (in PBS;

Amersham, Pharmacia Biotech) and layered on 1 ml of 70%

Percoll (in DMEM). After a centrifugation at 1300 g, 30 min on

20uC, the interface was transferred to a new tube, washed and

used for the immunostaining.

In vitro suppression assay
CD4+ and CD4+CD25+ cells were purified using the isolation kits

(Miltenyi Biotec) according to the manufacturer’s recommendations.

CD42 cells were used as APC. The purity of all cell preparations was

determined by flow cytometry. CD4+CD252 T cells (2.104 cells/

well) were stimulated for 72 h with 1 mg/ml of Concavalin A (Sigma)

in the presence of irradiated (1800 rad) CD42 cell splenocytes

(APCs) (105/well) with indicated numbers of CD4+CD25+ T cells

and pulsed with 1 mCi/well of [3H]thymidine for the final 12 h of

culture. Data are shown as the mean percentage of inhibition of

proliferation in triplicate cultures (+/2SD).

Mixed leukocyte reaction (MLR)
Splenocytes harvested from uninfected or MV-infected trans-

genic and nontransgenic littermate mice (56105/well) were

stimulated in MLR culture with the same number of irradiated

(1800 rad) either allogeneic or syngeneic splenocytes obtained

from either Balb/c or C57Bl/6 mice respectively, in complete

RPMI medium. Cell proliferation was assessed on day 4 by

[3H]thymidine incorporation for 18 h. Results are expressed as

mean proliferation indices +/2SD : (cpm of lymphocytes cultured

with Balb/c or C57Bl/6 spleen cells)/(cpm of lymphocytes

cultured alone).

Assay for contact hypersensitivity (CHS) to DNFB
CHS to 1-fluoro-2,4-dinitrobenzene (DNFB) was determined as

previously described [17]. Briefly, DNFB was diluted in acetone :

olive oil (4:1) before use and 25 ml of 0.5% DNFB solution was

applied to the shaved ventral skin (sensitization phase). After 5

days, mice received 10 ml of a non-irritant concentration of DNFB

applied on both sides of the left ear and the solvent alone on the

right ear (effector phase). Ear thickness was monitored before

challenge and every day after challenge for three days, by a third

experimenter ‘blinded’ to sample identity. The ear swelling was

calculated as {[T-To ] left ear} - {[T-To right ear]}, where T and

To are ear thickness after and before challenge, respectively.

Statistical analysis
Data were expressed as mean+/2standard deviation (SD).

Statistic analyses were performed using Student’s t-test and Mann-

Whitney U-test.
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