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Abstract

Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to
conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice
and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures
for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues,
better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is
needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or
proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the
existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal
involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular
associations were identified with the immune response in different cancer types and conditions that complement the
contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our
observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design
principles and systems-level properties.
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Introduction

Recent years have seen the description of a large number of

gene expression profiles or signatures with clinical value for the

accurate prognostic or predictive characterization of cancer

patients or tumors. Breast cancer is probably the paradigm of

such studies, with at least three different signatures currently

being tested in clinical trials and commercially available for

routine clinical practice in oncology [1,2]. However, the lack of

overlap in the selected genes has raised fundamental questions

about their biological and clinical implications [3,4]. This

situation is not unique to breast cancer prognosis, and the

description of new expression profiles suggests that it is common

to other cancer types or conditions_i.e. metastases and

treatments [5]. Reasons to this paradox may be methodological

disparities [6] and statistical constraints created by the large

number of genes examined with respect to the relatively small

number of samples profiled [7–9]. Importantly, a recent study

by Perou and colleagues [10] established the common

prognostic value of some breast cancer signatures, despite the

lack of overlap in gene identities. This observation confirmed

the clinical relevance of the signatures and suggested that they

may efficiently capture a common tumor cell phenotype(s) [11].

This putative common phenotype for breast cancer and for

other neoplasias must be defined if we are to better understand

the significance of signatures.

Some of the early descriptions of signatures noted the presence

of specific biological processes over-represented in the correspond-

ing gene lists. Among these processes, individual genes involved in

the cell cycle and apoptosis were highlighted (e.g. [12,13]). More

recent evidence points to specific genes that are globally associated

with breast cancer prognosis and related to cell proliferation

among other processes or pathways [14–21]. However, it is still

unclear how this evidence characterizes different molecular levels

and how the levels integrate into a systems-level model containing

gene and/or protein interactions for breast cancer and for human

cancer in general. Here, we used an integrative approach to

determine the existence of a putative common tumor cell

phenotype(s) associated with different cancer types and conditions.

The study identified common molecular properties and network

interactions associated with cell proliferation and death, and

revealed associations with the immune response. Our results

highlight the importance of studying signatures from a systems-

level perpective.
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Results

Genomic properties: E2Fs and the estrogen receptor (ER)
To identify common properties among cancer signatures we

compiled the literature gene lists from 24 studies (Table S1). These

represent 19 prognostic signatures, two signatures focused mainly

on metastasis, and seven predictive treatment response signatures.

All signatures used corresponded to validated sets of genes at the

same level. We first examined the molecular properties or network

topology characteristics of genes and/or proteins in these

signatures at the genome, transcriptome and proteome levels.

Next, the identified properties and network associations were

corroborated in independent expression datasets of different

cancer types and conditions (Fig. 1).

Properties at the genome level were evaluated by probing the

relative enrichment in predicted transcription factor binding site

motifs at the promoters of signature genes (see Methods). In

these analyses the top-ranked motifs across several signatures

were from the E2F family. Significant over-representation of

E2F motifs was identified in ,45% (13/28) of the signatures

tested, including prognostic (bladder, breast and central nervous

system (CNS) cancers, and three multi-cancer signatures) and

predictive signatures (docetaxel in breast tumors, EGFR

tyrosine kinase inhibitors (TKIs) in lung tumors and pemetrexed

in advanced solid tumors) (false discovery rate (FDR)-adjusted P

values,0.05) (Fig. 2A). In contrast, only one signature (the

immune response prognostic signature in estrogen receptor

(ER)-negative breast cancer [22]) showed under-representation

of E2F motifs. This observation will be discussed in the

following sections.

To evaluate motif predictions in the promoter sequences of

signature genes, we examined experimental data from chromatin

immunoprecipitation assays of transcription factors [23,24]. This

analysis corroborated the major role of E2F transcriptional

programs. Approximately 65% of signatures showed significant

over-representation of E2F1-AP2 and/or E2F4 binding sites

(Fig. 2B). The strongest over-representations were detected in

prognostic_particularly breast cancer_and predictive treatment

response signatures for E2F1-AP2 sites. Nevertheless, specificities

were also suggested for the immune response, which showed

under-representation of E2F1-AP2, and for predictive signatures

that did not show differential representation of E2F4 in any case.

The E2Fs are key regulators of cell proliferation and death

[25,26], and common deregulation of E2F-mediated transcrip-

tional programs is a hallmark of cancer transcriptomes [27]. The

link with the potential for cell proliferation was further evaluated

by examining transcripts with periodic expression through the cell

cycle [28], which indicates a direct or indirect role in phase(s) of

cell division, and by analyzing ER functional genomic data [29].

Significant over-representation of periodically expressed genes was

observed in ,45% of the signatures, most of which were

prognostic signatures for different cancer types (Fig. 2C). Detailed

examination of cell cycle phases showed specific over-representa-

tion of genes with an expression peak at G2 and G2/M, which is

in agreement with their role in cell division (data not shown). In

addition, consistent with the link between cell proliferation and the

ER signaling pathway [30], significant over-representation of ER

binding sites and/or ER-mediated transcriptional regulation was

identified in most of the signatures (,90%), irrespective of their

type or condition (Fig. 2D). This high overlap with ER regulation

probably reflects an strong association with cell proliferation

beyond cancer hormone-dependencies.

Overall, all except two of the signatures examined here showed

significant over-representation of one or more of the molecular

evidences associated with the regulation of cell proliferation and

death. The exceptions were the immune response signature, which

may reflect the involvement of different biological processes, and

the B-cell lymphoma prognosis signature, which may be explained

by the statistical power needed to detect differences in the smallest

gene set examined (n = 19). Similarities for these signatures at

additional molecular levels will be presented in the following

sections.

Figure 1. Integrative analysis of cancer signatures. Strategy for defining the common properties and interactions between signatures at the
genome, transcriptome and proteome levels, and validation in independent datasets.
doi:10.1371/journal.pone.0004544.g001
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Additional programs of cell proliferation, death and
metastasis

In an examination for additional mechanisms of transcriptional

regulation of signatures, motifs of AHR, EGR1, MYB and MYC

were found to be over-represented in a second term. These over-

representations were not as widespread as for E2Fs or ER, which

suggests that they play only a minor role, but different cancer types

and conditions were included: an EGR1 motif was found to be

over-represented in CNS and colorectal cancers and the b-catenin

multi-cancer prognostic signatures, the breast cancer lung

metastasis signature and the predictive signatures of cisplatin

and dasatinib (FDR-adjusted P values,0.05) (Fig. 2E). In

agreement with these observations, we found the lung metastasis

signature to contain 22% (12/54) of the genes predicted elsewhere

to be EGR1 transcriptional targets [31–34] and the wound

response was previously shown to be coordinated with MYC

amplification [35]. In addition, over-representation of an AHR

motif is consistent with its association with ER to regulate cell

proliferation [36].

Next, the significance of motif representations was evaluated

by analyzing gene expression correlations in representative

cancer datasets. Thus, we computed correlations using the

Pearson correlation coefficient (PCC) between the seven

transcription factors presented above and genes associated

with breast cancer prognosis [12] or with the response to

docetaxel treatment in breast cancer [37], and compared them

with genes non-differentially expressed in these conditions.

Higher absolute PCCs between transcription factors and genes

associated with prognosis or treatment response were identified

in all cases for genes and/or microarray probes (Mann-

Whitney (MW) test P values,0.001) (Fig. 3). The prognosis

dataset contained a single representative microarray probe for

each transcription factor, therefore all of them showed

significant differences (Fig. 3A). The treatment response dataset

contained several probes for some factors, which were

evaluated individually to identify technical or biological

differences. In this dataset, AHR, EGR1 and HIF1A were each

represented by a single probe and all of them showed

significantly higher correlations with response (Fig. 3B). E2F1,

E2F4, MYC and MYB had more than one probe each, with

discordant results in some cases but with average PCCs

significantly associated with response in three of them

Figure 2. Genomic and transcriptomic properties of cancer signatures associated with the potential for cell proliferation and
repressed cell death. A, representation of E2F motifs based on JASPAR and TRANSFAC matrices and the Poisson distribution, with P values
adjusted using the FDR approach for analyses-columns. Values are shown as detailed in the inset: red/orange indicates significant over-
representation and blue indicates significant under-representation. The E2F1_Q6 motif represents the putative action of E2F1 and MYC. B,
representation of E2F1-AP2 and E2F4 binding sites from chromatin immunoprecipitation (chip) assays using the same statistical methodology as
described above. The E2F4 data correspond to the joint analysis of cell cycle phases [23]. C, representation of genes with periodic expression through
the cell cycle. D, representation of ER transcriptional regulation from chromatin immunoprecipitation assays or transcriptional changes in MCF7 cells.
E, representation of additional promoter motifs using TRANSFAC matrices. The wound response signature without cell cycle-associated genes is
indicated by the suffix ‘‘(-cc)’’, and the ‘‘total set’’ signature of ER-negative breast cancer contains the immune response plus other biological
processes such as the cell cycle. The dasatinib predictive signature is divided into two sets for the effect in prostate and breast cancer respectively.
The colorectal prognostic signatures are as defined in Table S1.
doi:10.1371/journal.pone.0004544.g002
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(Fig. 3B), whereas E2F4 remained unclassifiable as two probes

were significantly correlated and two were not (data not

shown).

To further evaluate these observations, we computed

correlations between the seven transcription factors and 5,000

randomly selected sets equivalent to the size of the differentially

expressed gene sets above. Higher PCCs were observed for most

transcription factors in both cancer conditions, with the

exception of E2F4 in prognosis and treatment response (P

values obtained using the empirical distribution of random

PCCs (empirical P values) were of 0.16 and 0.11, respectively).

Overall, the identification of significant correlations with at least

six of the seven factors tested supports the motif predictions and

suggests the existence of common transcriptional programs that

converge on cell proliferation and death, as well as metastasis as

revealed by EGR1 [33].

Analysis of motifs and expression correlations also revealed an

association between the apparently dissimilar immune response set

and different prognosis signatures. Although it under-represented

E2F1 motifs, the immune response shared over-representation of a

MYB motif with the 21-gene, wound response breast cancer, and

bladder cancer prognostic signatures (Fig. 2E). Over-representa-

tion of this factor in the immune response is consistent with its role

in hematopoiesis [38], and its over-representation in other

signatures is consistent with the emerging involvement of the

immune response in the prognosis of different cancer types [39].

The high correlations observed in Fig. 3A between MYB and genes

globally associated with breast cancer prognosis (i.e. not limited by

the ER status) support this hypothesis. Associations of this

signature at other molecular levels will be presented in the

following sections.

Transcriptomic correlations between signatures
Given the identification of common transcriptional programs,

global expression correlations between signatures should be higher

than expected by chance. Using a breast cancer dataset [40] and

the average PCC across all microarray probe pairs between any

two signatures, significant co-expression was identified in approx-

imately half of the analyses when compared to 10,000 equivalent,

randomly selected gene sets (empirical P values,0.05) (Fig. 4A).

These results support the existence of functional and molecular

associations between many apparently dissimilar signatures,

despite the fact that the dataset used had evident technical and

biological specificities. Furthermore, the immune response signa-

ture showed significant co-expression with 15 of the signatures

studied (data not shown), which also supports convergence on this

process.

To further test the link to cell proliferation and death at the

transcriptomic level, and excluding a priori information on

expression levels or profiles that could bias the analysis, we

examined correlations with gene sets selected using only the

criteria for the Gene Ontology (GO) terms Cell Death and Mitosis.

These sets were exclusively defined by selecting Entrez genes

annotated with those terms, and then used in comparisons in the

same way as any other signature. Using 10,000 equivalent random

sets, absolute correlations between these GO sets and the

signatures were found to be significantly higher in $12

comparisons (Fig. 4B, left). The Cell Death set was significantly

correlated with five signatures and the Mitosis set was significantly

correlated with 11 signatures of different cancer types or

conditions. Importantly, differences in the GO sets relative to

random were of the same magnitude as comparisons between

signatures (Fig. 4C).

This analysis suggested that measuring the expression levels of

genes known to participate in specific biological processes is likely

to be of prognostic or predictive value in different situations.

However, the analysis was constrained by the possible presence of

non-informative expression or sub-sets of genes with different

behavior within the GO sets. Thus, reducing the dimensionality of

Cell Death and Mitosis sets using a principal component analysis

that captured ,80% of the variance raised the number of

significant correlations to 12 and 14 sets, respectively (Fig. 4B,

right); these numbers corresponded to a total of ,60% of the

signatures examined, irrespective of their type or condition.

Interactome network associations
Functional relationships between proteins can be identified as

direct interactions, complex memberships or relatively close

connections in the network of protein-protein interactions or

interactome network. Given the evidence at the genomic and

transcriptomic levels presented above, we hypothesized that

proteins encoded by apparently dissimilar signatures will be more

closely located in the interactome network than expected by

chance. For this analysis we used a dataset consisting mainly of

experimentally identified protein-protein interactions, excluding

homodimers and orthology-based predictions, and calculated the

shortest path between any two nodes or proteins in the giant

network component (i.e., the component containing the largest

number of connected proteins) [41].

All signature comparisons showed shortest path distributions

skewed toward smaller values than expected from the giant

component (Fig. 5). Statistical evaluation using the non-parametric

MW test identified significant differences with respect to the giant

component distribution in 90% of comparisons. The smallest

shortest paths were identified for the 21-gene prognostic, and

dasatinib and EGFR TKI predictive signatures, although the

results may be subject to bias because these sets contain several

proteins that are widely studied in the literature and therefore have

high network centrality.

To further evaluate these differences, we randomly selected

1,000 sets of 50 proteins with similar average degree centrality to

the signatures and obtained their shortest path distributions. Most

of the cancer signatures were more closely located than expected

by chance and also close to the Cell Death and Mitosis complete

sets (empirical P values,0.05 marked with dots in Fig. 5A and B).

According to these observations, examination of GO annotations

in the direct and one-hop neighborhoods of signatures identified

significant over-representation of Cell Cycle or Cell Death terms

or their children in all cases (FDR-adjusted P values,0.05) (GO

term details not shown), which reinforces the hypothesis that the

signature gene products are molecularly and functionally associ-

ated with these processes.

Figure 3. Expression correlations with defined transcription factors. A, expression correlations between seven transcription factors_gene
names shown at the top of each graph_and genes differentially expressed for breast cancer prognosis measured by metastasis events up to 5 years
(pink curves) relative to non-differentially expressed genes in this condition (brown curves). The graphs show absolute PCC values. B, same analysis
for differentially expressed genes after docetaxel treatment of breast cancer patients relative to non-differentially expressed genes in this condition.
Results for E2F1, E2F4, MYB and MYC are for average values of all microarray probes representing each factor, whereas the insets show the results for
individual probes with significant differences.
doi:10.1371/journal.pone.0004544.g003
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Next, signatures were depicted as nodes in a network in which

the length of the edges is proportional to the average shortest path

to the Cell Death and Mitosis sets (Figure 5C, left). In this network,

most signatures were found close to these central processes when

compared to 100 random sets with equivalent degree centrality

(Figure 5C, right). Distant signatures represented modest associa-

tions at the different molecular levels examined above, such as the

prognostic signatures for B-cell lymphoma, colorectal cancer and

hypoxia response. These observations suggested correlation across

different molecular levels. Thus, negative correlations for all

signatures were observed between PCC co-expression values and

interactome shortest path distances (average r = 20.31 and

s = 0.16; Mantel test P value = 0.059), which is consistent with

functional relationships [42–45]. Consequently, higher co-expres-

sion between signatures partially correlated with smaller shortest

paths between them in the interactome network. These observa-

tions highlight the importance of the integrative study, which

revealed previously unidentified relationships in gene lists.

The immune response signature was also located close to the

Cell Death and Mitosis sets (MW test P values,0.001) (Figure

Figure 4. Transcriptomic correlations between signatures and with defined biological processes. A, heat map of average PCCs between
cancer signatures in a breast cancer gene expression dataset [40]. Significant co-expression (empirical P values,0.05) is indicated by dots. Note that
the matrix is not symmetrical because the results were dependent on the size of each gene set; therefore, the larger gene sets (e.g. wound response
or invasiveness) showed significant co-expression with many other signatures, perhaps partly due to the fact that they had greater statistical power
with which to detect them. Each dot corresponds to the comparison between a signature on the left (simulated set) and a signature at the bottom.
The Cell Death and Mitosis sets are highlighted in pink. B, left panel, list of signatures that showed significant correlation with the Cell Death or
Mitosis complete GO sets. Right panel, list of signatures that showed significant correlation with the Cell Death or Mitosis sets, but only using their
principal components. C, observed (discontinuous red line) versus expected (black curve for 10,000 randomly selected sets) average PCCs between
the Mitosis set and the 70-gene set, the Cell Death set, or genes with periodic expression through the cell cycle.
doi:10.1371/journal.pone.0004544.g004
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S1A). Consequently, examination of the proportion of GO

annotations in the one-hop neighborhood of this signature

identified over-representations of terms related to cell proliferation

and death, while the direct interactors only showed over-

representation of terms associated with the immune system (Figure

S1B). Thus, although the gene products with prognostic value for

ER-negative breast cancer are not directly connected to the

common processes identified above, they are significantly

associated in a second term, as well as transcriptionally co-

expressed and co-regulated with many signatures.

Evaluation of properties and interactions in independent
datasets

The observations described above were evaluated in two

independently generated signatures of cancer conditions. A recent

study described a lung metastasis signature of breast cancer using a

different methodological approach [46]. We found ,70% (15/21)

of the genes in this signature to contain E2F TRANSFAC motifs

and ,60% (13/21) to be targets of E2F1-AP2 and/or ER. In

addition, significant correlations with eight prognostic signatures

were identified, seven of them of breast cancer (empirical P

values,0.001) (results of the analyses of this signature are detailed

in Table S2). The correlation with Mitosis was higher than

expected (empirical P,0.001), while the correlation with Cell

Death was non-significant (empirical P = 0.18). Finally, gene

products in this signature showed smaller average shortest paths

than expected with 21 of the 28 signatures, including Cell Death,

Mitosis and the lung metastasis signature presented previously [31]

(empirical P values,0.05).

To further corroborate our observations, we selected a

different neoplastic condition from the recent literature:

metastatic colorectal cancer treated with the EGFR inhibitor

cetuximab (ErbituxH) [47]. Previous studies suggest that EGFR

mutations are associated with the response to TKIs but not to

cetuximab [48,49]. We evaluated our observations by examining

the distribution of gene annotations in the rank of hazard ratios

(HRs) that measures the response to cetuximab treatment by

progression-free survival. In this analysis, cell proliferation and

the immune response were identified as the processes with the

greatest effect on the response (Fig. 6). Importantly, the set of

genes whose high expression most strongly associate to response

was for a wound-like phenotype that was previously shown to

provide prognosis value for breast, lung and gastric cancer [50].

The next associated high-expression sets were for doxorubicin

treatment in gastric cancer, breast cancer prognosis (70-gene)

and prognosis of different cancer types not examined in this

study (hepatocellular carcinoma and multiple myeloma progno-

sis). Moreover, high-expression of E2F1, hypoxia and MYC

targets was also associated with the response with similar

strength (Fig. 6A). Collectively, these observations endorse the

biological convergence of signatures.

The analysis of the cetuximab dataset also revealed a

complementary behavior of cell proliferation and the immune

response consistent with the representation of E2F1 motifs shown

above. Patients with high expression of cell proliferation-related

genes and low expression of immune response-related genes

responded to treatment (Fig. 6B), whilst there were no patients

with high expression values of both processes. Hence, a strong

anti-correlation was observed between genes annotated with the

GO term Immune Response and genes annotated with Mitosis

(r = 20.79) (Fig. 6C). This observation leads to speculate that these

processes play balancing roles in prognosis and treatment

response. Good responders to cetuximab may show strong

dependence on a ‘‘cell proliferation-on’’ molecular program, while

non-responders could be sensitive to immune system-based

therapy.

Discussion

Despite the low degree of overlap in terms of gene identity,

apparently dissimilar cancer signatures converge on specific

biological processes. Convergence is defined by significant

molecular and functional associations between genes and/or

proteins: i/ predicted promoter motifs; ii/ experimentally

identified DNA binding sites; iii/ cell cycle-periodic profiles;

iv/ ER-mediated transcriptional regulation; v/ co-expression

with defined transcription factors; vi/ co-expression between

signatures and with specific GO gene sets; and, vii/ close

proximity in the interactome network and neighborhood over-

representation in these same GO terms. Consequently, this study

suggests the existence of common design principles in a system-

level cellular model—illustrated by transcriptome-interactome

correlations—not only of prognostic signatures but also of

metastasis and treatment response signatures. Overall, the

integrative study highlights the importance of analyzing

signatures beyond gene names, which provides a better global

understanding by revealing previously unidentified properties

and associations.

Biological convergence has important implications for the

interpretation of signatures. Given a single gene whose transcript

levels are associated with differences in patient outcome, this

observation should be interpreted a priori in the context of cell

proliferation, death or the immune response processes. For

example, BRCA1 and BRCA2 have different cellular functions,

with a degree of overlap, but each of them is present in several

prognostic and predictive signatures, probably because their

transcript levels reproduce precisely the potential for cell

proliferation. This potential is defined by the presence of genes

with periodic expression through the cell cycle, and other analyses

at the genome, transcriptome and proteome levels shown here

provide strong evidence of common properties and interactions.

Therefore, further conclusions concerning gene functions such as

DNA repair and its role in prognosis should be considered,

controlling for the possible confounding effect of biological

convergence.

From a mechanistic point of view, this study indicates the

existence of a cancer cell phenotype that decisively influences

critical aspects of neoplasia. This observation follows on from the

long-known global importance of the potential for cell prolifera-

Figure 5. Proximity between gene products of signatures in the interactome network. A, heat map of average shortest paths between
proteins encoded by signatures. This analysis was performed using only the giant network component. An example of shortest path differences with
respect to the giant component is shown in the right panel for the comparison between the complete Cell Death and Mitosis GO sets. B, heat map of
comparisons of 1,000 randomly selected 50-protein sets in the giant component. Right panel, density plot of average shortest path in randomly
selected sets: the 5% lower values are highlighted, which correspond to an average shortest path ,4.09. Comparisons between signatures below this
empirical cut-off are shown by dots in A. C, left panel, network representation of average shortest paths between Cell Death and Mitosis and cancer
signatures as shown in the inset. Edges lengths are proportional to the average shortest path values. Right panel, network representation of average
shortest paths between Cell Death and Mitosis and cancer signatures or randomly selected protein sets with equivalent degree centrality.
doi:10.1371/journal.pone.0004544.g005
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tion and repressed cell death in tumorigenesis [51], while

reinforcing the emerging role of the immune response in prognosis

and prediction [39]. However, while this study provides the first

evidence of convergence of prognostic, metastasis and predictive

signatures in these processes, other processes or signaling pathways

are probably represented and specificities may exist. For instance,

the potential for metastasis also depends on the activity of

processes such as extracellular matrix remodeling. Similar systems-

level analyses of a larger number of metastasis signatures may

reveal properties masked here by the restriction of the study to

mainly prognostic and predictive sets. Nonetheless, some prog-

nostic or predictive sets are not independent of the potential for

developing metastasis [10]. Future research may reveal a more

complex molecular wiring diagram of the processes participating

in cancer signatures.

Materials and Methods

Cancer signatures
We compiled 28 signatures from 24 studies, comprising 19

prognostic signatures, two signatures focused mainly on metastasis,

and seven predictive treatment response signatures, as detailed in

Table S1. Note that the 21-gene breast cancer prognosis signature

was originally described as a predictive set for tamoxifen treatment

[52] and the intrinsic subtype signature [53] corresponds to a

validated set taken from the original report [13]. We also

examined the wound response prognosis signature without

including the initially identified cell cycle-associated genes [40]

and the predictive signature for dasatinib treatment response

subdivided for prostate and breast cancer [54]. Gene names or

microarray probes were taken from the original publications and

Figure 6. Asymmetric distribution of gene annotations in the response to cetuximab treatment. A, left panel, GSEA results for the
strongest associated phenotype with high-expression genes predicting treatment response (log2 HR.0). Central panel, expression analysis plot of
the extreme gene expression (EREG), which was also noted in the original publication [47]. Right panel, additional phenotypic and GO term sets with
high-expression genes associated to treatment response at FDR Q values,1%. B, left panel, GSEA results for the strongest associated phenotype with
low-expression genes predicting treatment response (log2 HR,0). Central panel, expression analysis plot of the extreme gene expression (IL15). Right
panel, additional phenotypic and GO term sets with low-expression genes associated to treatment response at FDR Q values,1%. C, Histogram plot
of average expression values of genes annotated with the Immune Response or Mitosis across samples in the cetuximab dataset. Average GO set
expression values show a negative correlation with ordered metastatic samples.
doi:10.1371/journal.pone.0004544.g006
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mapped to Entrez GeneIDs using the BioMart and Bioconductor

[55] tools and by manual curation of each signature.

Genomic analyses
Transcription factor (TF) motifs in promoter sequences

1 kilobase (kb) upstream of the transcription start site were

predicted using MatScan [56] and position weight matrices from

JASPAR [57] and TRANSFAC [58] (111 and 625 motifs,

respectively). Probabilities were calculated using the Poisson

distribution as an approximation to the binomial as follows

f k,lð Þ~ lk :e{l

k!

n o
(where l~n:p, p~proportion of genes with a

defined motif that are part of the signature and n = total number of

genes with this motif in the genome). Promoter sequences (21 kb)

of Ensembl protein-encoding gene entries (n<18,800) were used as

a common reference for the motif analyses. Corrections for

multiple comparisons were computed using the false discovery rate

(FDR) approach [59]. Chromatin immunoprecipitation data and

periodically expressed genes were taken from the respective

references [23,24,28] or from the relevant repositories [29] and

examined using the same methodology. The ER binding sites

identified by chromatin immunoprecipitation assays were assigned

to a single GeneID based on the closest known gene locus (59-end)

in the May 2004 version of the human genome in the UCSC

Genome Browser.

Transcriptomic analyses
Transcriptional targets of the ER signaling pathway were

examined using preprocessed and normalized data [29]. Correla-

tions of transcription factors were performed by defining differen-

tially expressed genes at FDR,1% in breast cancer prognosis

measured with metastasis events within 5 years [12], which

correspond to 179 microarray probes, or by defining differentially

expressed genes at FDR,5% in docetaxel treatment response [37],

which correspond to 1,525 probes. Differences in PCC distributions

were assessed using the Mann-Whitney (MW) and Kolmogorov

Smirnov non-parametric tests, with similar results. Average

correlations in pairwise signature comparisons were calculated

using all probes in the signature gene lists and compared to

equivalent probe sets randomly selected from the same breast

cancer dataset [40]. Dimensionality was reduced by applying a

principal component analysis (PCA) until ,80% of the variance in

gene expression was captured, which represented ,25 genes in the

Cell Death or Mitosis Gene Ontology (GO) sets (originally

containing 58 and 117 genes, respectively). For the analysis of

cetuximab treatment response, we computed a Cox proportional

hazards model for each microarray probe, using the progression-

free survival as the time variable, and dividing the sample set into

two equally-sized groups according to the expression level of the

corresponding probe (low versus high). Ranks according to the log-

hazard ratio were used as input lists for the Gene Set Enrichment

Analysis (GSEA) [60]. The GSEA was run for all curated and GO

datasets found in MSigDB database. We used default values for all

the parameters except for the median probe instead of the max

probe as the collapse method when multiple probe sets map to the

same gene. The evaluation of correlation between the Immune

Response (n = 311) and Mitosis GO sets in the dataset of cetuximab

treatment response was performed averaging expression values of

both gene sets in each metastasis sample. The R programming

language was used for analyses and graphics.

Interactome analyses
The human interactome network was built by combining

three previously published datasets consisting mainly of

experimentally verified interactions [41]. The dataset based on

the Human Protein Reference Database (HPRD) contains

compiled and filtered binary protein interactions from available

databases. High-confidence yeast two-hybrid interactions were

then incorporated and orthology-based predictions and homo-

dimers were excluded to avoid specific bias. Proteins with no

assigned GeneID were also excluded from our analyses. The

numbers of proteins or nodes and interactions or edges in the

complete dataset were 8,519 and 35,492, respectively. The

percentage of signature gene products mapped in this dataset

ranged between 40 and 85. Shortest paths were calculated using

only the giant network component and the geodesic formulation

given by Freeman in the R programming language [41].

Differences in the distributions of shortest paths were assessed

using the MW test. Empirical simulations using 50-protein sets

were selected as the average size of cancer signatures, using only

nodes from the giant component with average degree centrality

equivalent to the signatures. The average degree of signatures,

excluding three outliers that contain widely studied genes (21-

gene, dasatinib prostate and breast, and EGFR TKIs), was 7.48,

while the average degree of 1,000 random sets was 7.53. To

evaluate the relationship between gene co-expression and

interactome distances, a correlation coefficient was calculated

between average PCCs in each signature-pair and the

corresponding average short path in the giant network

component, which was then evaluated to the null hypothesis

of no-correlation between the two measures using the Mantel

test. The representation of GO terms in neighborhoods was

assessed using the shortest path measure and the hypergeometric

distribution and FDR P value adjustment, taking as a reference

all proteins in the giant component and excluding signature

proteins in each case. The Onto-Express tool was used for this

analysis [61].

Supporting Information

Figure S1 Topological associations of the immune response

signature in the interactome network. A, left panel, shortest path

distributions between the immune response and the Cell Death

and Mitosis sets (yellow and green curves, respectively) relative to

the giant component (black curve). Right panel, strategy for

evaluating differences in proportions of GO annotations in the

direct and one-hop interactome network neighborhoods. B, over-

represented GO terms in the direct and one-hop neighborhoods of

the immune response signature.

Found at: doi:10.1371/journal.pone.0004544.s001 (2.22 MB EPS)

Table S1

Found at: doi:10.1371/journal.pone.0004544.s002 (0.03 MB

XLS)

Table S2

Found at: doi:10.1371/journal.pone.0004544.s003 (0.03 MB

XLS)
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