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Abstract

Background: Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic
background several linkage and genetic association studies have been performed. Yet very little is known about specific
genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood.

Methodology/Findings: We used human DNA microarrays to identify a molecular picture of the programmed responses of
the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested
skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy
individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression
of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis
patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes
differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes
that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune
responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE.

Conclusions/Significance: Through genome-wide expression profiling, we were able to discover a distinct reciprocal
expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We
found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and
furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in
AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema.
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Introduction

Atopic eczema (AE) (OMIM#603165) is a common skin disorder
currently affecting 10-20% of children and 1-3% of adults in
westernized countries [1,2]. Patients with AE suffer from itchy, dry
and inflamed skin, often in combination with other atopic
manifestations such as allergic asthma and allergic rhinoconjuncti-
vitis. Twin studies indicate a strong genetic contribution in the
development of AE [3,4], and to date four genome-wide linkage
studies have been performed in Caucasian populations identifying
several chromosomal regions linked to AE susceptibility [5-8].
However, a complete genomic picture of this complex disorder still
remains to be defined, and importantly specific genes involved in the
pathogenesis of AE have to be identified.

Over the past decades, much research has been focused on
advancing the knowledge about the role and action of immune
competent cells and inflammatory molecules in AE pathogenesis.
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Activated T-helper cells, eosinophils, macrophages and mast cells
are often found in AE skin [9,10]. In addition, there is an
imbalance between Tyl and Ty2 cells giving an increase in
production of a T2 cytokine profile, at least in the early phases of
the disease [11]. A network of cytokines/chemokines and their
receptors that is characteristically expressed in patients with AE
has been identified [12,13]. However, it is still not clear whether
the inflammatory response found in AE skin is a primary basic
cause of the disease, or if it is a secondary effect caused by other
factors such as an impaired skin barrier.

The importance of an impaired epidermal differentiation
process and skin barrier dysfunction in the pathogenesis of AE
has recently been emphasized when a set of so-called “epidermal
differentiation genes”, including S100A7, S100A8, loricrin and
filaggrin (FLG), was found to be differentially expressed in AE
patients compared to healthy control individuals [14]. In addition,
genetic association studies have identified LG to be a suscepti-
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bility gene for AE, further supporting the importance of epidermal
differentiation genes in AE (reviewed in [15]). An impaired skin
barrier function in AE patients may also be an effect of changes in
the lipid composition [16,17]. However, the precise role of various
molecules and a detailed underlying mechanism to skin barrier
dysfunction in AE patients is still far from understood.

AL results from a complex interplay between genetic and
environmental factors. For example, it is known that allergens such
as house dust mite and bacteria such as staphylococci are
aggravating factors in AE [9,18]. Members of the lipophilic
Malassezia yeast family are part of the normal microflora on
human skin. However, Malassezia has been associated with AE and
other skin diseases such as seborrhoeic dermatitis and pityriasis
versicolor [19]. Malassezia-specific IgE antibodies are often found
in adult AE patients, but not in other allergic diseases or among
healthy individuals [20]. Application of Malassezia sympodialis (M.
sympodialis) extract on non-lesional skin of AE patients, referred to
as an atopy patch test (APT), triggers immunological changes in
the skin similar to acute lesional eczema [19,21,22]. It is unknown
why AE patients are hypersensitive to M. sympodialis, nor is it
known if M. sympodialis has a major effect on transcript levels in
eczema skin.

In this study, we used cDNA microarrays representing
approximately 24,500 unique genes to identify a detailed
molecular picture of the programmed responses of the human
genome to AE. The transcriptional program was analyzed in skin
biopsy samples from lesional and patch-tested skin from AE
patients sensitized to M. sympodialis, and corresponding biopsies
from healthy individuals. A set of genes identified by the
microarrays was selected for further analysis by immunohisto-
chemistry and immunofluorence staining to confirm and explore
corresponding protein levels and cell type expression in skin. We
found that non-lesional skin from AE patients that was patch-
tested with a PBS negative control has a predisposed genetic
program different from normal healthy skin. Furthermore, we
show that the global transcriptional response to M. sympodialis
patch-test in non-lesional AE skin is very similar to the gene-
signature identified in lesional AE skin. The most notable feature
of the global gene-expression pattern observed in AE skin was a
reciprocal expression of induced inflammatory genes and
repressed lipid metabolism genes. Genes encoding key enzymes
and structural proteins involved in assembly of the cornified layer
also demonstrated altered expression in AE skin.

Results

Global portrait of altered expression profiles in AE
c¢DNA microarrays representing approximately 24,500 unique
genes were used to identify the global gene-signature in lesional
and patch-tested skin from AE patients, and control skin samples
from healthy individuals. A multi-group Significance Analysis of
Microarrays (SAM) approach [23] was undertaken to select a set
of ~4000 genes that were consistently differentially expressed
between AE and healthy skin with a false discovery rate (FDR)
<0.003. The full list of genes identified by the SAM approach to
be consistently up- or down-regulated in AE skin as compared to
healthy control skin is provided as Supplementary Table SI.
Hierarchical clustering was used to group these genes based on
similarity in expression across the samples and to group individuals
on the basis of similarities in gene-expression patterns (Figure 1A).
Each column in Figure 1A represents a group of skin biopsy
samples and not a single array experiment. The same set of genes
was next used to extract the patterns of gene-expression from each
individual biopsy sample. Hierarchical clustering of these genes, in
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both gene and sample dimension, are displayed in Figure 1B. The
clustering analysis clearly separates AE and normal healthy skin
samples into two distinct branches. We found that the global
transcriptional response to M. sympodialis extract in AE skin is very
similar to that found in lesional AE skin. The healthy control
group did not respond to the M. sympodialis or the PBS patch-test,
neither on a transcriptional level nor as a visible reaction on the
skin. The patients with AE also had no visible skin reaction to the
PBS control patch-test. However, the gene-expression program
observed in non-lesional PBS tested AE skin was more similar to
the gene-signature identified in lesional AE skin than to that found
in the skin of healthy individuals.

The most notable feature of the observed gene-expression
program was a reciprocal expression pattern found for immune/
inflammatory genes (up-regulated in AE skin), and genes involved
in lipid metabolism (down-regulated in AE skin) (Figures 1A and
B). Using the “gene module map method” [24] to identify
significantly enriched Gene Ontology (GO) terms [25], we found
that “immune response” was the most significantly enriched GO
term in up-regulated AE genes (P<10~ "% and “lipid metabolism”
was the most significantly enriched GO term in down-regulated
AE genes (P<10~ %) (full list of enriched GO terms is provided in
Supplementary Table S2).

The induced expression of immune and inflammatory genes,
such as interleukins, cell surface antigens, and genes induced by
interferon, were especially prominent in M. sympodialis AE skin. We
also identified genes encoding structural components and enzymes
with a key role in terminal keratinocyte differentiation and
cornified envelope assembly that were significantly different in AE
skin as compared to healthy control skin. Notably is that many of
these potential AE candidate genes are localized to chromosomal
regions that previously have been linked to AE (Table 1).
Representative genes from different clusters in Figure 1 (Cluster
I, II and III) are further described below.

Induced expression of inflammatory and immune related

genes in AE skin

The most prominently up-regulated genes in AE skin as
compared to healthy control skin are genes involved in immune
and inflammatory responses (Figure 2A). In general, we found the
immune response cluster of genes more highly expressed in M.
sympodialis patch-test reactive AE skin, as compared to lesional and
non-involved/PBS patch tested AE skin and normal healthy skin,
which supports the role of inflammatory molecules in active AE
skin lesions. Among the genes identified in the “immune cluster”
are chemokine family members including CCL18, CCL21 and
CXCLLI (Figure 2) and members of the interleukin receptor family
such as IL-2R(y), IL-4R and IL-10RA (Figure 2). Genes encoding
cell surface antigens, such as CD5, CD6, CD28, CD37, CD53 and
CD86 are also among the genes over-expressed in AE skin
(Figure 2). Notably is that many genes identified in the “immune
cluster” are localized on chromosomal regions previously linked to
AE (Figure 2 and Table 1). Furthermore, we identified a group of
coordinately over-expressed genes encoding components (CIR,
C1S and C1QB) and regulatory proteins (SERPING1 and CFH)
of the classical pathway of complement in AE skin (Figure 2 and
Supplementary Table S1). Other interesting genes identified
within this cluster are FCERIG (1q23), encoding the high-affinity
IgE receptor gamma subunit, 7RAo, encoding the T-cell alpha
locus, and THYI, encoding a major cell surface glycoprotein
characteristic for T-cells (Figure 2 and Supplementary Table S1).
FCERIG, TRAo and THY1 are located on previous described AE
loci (11g23.3 and 14ql1.2).
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Figure 1. Global comparison between the gene-expression patterns underlying AE pathogenesis to those identified in normal
healthy skin. (A) Thumbnail overview of ~4000 array elements selected for differential expression in skin from AE patients and healthy individuals
by a multi-group significance analysis of microarrays (SAM) approach. Hierarchical clustering analysis was performed in both the gene (row) and
experiment (column) dimension. Note that each column represents a group of skin samples. The “contrast value” for each gene is shown, e.g. the
standardized mean difference between the gene’s expression in the class, versus its overall expression. (B) The SAM gene list of approximately 4000
array elements was used to extract patterns of gene expression from each AE patient and healthy control individual (indicated by separate numbers).
Note that each column here is represented by one array experiment. Transcript levels determined by microarray analysis are shown relative to a
reference pool of human mRNAs. Expression levels of each gene relative to its mean expression level over the sample set are displayed in a log2 scale.
Expression levels are represented by a color bar, where red is representing the highest levels and green is representing the lowest levels of
expression. Highlighted clusters (I-ll) are described in detail below in Figures 2, 5 and 6. The full data set can be found at the SMD database http://
microarray-pubs.stanford.edu/eczema and at the NCBI GEO database (GEO accession: GSE12511).

doi:10.1371/journal.pone.0004017.g001
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Table 1. Enrichment of chromosomal regions.

# of cytoband Total # of
Enriched genes induced/ genes in
cytoband P-value repressed cytoband
2194 genes induced in AE:
119121 ** 5.96E-15 38 210
19p13.3 ** 4.10E-13 34 194
19912 4.33E-13 32 173
6p21.2 6.87E-10 18 75
22q13.1 2.01E-09 15 54
3p21.31 ** 9.71E-08 20 123
1923.1 6.03E-07 14 70
16p11.2 ** 7.23E-07 14 71
19q13.2 *x 9.70E-07 18 117
16p13.3 1.09E-06 19 130
19p13.2 *x 1.25E-06 18 119
11p15.5 1.49E-06 11 46
3p25.3 * 3.13E-06 9 32
9p21.1 6.50E-06 12 63
12q13.12 ** 1.37E-05 10 47
6p21.1 1.84E-05 20 171
9q34.2 3.44E-05 6 17
19p13.12 ** 3.56E-05 12 74
10q926.2 3.85E-05 5 1
22q12.3 4.24E-05 9 43
1922 4.24E-05 9 43
1921.3 % 5.34E-05 12 77
19913.13 ** 5.46E-05 7 26
11q11 7.04E-05 6 19
17p11.2 1.58E-04 8 40
3q13.33 1.75E-04 6 22
5q32 i 1.75E-04 6 22
Xp22.22 2.28E-04 6 23
17q11.2 ** 2.80E-04 10 66
12p13.31 4.05E-04 10 69
20q13.12 4.09E-04 9 57
1p34.3 4.67E-04 9 58
17924.3 4.88E-04 7 36
1p36.11 5.05E-04 8 47
Xq13.1 6.73E-04 4 11
14q911.2 i 7.00E-04 11 87
12q13.13 ** 7.94E-04 10 75
5923.1 1.51E-03 6 32
12g21.33 1.52E-03 5 22
2p14 1.52E-03 5 22
15926.1 1.70E-03 7 44
3924 1.78E-03 6 33
29333 ** 1.85E-03 4 14
8p21.2 1.88E-03 5 23
4p16.3 1.94E-03 7 45
11p15.4 2.49E-03 9 73
16q12.2 ** 2.51E-03 7 47

Table 1. cont.
# of cytoband Total # of
Enriched genes induced/ genes in
cytoband P-value repressed cytoband
1925.2 2.77E-03 5 25
7908 genes repressed in AE:
29243 4.29E-06 6 24
12q13.11 ** 8.61E-06 7 40
6922.1 1.43E-05 4 9
6q14.1 7.22E-05 5 24
7934 1.42E-04 4 15
14q924.3 2.10E-04 6 46
21g22.3 2.67E-04 6 48
4q28.1 7.14E-04 3 10
4921.1 8.17E-04 4 23
1932.2 8.17E-04 4 23
1p36.13 8.73E-04 5 40
12p12.3 9.68E-04 3 11
1p36.22 1.09E-03 5 42
79223 1.27E-03 3 12
15g21.3  * 1.53E-03 4 27
10925.1 1.53E-03 4 27
3q11.2 1.63E-03 3 13
2q14.1 1.75E-03 4 28
1p22.2 2.00E-03 4 29
3922.1 ** 2.52E-03 3 15
5q23.2 2.52E-03 3 15
12p12.1 2.52E-03 3 15
Shown are chromosomal regions (cytobands) that are enriched in 2194 genes
induced or 1908 genes repressed in AE (P<<0.05; FDR<0.05). Cytobands are
sorted by P-value. Overlap with previously known AE genome-wide scan
regions [5-8,37], AE candidate gene regions [2,36,39-40], and AE regions
identified by selective region specific linkage mapping [35,38] are indicated in
the second column by *, **, and ***, respectively.
doi:10.1371/journal.pone.0004017.t001

Cell specific elevated expression of the Socs3 protein in
AE skin

SOCS3, located in an AE candidate chromosomal region
(17q25), was among the genes more highly expressed in AE skin
as compared to healthy skin (Figure 2B). To identify in vivo patterns
of Socs3 protein expression in the skin, we used immunohisto-
chemistry and double immunofluorescent staining methods. Socs3
expression was increased and spread to several layers in epidermis
in AE lesional skin (Figure 3A), while in non-lesional AE skin
(Figure 3B) and normal healthy skin (Figure 3C) it was
predominately in the basal epidermal layer. We next performed
double immunofluorescent staining to determine if other cell types
besides keratinocytes expressed Socs3 protein in AE epidermis
(Figure 4). A Socs3 antibody was co-applied with antibodies for
various cell types on AE lesional skin biopsy sections: CDla for
dendritic cells, CD3 for T-cells, and CD68 for monocytes/
macrophages. We found that Socs3 was expressed by CDla*
dendritic cells (Figure 4A—C), but not by CD3" T-cells or CD68*
cells in AE lesional skin (data not shown).
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Figure 2. Transcriptional levels of immune and inflammatory genes in AE skin measured using DNA microarrays. (A) A zoomed in
picture of the hierarchical cluster analysis showing examples of immune and inflammatory genes that was found to be coordinately over-expressed
in AE skin as compared to healthy skin. A detailed list of the genes represented in this cluster is shown in the table (right). Genes localized in genome-
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wide linkage eczema regions or in AE associated loci are highlighted in blue and yellow, respectively. (B) The SOCS3 gene was identifiedby the SAM
approach to be significantly over-expressed in AE skin as compared to healthy skin. The “contrast value” generated by the SAM program for the
SOCS3 gene is displayed in the graph (y-axis). Each bar represents SOCS3 transcriptional levels in a group of samples. AE patients: lesional skin (AE L
n=7), M. sympodialis (AE M n=6) and PBS patch-tested skin (AE P n=5). Healthy control individuals: normal skin (H n=4), M. sympodialis (H M n =4)
and PBS patch-tested skin (H P n=4).

doi:10.1371/journal.pone.0004017.9g002

Figure 3. Increased expression of Socs3 on keratinocytes in lesional AE skin. Inmunohistochemical staining showing Socs3 expression (A)
in lesional AE skin, (B) non-lesional AE skin, and (C) normal skin from a healthy control. Sections were counterstained with hematoxylin to visualize the

nucleus.
doi:10.1371/journal.pone.0004017.g003

Altered lipogenic gene-expression program identified in
AE skin

The most prominent feature of the AE down-regulated gene
cluster is a set of genes with a well-defined role in lipid
homeostasis. These include genes that are dedicated to the
synthesis and uptake of cholesterol and fatty acids such as ATP-
Citrate lyase (ACLI), Acyl-CoA synthase (ACSLI, ACSLS), HMG-
CoA synthetase (HMGCS1, HMGCS2) and HMG-CoA reductase
(HMGCR) (Figure 5 and Supplementary Table S1). Furthermore,
genes encoding key enzymes in the poly-unsaturated fatty acid
(PUFA) pathway (FADSI, FADS? and ELOVL)), and an acyl-
transferase (AGPAT3) with a key role in the phospholipid pathway,
were identified in the same gene cluster (Figures 5A and B).

Genes encoding eicosanoid lipid messengers and processing
enzymes also showed significantly different expression levels in AE
skin as compared to the healthy skin. For example, we observed
that prostaglandin processing enzymes including PTGES (Prosta-
glandin E synthetase), PTGIS (Prostaglandin I2) and PT'GER3

(Prostaglandin E receptor) were more highly expressed in AE skin
as compared to healthy control skin (Supplementary Table S1).
Furthermore, genes involved in arachidonic acid metabolism, e.g.
genes required for leukotriene synthesis, such as ALOX5AP,
ALOX12 and ALOX15B, were differentially expressed in AE skin
as compared to healthy skin (Supplementary Table S1).

Among the lipid genes down-regulated in AE skin were
transcripts encoding hydroxy steroid dehydrogenase family
members and members of the cytochrome P450 family that are
essential for steroid hormone biosynthesis [26] (data not shown).
Furthermore, among the down-regulated genes in AE skin was
lipin-1 (LPINI; Figures 5A and C), which encodes a transcription
factor with a suggested role during normal adipose tissue
development [27]. The lipin-1 gene was isolated and characterized
in 2001 as the gene responsible for fatty liver dystrophy (fld) in
mouse [28]. Interestingly, we also found a member of the SREBP
family, which is a well-described transcription factor with a major
role in regulating genes involved in fatty acid and cholesterol

Figure 4. Socs3 is expressed on CD1a* dendritic cells in epidermis. Double immunofluorescensce stainings of lesional AE skin showing (A)
expression of Socs3 on keratinocytes and on epidermal dendritic cells, (B) CD1a expression on dendritic cells and (C) co-localisation of Socs3 and
CD1a in epidermis. Dendritic cells are indicated by arrows. Scale bar=50 pum.

doi:10.1371/journal.pone.0004017.g004
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Figure 5. Global down-regulation of a lipogenic expression program identified in AE skin. (A) A zoomed in picture of the hierarchical
cluster analysis illustrating a large set of genes involved in lipid metabolism and homeostasis that was found to be coordinately down regulated in AE
skin (left). A detailed list of the genes represented in this cluster is shown in the table (right). Genes localized in genome-wide linkage eczema regions
or an AE associated loci are highlighted in blue and yellow, respectively. (B) Schematic of enzymes involved in the PUFA pathway. (C) SREBF1 and
LPINT transcript levels were lower in AE skin compared to healthy control skin. The “contrast values” generated by the SAM program for the SREBF1
and the LPINT gene are displayed in the graph (y-axis). Each bar represents transcriptional levels in a group of samples. AE patients: lesional skin (AE L
n=7), M. sympodialis (AE M n=6) and PBS patch-tested skin (AE P n=5). Healthy control individuals: normal skin (H n=4), M. sympodialis (H M n =4)

and PBS patch-tested skin (H P n=4).
doi:10.1371/journal.pone.0004017.9005

metabolism [29], to be down-regulated in AE skin as compared to
healthy skin (SREBFI; Figure 5C).

Altered expression of epidermal barrier function genes in
AE skin

We found alterations in expression of a set of genes encoding
structural components and key enzymes involved in forming the
cornified envelope in AE skin. Two transcripts encoding members
of the transglutaminase family (7GMI and TGM3) had consistently
elevated expression in AE skin as compared to healthy skin
(Figures 6A and B). Transglutaminases are key enzymes that
catalyze the cross-linking of epidermal proteins during formation
of the stratum corneum. A similar expression pattern, as observed
for the TGM genes, was found for CALML) (alias CLSP), which
encodes a calmodulin-like skin protein that previously has been
shown to associate with the TGMS3 protein [30]. Furthermore, as
seen in Figure 6A, CDSN, which encodes a desmosomal-associated
protein expressed during terminal keratinocyte differentiation
[31], was co-expresed with the TGM transcripts. Desmosomes are
cell-cell adhesion sites that provide mechanical integrity to the
tissues by anchoring keratin filaments to the site of cell-cell
adhesion. The hypothesis that constituents of the desmosomal
cell—cell junctions may have altered expression in the epidermal
layers of AE skin is further supported by consistently lower
expression of DSG2 in AE skin as compared to healthy skin
(Supplementary Table S1). DSG2 encodes a membrane spanning
glycoprotein of the desmosome, and is localized to chromosome 18
in a locus previously linked to AE (18q12.1 [7]). Furthermore, we
identified elevated expression of the corneum chymotryptic
enzyme (SCCE/KLKY7) in AE skin (Supplementary Table SI).
This result is supported by recent work from Komatsu et al. (2007)
that reported elevated expression of several kallikrein family
members in the stratum corneum from AL patients [32], and
furthermore by work from Vasilopoulos that identified genetic
association between the corneum chymotryptic enzyme (SCCE/
KLK7) and AE [33].

Genes encoding molecules critical for the extracellular matrix
(ECM) architecture (COL6A1, COL6A2 and COL6A3) and
ECM re-modeling enzymes (TIMP1 and TIMP2) were differen-
tially expressed in AE skin (Figure 6A and Supplementary Table
S1). Many of these genes with an important role in constructing
the skin barrier, as well as genes encoding cell adhesion and ECM
molecules, are localized on chromosomal regions previously linked
or associated to AE (Figure 6 and Table 1) suggesting that they
serve as potential AE candidate genes.

Elevated expression and localization of the TGase1l
protein in AE skin

TGM1, which is localized in a chromosomal region (14q12)
previously linked to eczema [34], was among the epidermal
differentiation genes found to be over-expressed in lesional AE skin
as compared to healthy skin. By immunohistochemistry, we
confirmed that epidermal transglutaminase 1 (T'Gasel) protein

@ PLoS ONE | www.plosone.org

expression is increased in AE skin (Figure 7). We found that both
expression and the localization of TGasel were altered in lesional
AE skin. TGasel was localized to several cell layers and spread
down deep in epidermis in lesional AE skin (Figure 7A), while in
non-lesional PBS patch-tested AE skin (Figure 7C) and normal
healthy skin (Figure 7D) it was expressed as a sharp line in the
outermost layer of epidermis. As illustrated in Figure 7, TGM1
protein levels could be induced by the application of M. sympodialis
to non-involved AE skin.

Enrichment of AE related chromosomal regions

We noticed that many of the genes that were found by the array
experiments to be consistently differentially expressed in AE and
healthy skin are localized to previously described AE susceptibility
chromosomal regions (reviewed in [2]). To further test this
hypothesis, we used the previously described “gene module map
method” [24] to identify significantly enriched cytobands in the
AE microarray data set. The set of ~4,000 AE genes were
analyzed for their enrichment in 624 gene sets composed of
human cytoband regions [35]. As illustrated in Table 1, we found
70 cytobands that were significantly enriched in the AE data set
(P<0.05; FDR<0.05). Interestingly, 20 of these significantly
enriched cytobands represent chromosomal regions previously
described to be linked or associated to AE either by genome-wide
linkage studies, selective region-specific linkage mapping or
candidate gene studies in AE [2,34,36—40]. The observation that
20 AE-linked cytobands were found in the top 70 hits is highly
significant (P<10~°, hypergeometric distribution, with 624 total
cytobands in the genome), whereas only 2 cytobands are expected
to overlap by chance alone. Notably, we found that genes induced
in AE are more enriched from AE-linked cytobands (17 of 20) than
genes repressed in AE (3 of 20).

Among the enriched AE-linked cytobands identified are 1g21,
3p25.3 and 15g21.3, which all previously have been identified as
AE susceptibility regions in genome-wide linkage analyses [5—
7,38]. The 121 region encodes several epidermal differentiation
genes including the FLG gene that recently has been linked to AE
susceptibility [15]. However, genes from the 3p25.3 and 15q21.3
regions have not been identified or systematically tested for a role
in AE. Furthermore, among the significantly enriched cytobands
were several AE gene candidate regions previously described in
the literature to be associated to AE [2], including chromosomal
region 2q33 (CTLA4), 3p21 (TLRY), 5q32 (the cytokine cluster),
11ql2 (FCERIP), 12q13 (TIMI), 14ql1 (MCC), 16pl1 (IL4R) and
19q13 (SCCE and TGFBI) (Table 1).

The microarrays also identified significantly enriched cytobands
that were previously not linked to AE (Table 1). Interestingly
though, some of these chromosomal regions have been linked to
other diseases. For example, we found an enrichment of cytobands
in the AE data set that overlap with chromosomal regions
previously identified to be associated with psoriasis (1q21;PSORS4
and 6p21;PSORSI) and asthma (5g23-32, 6p21, 11pl5 and
19q13). In fact, 6p21.2 was among the most significantly enriched
cytobands identified in the AE data set (P<10~7, Table 1). The

December 2008 | Volume 3 | Issue 12 | e4017



Genomic Portrait of Eczema

wn n nunnn
0] [0)] n w - B
- - - e — s s s
— — — s © © G C o
] © o © A e eH -
o - s s ko] VA~ TTTT =1 —
kel 3 g g 0 0BUEBOO0O0” ™M © ©
o} o} 00 o addgotdbdg o g
HH B o+ 2 o g EOCOCEEEEOCO O el
EEE & E ZEE G hnannonhhbannbonn
SHnnYNOWLYHL®OLLAM -cM - VOO - - - -OO0OMOMMAM O
00_-MOoOM_ MO MASASAAdSSSSaamdmadg
desadasadssn
NHONMANVOUILMD>HEWODWNAASD
A A ANNOOONEE L
L T S T D =2 <l e ca [ cal calea i cal ca i ca i cal calca [ cal cal ca [l ca i e
e e Gene Symbol Chromosome UniGene Cluster ID
[ ———————1 | FAM26B 10pter-q26.12 Hs.241545
SLC7A7 14q11.2 Hs.513147
ITGAM 16p11.2 Hs.172631
LOX* 5q23.2 Hs.102267
DPP4 2q24.3 Hs.368912
CFHR3* 132 Hs.575869
C3orf52 3q13.2 Hs.434247
PTGIS 20q13.13 Hs.302085
PTGIS 20q13.13 Hs.302085
- PTGIS SCARA3 8p21 Hs.128856
GREM1 15q13-q15 Hs.40098
- GREM1 POR 7q11.2 Hs.354056
LY6G6C 6p21.33 Hs.241586
LY6G6C 6p21.33 Hs.241586
KLK8 19913.3-q13.4  Hs.104570
- KIL,K8 CALMLS 10p15.1 Hs.180142
CALML5 10p15.1 Hs.180142
= CALML5 CALML5 10p15.1 Hs.180142
MGC10981 4p16.1 Hs.663749
— DMKN DMKN 19q13.12 Hs.417795
LOC645638 17g23.1 Hs.463652
LOC645638 17g23.1 Hs.463652
— ggl\é%l TGM3 20q11.2 Hs.2022
f— GDSN CRCT1 1921 Hs.110196
CDSN 6p21.3 Hs.556031
PRSS3 9p11.2 Hs.654513
- TGM1 TGM1 14q11.2 Hs.508950
CLEC2B 12p13-p12 Hs.85201
SERPING1 11q12-q13.1 Hs.384598
— TIMP2 TIMP2 17925 Hs.633514
TIMP2 1725 Hs.633514
TIMP2 1725 Hs.633514
FBLN2 3p25.1 Hs.198862
FBLN2 3p25.1 Hs.198862
HIRIP3 16p11.2 Hs.592046
SERPING1 11q12-g13.1 Hs.384598
TBC1D2B 15024.3-q25.1  Hs.567426
FCGRT 19q13.3 Hs.111903
c7 5p13 Hs.78065
SCARA3 8p21 Hs.128856
MMP2 16q13-q21 Hs.513617
AEBP1 7p13 Hs.439463
TIMP2 1725 Hs.633514
COL6A2 21q22.3 Hs.420269
HMGN1* 21q22.3 Hs.694942
— NBL1 1p36.13-p36.11  Hs.654502
TYRO3 TSPAN4 11p15.5 Hs.654836
PCOLCE 7922 Hs.202097
- NBPEF10 TYRO3 15q15.1-q21.1  Hs.381282
RNASE1 14q11.2 Hs.78224
Cluster Il in Fig 1B ROM1 11q13 Hs.281564
NBPF10 1q21.1 Hs.515947
-2 1:1 2 F10 13934 Hs.361463
o —
0.25 0 4
3
TGM1 (IMAGE:2306445)
21 M TGM3 (IMAGE:301735)
B CDSN (IMAGE:2213769)
14
o
(@]
O o : : : : :
— AEL AEM AEP
-1
_2 —
-3

Figure 6. Genes involved in skin barrier function differentially expressed in skin from AE patients as compared to healthy control
individuals. (A) A zoomed in picture of the hierarchical cluster analysis illustrating genes involved in skin barrier function that were found
coordinately over-expressed in AE skin as compared to healthy skin (left). A detailed list of the genes represented in this cluster is shown in the table
(right). Genes localized in genome-wide linkage eczema regions or an AE associated loci are highlighted in blue and yellow, respectively. (B) Members
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of the transglutaminase family (TGM1, TGM3) and CDSN were among the cornified envelope genes identified by the multi-group SAM approach to be
consistently over-expressed in AE skin as compared to healthy skin. The “contrast value” generated by the SAM program for these genes is displayed
in the graphs (y-axis). Each bar represents transcriptional levels in a group of samples. AE patients: lesional skin (AE L n=7), M. sympodialis (AE M
n =6) and PBS patch-tested skin (AE P n =5). Healthy control individuals: normal skin (H n=4), M. sympodialis (H M n =4) and PBS patch-tested skin (H

P n=4).
doi:10.1371/journal.pone.0004017.g006

6p21 region (PSORSI) contains multiple genes in tight linkage
disequilibrium, including the HLA gene cluster and the CDSN
gene.

All specific genes in AE susceptibility chromosomal regions have
not yet been identified or systematically tested for a role in AE.
Examples of genes identified by the microarrays to be consistently
differentially expressed between AE and healthy skin and localized
within significantly enriched cytobands are shown in Supplemen-
tary Table S3. In summary, we found that there is a significant
enrichment of differentially expressed genes in AE with cytobands
associated to the disease, and furthermore new chromosomal

regions were found that could potentially guide future region-
specific linkage mapping in AE.

Discussion

AL is a chronic inflammatory skin disorder that results from a
complex interaction of genetic and environmental factors [9].
Although several chromosomal regions have been identified that
are linked to AE susceptibility, it is yet not fully understood what
specific genes and mechanisms underlie the development of AE.
The DNA microarray technique [41] has recently been utilized
successfully in the search for new candidate genes in complex
diseases. Large—scale expression profiling of chronic inflammatory
skin disorders such as eczema and psoriasis have previously been
performed using the Affymetrix GeneChip [12,14,42-44]. Al-
though previous expression profiling studies have highlighted sub-
groups of genes such as a set of innate immunity genes [12] and

50um

50um

Figure 7. Increased TGM1 protein expression in AE skin. Immunohistochemical staining of TGM1 expression in lesional AE skin (A) and in
positive APT reaction to M. sympodialis extract (B), non-lesional PBS patch-tested AE skin (C) and normal healthy skin (D). Sections were

counterstained with hematoxylin to visualize the nucleus.
doi:10.1371/journal.pone.0004017.g007
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the “epidermal differentiation cluster” [14], or potential gene
candidates including NELL2, CCL18, AQP3 and tenascin-C [42—
44] that are deregulated in AE, the complete genome-wide picture
of AE 1is still far from understood. To further advance the
understanding of genes underlying the development of AE, and to
test the impact allergens may have on the global expression
pattern in AE skin, we used cDNA microarrays to characterize the
global gene-signature in lesional skin and patch-tested skin from
eczema patients and corresponding skin from healthy individuals.
Our analysis provides striking evidence for global differences in the
transcriptional program between skin from AE patients and
healthy individuals. The most prominent feature of the gene-
signature identified in AE skin was a reciprocal pattern of induced
inflammatory genes and reduced lipid genes. Among the genes
identified in this study are many that are localized to chromosomal
regions previously associated with AE and thus are new potential
AL candidate genes.

The large set of coordinately up-regulated immune and
inflammatory related genes identified in AE skin includes genes
encoding cytokines, chemokins and cell-surface antigens. The
increased expression of inflammatory genes can be explained both
by increased numbers of infiltrating cells, mainly T-cells and
dendritic cells, and by activation of these cells. For example, among
the most consistently highly expressed chemokines in AE skin was
CCL18 that is known from previous work to be highly expressed in
AFE skin by dendritic cells [42,45]. A novel finding in our study was
that components and regulatory proteins of the classical pathway of
complement were coordinately over-expresed in AE skin. Comple-
ment is an essential component of the immune system and is of
relevance for the destruction of invading microorganisms. However,
excessive complement activation contributes to undesired tissue
damage and the role of complement in other inflammatory diseases
has previously been reported [46].

SOCS3 was also among the inflammatory genes found to be
more abundant in AE lesions as compared to healthy skin. This
gene encodes a suppressor of cytokine signaling and is localized in
an AE candidate chromosomal region (17q25). It has previously
been reported that SOCSS is predominantly expressed in Ty2-like
cells and has an important role in regulating the onset and
maintenance of Ty2-mediated responses [47]. In contrast to the
report from Seki et al. (2003), we did not find T-cells expressing
Socs3 in AE skin. However, keratinocytes and CD1a* dendritic
cells in the skin expressed the protein in AE lesional skin. The
Socs3 protein was also expressed by basal keratinocytes in normal
healthy skin. Whether SOCS3 plays an immunoregulatory role in
keratinocytes, or if it might be involved in regulating keratinocyte
cell proliferation and differentiation [48] needs to be further
investigated. It is unknown what precise role SOCS3 plays in
different cell types in the skin. Its increased expression in AE
epidermis may play a role in developing the disease, or it may be a
secondary effect of the inflammatory condition of the skin. While
Socs3 protein levels are found to be up-regulated in AE skin, the
reverse pattern was observed in psoriatic skin [49], which is a
chronic inflammatory Tpyl-related skin disease. It has been
proposed that microRNAs (mir-203) acting in the SOGS3
3'UTR are the regulators of reduced Socs3 protein expression
observed in psoriatic skin [49]. It is unclear how Socs3 expression
is regulated in AE skin. However, a recent genetic study has
demonstrated an association between a haplotype in the SOCS3
5'region and AE, which suggest that molecules acting in the
5'region may alter Socs3 expression in AE skin [50].

We demonstrate here that by applying M. sympodialis extract to
non-lesional AE skin in M. sympodialis sensitized patients, a global
expression signature can be induced that is remarkably similar to
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that identified in lesional AE skin. The M. sympodialis induced
transcripts are dominated by immune related genes such as the IL-
4 receptor, which previously has been described in AE [51]. The
IL-4 signaling pathway are among the candidates considered for
the treatment of allergic inflammation [52]. Data presented here
supports the hypothesis that M. sympodialis can act as an
aggravating factor in AE pathogenesis. It is still unclear, however,
why AL patients can be hypersensitive to a fungi that is part of the
normal human skin microflora. One hypothesis is that a defective
skin barrier in AE patients allows allergens to penetrate and trigger
an immunological response in the skin [1].

We found a large set of down-regulated genes in AE skin with a
well-defined role in lipid homeostasis. Among these genes are
classical genes encoding enzymes involved in fatty acid and
cholesterol metabolism, but also genes encoding enzymes involved
in poly-unsaturated fatty acid (PUFA) metabolism. The role of
lipids in AE pathogenesis has previously been discussed. For
example, it has been shown that ceramide levels are reduced in AE
skin compared to healthy skin, and furthermore altered expression
of ceramide processing enzymes has been seen in AE skin [17].
However, this is the first time that a global reduced lipogenic
expression program has been demonstrated in AE skin. Coordi-
nate down-regulation of a large set of lipid processing genes in AE
skin could explain an impaired lipid balance previously observed
in these patients, which may be a key factor underlying the cause
of a disrupted skin barrier in AE patients. Of particular interest is
the reduced expression of genes encoding PUFA processing
enzymes, delta-5-desaturse  (FADS2) and delta-6-desaturse
(FADSI), identified here in AE skin. PUFAs are important
constituents of phospholipids in cell membranes, assuring the
correct environment for membrane protein function, maintaining
membrane fluidity, and moreover PUFAs have been described to
play a role in regulating gene transcription [53]. In addition, some
PUFAs, particularly arachidonic acid, act as substrates for the
synthesis of eicosanoids (i.e. prostaglandins and leukotrienes),
which are involved in regulating inflammatory processes and
immune cell responses. A disrupted PUFA balance may thus have
a large impact on various cellular processes. Interestingly, there
are a number of observations in AE patients with significantly
higher levels of the first substrate of the PUFA pathway, linoleic
acid, and significantly lower levels of the downstream metabolites,
v-linolenic, dihomo-y-linolenic, and arachidonic acids in eczema
[16,54,55]. Furthermore, levels of linoleic acid metabolites have
been correlated with transepidermal water loss in children with
eczema [55]. To date there has been two mutually exclusive
hypotheses regarding the altered PUFA composition observed in
AE patients [56]. Our results clearly supports the hypothesis that
lower levels of PUFA metabolites are due to impaired desaturase
enzyme activity and thus impaired synthesis of these molecules,
and not that low levels of PUFA metabolites are due to increased
consumption in inflammatory processes. Genetic variants in the
FADSI and FADS? genes have recently been associated with fatty
acid composition in phospholipids [57]. Since the FADS gene
cluster are located on 11ql2-q13.1, a chromosomal region
previously linked with allergic diseases [34], it would be intriguing
to test if FADS polymorphisms are associated with AE.

It is currently unclear what controls the well-coordinated
regulation of lipid processing enzymes in AE skin. It is intriguing
to speculate that members of the SREBP transcription factor
family, which has a well-described role in regulating genes
involved in fatty acid and cholesterol metabolism, may play a
key role in the global down-regulation of lipid genes in AE
patients. In fact, we found SREBPI to be less expressed in skin
from AE patients as compared to healthy controls. Another
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tempting hypothesis is that nuclear receptors, such as LXR and
RXR, may have an influence on the observed reciprocal gene-
expression program of inflammatory and lipid genes in AE skin.
Members of the liver-X-receptor family have previously been
described in regulating reciprocal expression of inflammatory and
lipid genes on a large scale [58].

The hypothesis that barrier dysfunction is a key factor in the
pathogenesis of AE was recently strengthened by work from
Palmer et al. (2006), demonstrating that filaggrin (FLG) is an AE
susceptibility gene [59]. This study and work from others spread
light on structural proteins of the cornified envelope (CE),
including filaggrin and loricrin, and their role in altered barrier
function in AE patients [14,15]. We report here that TGM genes,
which encode enzymes critical for constructing the cornified cell
envelope architecture, are differentially expressed in skin from AE
patients and healthy control individuals. TGM proteins catalyse
the cross-linking of structural proteins of the CE and lipids. This
process is important in the terminal differentiation of the
epidermis, and thus critical for the formation of the stratum
corneum, the outermost layer of the skin [60,61]. Interestingly, the
same loss-of-function mutation in 7TGM! and TGMY5 have been
shown to cause lamellar ichthyosis, a disease characterized by
excessive scaling and shedding of the outer epidermis, and peeling
skin syndrome, respectively [62—-64]. The glycine residue respon-
sible for this loss-of function mutation (G113C) is conserved in all
known TGMs and lies close to the catalytic domain of the enzyme
[62]. Interestingly, all epidermal 7GMs map in genomic regions
that have previously been linked to AE susceptibility
(TGM1;14q12, TGM3;20p13 and TGM5;15q15) [5,6,34]. It has
not been investigated if 7GMs are genetically associated to AE, nor
is it known if polymorphisms or mutations near the enzymatic
active site may affect TG activity in AE patients. Notably, filaggrin
and loricrin, which encode two important structural proteins of the
CE and identified by Sugiura et. al. (2005) to be differentially
expressed in AE skin [14], were not included on the microarrays
used in this study and thus the transcript levels for these genes are
not reported in our patient material.

Skin barrier dysfunction could possibly also be explained by
altered cell-cell adhesion function in the skin. We found genes
encoding common constituents of the desmosome complex, such
as CDSN, to be differentially expressed in AE skin. Desmosomes
are cell—cell adhesion sites that provide mechanical integrity to
tissues by anchoring keratin filaments to the site of cell-cell
adhesion. Changes in transcriptional levels of CDSN, which
encodes a desmosomal-associated protein expressed during
terminal keratinocyte differentiation, may lead to skin disease. In
fact, the CDSN gene has recently been associated to psoriasis
(reviewed in [65]), but has not been associated with AE. The data
presented here support the hypothesis that genes involved in
forming the outermost protective layer of the skin, the stratum
corneum, play a critical role in AE pathogenesis. Furthermore we
identified altered expression of stratum corneum proteases in AE
skin suggesting that not only the construction of the cornified
envelope is altered in AE skin, but also that abnormal renewal and
removal of corneocytes (the so called “desquamation process”)
may be crucial for skin barrier dysfunction in AE skin.

Finally, we asked the questions what cytobands were enriched in
the microarray data set, and if these cytobands may represent
previously known AE susceptibility regions. Interestingly, we were
able to discover correspondence of differentially expressed genes in
AL and disease susceptibility regions. Enrichment was also found
for cytobands representing chromosomal regions not previously
described in the disease that could potentially guide future region-
specific linkage mapping in AE.
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In conclusion, we have used human DNA microarrays to
identify a molecular picture of the programmed responses of the
genome to AE. The most prominent feature of the global
expression program identified in AE skin was a reciprocal pattern
of induced immune response genes and reduced expression of lipid
metabolism genes. Furthermore, we identified transglutaminases,
key enzymes involved in cornified envelope assembly, to be
enhanced in AE skin compared to healthy skin. Alterations in
genes involved in cornified envelope formation and lipid
homeostasis in AE skin support the hypothesis that skin barrier
dysfunction is crucially involved in the pathogenesis of AE [66].
We believe that further understanding of these gene candidates
may lead to new therapeutic strategies for AE patients in the
future.

Materials and Methods

Subjects for microarray analysis

Seven patients with AE, recruited and investigated at the
Karolinska University Hospital, Solna (Table 2), and four healthy
controls were included in the study. The healthy controls had no
clinical symptoms or history of allergy or skin diseases and were
Phadiatop® (Phadia AB, Uppsala, Sweden) negative. Inclusion
criteria for the AE patients were diagnosis according to the UK
working party criteria [67]. Also, the eczema lesion had to be
present in other regions than only the hands. The eczema started
before the age of one year in 6/7 patients. They all had an
exacerbation of symptoms lasting for more than six months before
the investigation. All patients suffered from allergic symptoms in the
airways, 5/7 with ongoing symptoms at the time of examination.
Exclusion criteria were other skin diseases than AE, autoimmune
diseases, immune deficiencies, malignant diseases, pregnancy or
lactation, immunosuppressive treatment, and age below 18 or above
55 years. Systemic glucocorticoids, systemic antifungal treatment or
UV therapy was not allowed for 2 months before the investigation
and topical glucocorticoids were not allowed on the test sites for one
week before the study. Antihistamines were withdrawn 5 days
before the investigation. All participants gave their informed
consent. The participant consent was written. The study was
approved by the Regional Ethics Committee.

Skin prick test and atopy patch test

Skin prick test (SPT) and atopy patch test (APT) were performed
with extract of the yeast M. sympodialis prepared from strain
no. 42132, American Type Culture Collection (ATCC) as previ-
ously described [68]. For SPT the protein concentration of the
extract was 100 pg/mlL. Histamine dihydrochloride (10 mg/mlL,
ALK, Horsholm, Denmark) was used as a positive and PBS as a
negative control. APT was performed on healthy individuals and
non-lesional, tape-stripped skin of the back of AE patients. The M.
sympodialis extract (20 pL, 5 mg/mL) was applied on paper discs in
Finn chambers (8 mm; Epitest Ltd Oy, Tuusula, Finland). The tests
were evaluated after 48 h under coded conditions (See Table 2).
PBS (Phosphate Buffered Saline) was used as a negative control.

Skin biopsy collection and RNA preparation

Skin biopsies were collected from two groups of individuals: AE
patients sensitized to M. sympodialis (Table 2) and non-atopic
healthy individuals. Punch biopsies (4 mm) were taken from M.
sympodialis extract and PBS patch tested skin after 48 h from both
AFE patients and healthy controls, and from lesional skin in AE
patients and normal skin from healthy control individuals. The
skin biopsies were snap frozen on dry ice and stored at —80°C.
Total RNA was extracted from each skin biopsy using Trizol
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Table 2. Characterization of the AE patients.
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No Gender Age (years) Asthma/Rhinitis SCORAD®  s-IgE kU/L®  Phadiatop® M. sympodialis specific IgE kU/L® SPT* mm APT'
1 M 21 =F 57 5700 + 16 5 F

2 F 28 + 57 5300 + 4,8 4,5 +

3 F 34 0 24 98 0 <0,35 6 HHE

4 F 35 + 25 7000 + 15 5 ++

5 IF 22 4F 22 140 4F 1,6 6 4F

6 M 43 + 78 4710 + 2,4 6,5 ++
7 IF 31 + 48 59 + 2,6 4,5 1FF

2SCORAD ([70].
PImmunoCAP™ (Phadia AB, Uppsala, Sweden), reference range 1.6-122 kU/L.
‘Phadiatop® (Phadia AB), serum IgE to any of 11 common aeroallergens.

papules and large vesicles [22].
F =female, M=male.
doi:10.1371/journal.pone.0004017.t002

(Invitrogen, Carlsbad, CA, USA), and total RNA was linearly
amplified according to the Ambion MessageAmp procedure (Cat
#1750). This amplification procedure is based on antisense RNA
(aRNA) amplification first described by Van Gelder and Eberwine
[69]. The amplified RNA was used as template for reverse
transcription in the presence of CyDye-labeled dN'TPs to generate
labeled ¢cDNA for microarray analysis. Due to technical reasons,
RNA from 3 biopsies did not get further processed for microarray
hybridization.

cDNA microarrays, hybridization, data filtering and
analysis

Human cDNA microarrays were used containing 41,792
elements that represents approximately 24,500 unique genes
(based on Unigene clusters) manufactured in the Stanford
Microarray Facility (www.microarray.org). Fluorescently labeled
cDNA prepared from amplified RNA was hybridized to the array
in a two-color comparative format, with AE patient- or healthy
control samples labeld with Cy-5, and a reference pool of human
mRNAs (Stratagene) derived from ten cell lines labeled with Cy-3.

Array images were scanned by using an Axon Scanner 4000B
(Axon Instruments, Union City, CA), and data was analyzed by
using GenePix 3.0 (Axon Instruments). Data was normalized and
retrieved as the log, ratio of fluorescence intensities of the sample
(Cy5) and the reference (Cy3). We next filtered the data to exclude
elements that did not have at least a 2-fold intensity over
background ratio, in at least 80% of the arrays. These filtered
genes were analyzed by the multi-class Significance Analysis of
Microarrays (SAM) algorithm [23] to select a set of ~4000 genes
that were consistently differently expressed between skin from AE
patients and control individuals, with a false discovery rate less
than 0.26% (Supplementary Table S1). An overview of the skin
tissue samples used for the multi-class SAM microarray analysis
are shown in Supplementary Table S4. The abundance of each
transcript measured in a skin biopsy specimen relative to the
common reference is represented in Figures 1, 2, 5 and 6 by color;
red for expression levels above the mean for that gene and green
for expression levels below the mean. The multi-group SAM
approach calculates a “contrast value” for each gene, e.g. the
standardized mean difference between the genes expression in the
class, versus its overall expression. “Contrast values” for 4102
genes are displayed in Figure 1A and the contrast for SOCS3,
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dSpeciﬁc serum IgE for M. sympodialis ATCC strain 42132, ImmunoCAP™ (m70, Phadia AB).
€SPT =skin prick test evaluated after 15 min and graded as mean diameter (mm) of the wheal. A reaction of 3 mm or more was considered positive.
fAPT = atopy patch test evaluated after 48 h, +=erythema, infiltration, few papules; ++ = erythema, infiltration, papules and small vesicles; +++=erythema, infiltration,

SREBFI1, LPIN1, TGM1, TGM3 and CDSN, are illustrated in the
graphs in Figures 2, 5 and 6.

The full microarray data set described in this manuscript is
available at the Stanford Microarray Database (SMD) http://
microarray-pubs.stanford.edu/eczema and at the NCBI Gene
Expression Omnibus (GEO) database http://www.ncbinlm.nih.
gov/geo/info/linking.html (GEO accession: GSE12511).

Identification of significantly enriched cytoband regions

and Gene Ontology terms in the microarray data set

2194 genes induced and 1908 genes repressed in AE (as is
illustrated in Figure 1) were analyzed for their enrichment in 624
gene sets composed of human cytoband regions [35] and 1665
gene sets composed of Gene Ontology (GO) terms [25].
Significant enrichment of AE-associated genes (P<<0.05; corrected
for multiple hypotheses using FDR) was determined using the
“gene module map method” implemented in Genomica [24]. To
test the overlap of cytobands discovered by altered gene expression
levels by microarray versus cytobands identified by genetic studies
of AE, we scored for identical cytobands between the Genomica
output versus AE-linked or associated cytobands described in the
literature [2,37-40]. Among 70 cytobands that showed coordinate
mRNA level changes in AE, 20 were previously linked or
associated to AE by genetic studies (28% overlap), whereas only
2 cytobands (3% overlap) were expected by chance alone
(P<10™%, hypergeometric distribution). Not all cytobands genet-
ically linked to AE have been discovered, which might increase the
pre-test probability of the overlap and decrease the significance of
the above findings. We note that even assuming a pretest
probability of 10% overlap (i.e. discovery of three times more
genetic loci linked to AE), the overlap between microarray and
genetic cytobands is highly significant at 10~°.

Immunohistochemical and double immunofluorescence
staining of skin biopsies

Skin biopsy specimens from an independent set of AE patients
and healthy control individuals were used for immunohistochem-
istry. Staining results from a selected set of AE patients (n = 3) and
healthy controls (n =2) are illustrated in Figure 3, 4 and 7. The
inclusion and exclusion criteria were the same for these individuals
as 1s described above. Six um thick cryo sections were prepared
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and put on glass slides, fixed in acetone and used for the ABC-
ELITE (Vector Laboratories Inc. Burlingame, CA, USA)
immunohistochemical staining method according to the manu-
facturer’s instructions. The sections were incubated with rabbit
anti-Socs3 antibodies (dilution 1/100 from Santa Cruz Biotech-
nology Inc, Santa Cruz, CA, USA) followed by a biotinylated
goat-anti-rabbit secondary antibody (1/200, Vector Laboratories
Inc.), or a monoclonal mouse antibody against transglutaminase 1
(17250, Biogenesis Ltd, Poole, UK) followed by a biotinylated
horse-anti-mouse secondary antibody (1/400, Vector Laboratories
Inc., Inc., Burlingame, CA, USA). The specimens then were
allowed to react with preformed avidin-biotin-enzyme complex
(ABC-ELITE reagent, Vector Laboratories Inc.) for 30 min. The
developing step was incubation with 3-amino-9-ethylcarbazole
(AEC) substrate for 15 min. The slides were counterstained with
Mayer’s haematoxylin. Irrelevant mouse Ig or normal rabbit
serum, respectively, were used as negative control and gave no
staining.

For double immunofluorescence stainings, the skin sections
were incubated with rabbit anti-Socs3 antibodies (1/100) from
Santa Cruz Biotechnology Inc and the monoclonal antibodies
against CDla (dilution 1/10), CD3 (dilution 1/5) or CD68
(dilution 1/25), all from BD Biosciences Pharmingen, San Jose,
CA, USA. Sections were next incubated with Alexa Fluor 488 goat
anti-rabbit (green fluorescence, 1/500) and Alexa Fluor 546 goat
anti-mouse (red fluorescence, 1/500) from Invitrogen, Eugene,
OR, USA. The sections were evaluated using a Leica TGS SP2
confocal laser scanning microscope system, equipped with an
inverted Leica DM IRBE microscope, an argon laser, and two
HeNe lasers (Leica Microsystems, Germany). Leica confocal
software was used to acquire and visualize the data. Staining
was not observed when irrelevant isotype-matched mouse
antibodies were used or when primary antibodies were omitted.

Supporting Information

Table S1 Genes differentially expressed between skin from AE
patients and healthy control individuals. Shown are a detailed list
of ~4,000 genes identified by the multi-group SAM approach to
be consistently differentially expressed between AE and healthy
skin (FDR<<0.003). This set of genes is the same genes that are
shown in Figure 1.
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