
Nominalization and Alternations in Biomedical Language
K. Bretonnel Cohen1,2*, Martha Palmer2, Lawrence Hunter1

1 Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States of America, 2 Department of Linguistics, University

of Colorado at Boulder, Boulder, Colorado, United States of America

Abstract

Background: This paper presents data on alternations in the argument structure of common domain-specific verbs and
their associated verbal nominalizations in the PennBioIE corpus. Alternation is the term in theoretical linguistics for variations
in the surface syntactic form of verbs, e.g. the different forms of stimulate in FSH stimulates follicular development and
follicular development is stimulated by FSH. The data is used to assess the implications of alternations for biomedical text
mining systems and to test the fit of the sublanguage model to biomedical texts.

Methodology/Principal Findings: We examined 1,872 tokens of the ten most common domain-specific verbs or their zero-
related nouns in the PennBioIE corpus and labelled them for the presence or absence of three alternations. We then
annotated the arguments of 746 tokens of the nominalizations related to these verbs and counted alternations related to
the presence or absence of arguments and to the syntactic position of non-absent arguments. We found that alternations
are quite common both for verbs and for nominalizations. We also found a previously undescribed alternation involving an
adjectival present participle.

Conclusions/Significance: We found that even in this semantically restricted domain, alternations are quite common, and
alternations involving nominalizations are exceptionally diverse. Nonetheless, the sublanguage model applies to biomedical
language. We also report on a previously undescribed alternation involving an adjectival present participle.
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Introduction

This work is a step toward understanding the syntactic and

semantic aspects of verb meaning in the biomedical domain. The

goal is to lay the groundwork for a set of representations of domain-

specific verbs that is broad enough in its coverage to scale up to

realistic problems in information extraction, and deep enough in its

representation to support accurate extraction of information in the

face of syntactic variability and to allow for the resolution of

coreferential and related (e.g. elliptical) references in text. In an initial

step, we sought to answer a very basic question: do alternations occur

in biomedical texts? (Alternation is the term in theoretical linguistics for

variations in the surface syntactic form of verbs.) We approached the

problem by determining what the most frequent verbs are in

biomedical text, then analyzing those verbs and their nominaliza-

tions in terms of the alternations that they participate in. Of the

many classes of alternations that verbs participate in, we looked

specifically at the passive alternation (Levin classes 5.1 Verbal Passive,

5.3 Adjectival Passive, and 5.4 Adjectival Perfect Participle) and at

alternations related to transitivity (Levin class 1 Transitivity alternations

and its descendants). We also report a previously undescribed

alternation, Adjectival Present Participle. For the nouns, we examined

alternations in the presence or absence of arguments and in the

syntactic position of non-absent arguments.

One characteristic of alternations is that they preserve the

underlying semantics of an assertion even in the face of syntactic

variability. For example, one commonly known alternation is the

passive alternation. One claim of an alternations-based approach

to explaining syntactic/semantic relations is that in

N FSH stimulates follicular development (PMID 12021046) and

N follicular development is stimulated by FSH (PMID 6615964)

… the underlying semantics of the sentences, i.e. that FSH is the

stimulator and follicular development is the thing that is stimulated, is

the same, even though in the first sentence FSH is the grammatical

subject and follicular development is the grammatical object, while in

the second sentence follicular development becomes the grammatical

subject and there is no grammatical object, per se. Alternations

have been a topic of interest in the theoretical linguistics literature

because they are thought to shed light on what is known in

linguistics as the mapping problem: how it is that underlying

semantics are realized in the syntax of sentences. One assumption

of the model is that verbs with shared semantics will participate in

the same alternations.

Alternations are of relevance to language processing and text

mining because of the contribution that they might make to the

development of broad-coverage rule- and pattern-based systems

PLoS ONE | www.plosone.org 1 September 2008 | Volume 3 | Issue 9 | e3158



for relation extraction: if verbs with similar semantics do

participate in the same alternations, then it might be possible to

take advantage of this by inheriting or otherwise reusing abstract

rules in broad classes of verbs. For example, if it turns out to be the

case that transitive verbs share the trait of being able to occur in

the passive alternation, then system developers might be able to

write just two rules for extracting relations from active and passive

sentences and share those between all transitive verbs, rather than

writing a separate active rule and a separate passive rule for each

transitive verb in the lexicon.

Levin (1993) [1] identified fifty major classes of alternations.

That work also identified 49 major semantic classes of verbs,

grouped according to the alternations in which they do and do not

participate. (There are also subclasses of the fifty major classes of

alternations and of the 49 major classes of verbs.) To illustrate the

relationship between the semantics of related verbs and their

shared syntactic behaviors, consider what Levin termed calibratable

change-of-state verbs. These verbs–such as ‘‘increase’’–share the

semantic characteristics of a state-change in the logical object of

the verb, and the syntactic behavior that when they are

intransitive, the grammatical subject of the verb is the undergoer

of the change (i.e., is the logical object). Thus, in

N the addition of hCG alone significantly increased lyase activity in these cells

(PMID 2788776)

…the verb increase is transitive and lyase activity is both the

grammatical and the logical object of the verb, while in

N thecal lysase activity increased as the follicle matured (same PMID)

…the verb is intransitive, and thecal lysase activity is the

grammatical subject, but the logical object, of the verb. In

contrast, the verb breathe can also be both transitive (breathe pure air,

PMID 9636216) and intransitive, but unlike the case of increase,

when breathe is intransitive, it is the logical subject that is the

grammatical subject. So, we see Rats…breathe spontaneously (PMID

15693962), but it would be surprising to see an assertion about air

breathing spontaneously. Thus, increase is clustered with other

calibratable change-of-state verbs, such as climb, decline, decrease,

diminish, drop, fall, fluctuate, gain, rise, and vary, but breathe is not,

clustering instead with bleed, cough, cry, dribble, drool, sweat, and vomit

(known as the Breathe subclass of the major class Verbs of bodily

processes), Levin 1993 [1]:217–218). For an extended explanation of

the phenomenon and theoretical implications of alternations, the

reader is referred to the introduction to Levin (1993) [1]. For the

natural language processing/text mining implications of the

phenomenon, see below, as well as the Discussion section of this

paper. To briefly anticipate what is made clear in the literature

review in that section, we point out now that very few biomedical

text mining systems cope with alternations in any robust way, and

none come close to capturing the range of alternations that is

attested in biomedical texts, particularly in the case of alternations

that involve nominalizations.

The null hypothesis is that there are no differences in the

incidence of alternations between general English and biomedical

text. With respect to general English, Palmer et al. found that

‘‘Alternations in the realization of semantic arguments…turn out

to be common in practice as well as in theory’’ (2005 [2]:101).

However, scientific writing in semantically restricted domains is a

classic example of a sublanguage (e.g. Sager 1972 [3], Sager 1986

[45], Harris et al. 1989 [5]), and Friedman et al. (2002) [6] have

identified molecular biology abstracts specifically as fitting the

sublanguage model. Sublanguages are frequently said to be

characterized by a limited range of syntactic and semantic

phenomena (see e.g. Sager 1972 [3] and Lehrberger 1982 [7]),

which suggests that we might, in fact, not observe such alternations

in this data.

Understanding the characteristics of a sublanguage has practical

importance in the construction of natural language processing

systems. However, it is not without theoretical interest, as well.

Levin points out that

‘‘…the hypothesis that the syntactic behavior of a word is

fully semantically determined is not uncontroversial…Ne-

vertheless…there are studies that show that this hypothesis

receives substantial support, particularly in restricted

domains…

…its success within limited, well-defined domains…depends

in part on the investigation of intricate and extensive

patterns of syntactic behavior.’’

Levin (1993 [1]:13,16)

(We sketch the remainder of the paper here. The first section

introduces the general topic of alternations and touches on the

relevance of alternations to the question of whether or not the

sublanguage model applies to biomedical texts. Its subsections

introduce the topic of biomedical text mining, disuss at length the

implications of the work reported here for the design of biomedical

text mining systems, and review prior work on the related areas of

biomedical predicate argument structures and semantics, as well as

the prevalence of nominalization in boimedical texts. Other

subsections present in-depth discussion of alternations and of

nominalization, review various perspectives on nominalization

itself, and present a discussion of the previously largely neglected

topic of alternations involving nominalizations. The introduction

concludes with the delineation of the contrasts between the work

reported here and NomBank, the flagship project on annotation of

the argument structure of nominalizations in General English. The

Materials and Methods section describes the methodology for a pilot

project that we performed on alternations in biomedical verbs, and

then describes a much more extensive experiment involving

nominalizations. The Results section presents a detailed analysis of

the results of both experiments. One subsection is an extensive

discussion of the issues involved in quantifying data on

alternatioms that involve nominalizations, and reading it will

make the data on the results for alternations involving nominaliza-

tion easier to follow. A lengthy set of tables gives granular data on

the alternations observed for each of the nominalized predicates

under investigation. The Discussion section lists the implications of

our findings for annotation efforts, reviews related work not

already covered in the Introduction, and discusses the findings in

terms of alternations and semantic representations, as well as

explaining the relationship between our data and the predictions

of the sublanguage model.)

BioNLP: Biomedical natural language processing
BioNLP, or the application of natural processing to biomedical

texts, primarily for purposes of text mining, has been a burgeoning

area of research both within the computational linguistics

community and within bioinformatics and computational biology.

Data in Verspoor et al. (2006) [8] shows astonishing growth in the

number of publications in the field just in the genomics domain

alone; a significant body of research exists in the clinical domain,

as well. The field is quite diverse, with work in recent years ranging

from lower-level linguistic processing issues such as part-of-speech

tagging and syntactic parsing to issues of deep semantic

representation and analysis. Two motivations are commonly cited

Biomedical Language
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for work in this field: the need for practical applications for

working bioscientists, and a desire to explore the potential of

literature-based discovery and hypothesis generation. Reviews of

the field appear fairly regularly, primarily in the bioscience

literature; recent ones include Zweigenbaum et al. (2007) [9] and

Cohen and Hunter (2008) [10].

Implications for the design of biomedical text mining
systems

The data described in this paper have implications for the

design of biomedical information extraction systems. Despite a

broad consensus that molecular biology texts fit the sublanguage

model, we will show that even in the restricted domain of the

abstracts that we examined in this study, syntactic alternations—

both in verbs and in nouns—with consequences for information

extraction (IE) systems are quite common.

At a minimum, such systems will need to be able to handle verbal

passivization and the appearance of verbal predicators in adjectival

positions. The adjectival alternations may be especially knotty—only

two biomedical information extraction systems that we are aware of

handle them, and then only for a single verb each: bind in the case of

the ARBITER system (Rindflesch et al. 2000) [11], and phosphorylate

in the case of the RLIMS-P system (Rule-based Literature Mining

System for Protein Phosphorylation, Hu et al. 2005 [12],

Narayanaswamy et al. 2005 [13], Yuan et al. 2006 [14]).

It is also clear that biomedical information extraction systems

have a considerable way to go in their handling of the extant

alternations involving the argument structure of nominalizations.

A small number of extant biomedical information extraction

systems tackle extremely limited sets of nominalizations: surveying

the literature on biomedical information extraction, it is apparent

that only a small number of implemented systems tackle

nominalizations, and those that do so generally attempt to handle

only a very small number of them, and only a minuscule fraction

of the patterns in which their arguments can appear. For example,

Ono et al. (2001) [15] attempt to handle the nominalizations

interaction, association, and binding, and the relational noun complex

(e.g. Poll and Pob3 may form a complex). Pustejovsky et al. (2002) [16]

handle the single verbal nominalization inhibition and the single

argument nominalization inhibitor. The RLIMS-P system (op cit)

handles the single verbal nominalization phosphorylation. (This

system is also the only one that explicitly targets NP-external

arguments of the nominalization.) Goertzel et al. (2006) [17]

describes a system that contains a ‘‘nominalization recognition’’

component; it is not clear what processing, if any, the recognized

nominalizations undergo, and the system is currently in an

unevaluated, prototype stage of development. Schuman and

Bergler (2006) [18] do not include an interpretive component,

but they demonstrate the ability to produce accurate syntactic

attachment for post-nominal prepositional phrases using a corpus-

based approach, achieving 82% accuracy for this task.

The most ambitious system that we are aware of with respect to

nominalizations is Genescene (Leroy and Chen 2002 [19], Leroy et

al. 2003 [20], Leroy and Chen 2005 [21]). This system tackles all

verbs and nominalizations in the input; the only distinction between

nouns and verbs in their system is that assertions from verbs without

logical subjects (e.g. expressed in p53 was expressed in five cases, PMID

14631373) are extracted by the system, while assertions from

nominalizations without logical subjects (e.g. expression in expression of

survivin and p53 in 61 cases of NSCLC, PMID 16224523) are filtered out

by the system. Genescene is built around manually-tuned regular

expressions that are anchored by three prepositions: of, in, and by;

any verbs or nominalizations that relate two noun phrases in the

vicinity of these prepositions are extracted by the system. Assertions

in which the related noun phrases correspond to UMLS categories

are then returned to the user.

Genescene’s focus on only three prepositions is sensible and

well-motivated from a system construction perspective, and

possibly from a precision-centric perspective. However, it limits

coverage and therefore the ability of the system to scale. Our

preliminary investigations of nominalizations have revealed that

some common nominalizations can have arguments that are

marked by a large number of prepositions. For example, of the five

arguments of the verb increase, three were observed with arguments

consisting of prepositional phrases headed by more than three

prepositions (see Table 1); of the two arguments that were

observed with fewer than three prepositions, neither of the

prepositions associated with those arguments were Genescene’s of,

in, or by. (Not surprisingly, the group’s publications generally

eschew evaluation of coverage.)

The work that we report here is significant in another way for

Genescene: the NP-external arguments of nominalizations that

our work shows to be common in biomedical texts are unlikely to

be recovered very frequently by the Genescene finite-state

approach. The computational power of Genescene is limited to

that of finite state automata, the lowest degree of computational

power (Partee et al. 1994) [22]. Although the Genescene system

does apply a more powerful component for handling coordination,

all other aspects of processing, including that of negation, is

handled by finite-state automata.

Our work reveals other limitations on the potential coverage of

a system like Genescene. Prenominal arguments—e.g. phenobarbital

induction (induction by phenobarbital), or trkA expression (expression

of trkA)—which our work shows to be characteristic of a number of

biomedical nominalizations, are not related to the nominalization

by prepositions and hence are never recoverable by Genescene.

The other architectural choice—and the one that we believe is

the most crucial contrast between the Genescene system as a

whole and any system informed by predicate-argument represen-

tations of semantics, or what Fellbaum (1993) [23] has referred to

as structural representations, independent of whether what is being

handled is a verbal or a nominalization-expressed assertion—has

to do with the nature of the extracted assertion. Genescene’s

power in comparison to most of the systems that we have discussed

here comes from the fact that rather than restricting itself to a

small set of predicates, it applies a very general mechanism to

extract all relations from the text (or at least all that are capturable

within the limits of finite state power). It then filters out non-

biomedically-relevant assertions, but then returns what is in

essence a set of strings. There is no attempt to capture the

similarity between predicates like increase and enhance, and no

attempt to capture the difference between predicate-specific

meanings of prepositions like with in interaction of melittin with

Table 1. A sample predicate for which the three prepositions
of, in, and by are insufficient for capturing all arguments.

Argument Associated prepositions

Arg0 Causer of increase after, by, during, in, of

Arg1 Thing increasing in, for, of, with

Arg2 Amount increased by by, in, of, up, with

Arg3 Start point From

Arg4 End point to, with

Our representation of this predicate is the same as PropBank’s.
doi:10.1371/journal.pone.0003158.t001
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troponin C (PMID 3579303) versus transfection of fibroblasts with

activated c-myc I (PMID 2453829). In the former case, with links two

things that act reciprocally, while in the latter, with links the direct

object and indirect object. These very different relation/preposi-

tion mappings are not properties of the prepositions, but of the

predicates; Genescene’s potentially high coverage of predicates

comes at the heavy cost of a complete lack of insight into the

meanings of those predicates.

The consequent limitations on the long-term inability of its

extracted assertions to support inferences of any but the most

trivial sort are profound. In contrast, we propose a system driven

not by prepositions per se, but by a lexicon of verb semantics that

relates strings in text to a knowledge structure by the interaction

between verb semantics, alternations, and the prepositions and

other linguistic artifacts of those alternations. Note that our

purpose here is not to criticize the Genescene system, which in a

number of ways is quite innovative, but rather to show how our

corpus-driven approach to the theoretical issues of alternations

and of fit to the sublanguage model has practical and immediate

consequences for the design of biomedical text mining systems.

The lack of attention to nominalizations in most biologically

oriented text mining systems is an important finding for two

reasons. One is that it suggests an obvious route for scaling up the

productivity of language processing systems: nominalizations

sometimes outnumber verbal forms significantly, and handling

them can yield a substantial increase in recall. The other is that as

the attention of the language processing community has slowly

turned towards nominalizations, it is becoming clear that they are

significantly more difficult to process than are verbs. Inter-

annotator agreement in NomBank has generally been lower than

in PropBank, and the tiny body of work on automatic semantic

role labeling for nominalizations (Pradhan et al. 2004 [24], Jiang

and Ng 2006 [25]) has reported generally lower performance than

comparable systems for verbs. The data reported here is consistent

with the hypothesis that multiple factors contribute to the greater

difficulty of nominalizations as opposed to verbs. Two related ones

are the presence of NP-external arguments (Meyers et al. 2004c

[26]) and greater opportunities for argument-dropping without

attendant syntactic cues, e.g. Arg0 omission without the passive

construction. It is relatively difficult even for humans to distinguish

these from each other, as evidenced by the confusion matrices in

our nominalization annotation work.

Biomedical predicate semantics and argument structures
Although syntactic alternations in biomedical text have not

previously been studied, there are some precedents in the

biomedical domain for work on the larger question of biomedical

verbal argument structures. Friedman, Kra, and Rzhetsky (2002)

[6] describe the broad features of the syntactic and semantic

structures in molecular biology literature. Wattarujeekrit et al.

(2004) [27] apply a lexical sampling method (Palmer et al., op cit,

[2] p. 85) to construct predicate-argument representations for a

small number of biologically relevant verbs. They give a

FrameNet-like set of illustrative examples of naturally occurring

sentences that illustrate the predicate-argument structures that

they propose, but do not investigate alternations in argument

structure, per se; Kogan et al. (2005) [28] extend that work to

medical literature. Shah et al. (2005) [29] use Wattarujeekrit’s

representations as the inspiration for an information extraction

system that was used to build a database of genes with alternative

transcripts. Chou et al. (2006) [30] labelled PAS on a small set of

verbs related to human blood cell transcription factors, and Tsai et

al. (2006) [31] used that data to train a domain-specific automatic

semantic role labelling system.

This prior work has primarily been concerned with either

evaluating the possibility of building lexical resources for

biomedical verbs (Wattarujeekrit et al. [27], Kogan et al. [28],

and Chou et al. [30]) or with using these lexical resources as part of

information extraction or semantic role labelling systems (Shah et

al. [29], Chou et al. [30], and Tsai et al. [31]). There have been no

attempts to use this domain to investigate basic issues of syntactic/

semantic relations. Furthermore, one limitation of all of this work

(in the biomedical domain—Meyers et al. 2004a [32], b [33], c

[26] address this issue in the general English area) has been the

restriction of its limited annotation efforts to verbs. Friedman et al.

(op cit) [6] point out that in general, molecular biology

publications tend to contain an enormous amount of information

that is embedded in complex nominalizations. This was also noted

by Tateisi et al. (2004) [34] in their work on annotation of

predicate-argument structure in the GENIA corpus; they found

that ‘‘…analysis of verb phrases is not sufficient because reactions

and relations are often expressed in nominal phrases.’’ In the work

reported here, we annotate and note variations in the syntactic

realizations of the arguments of the nominalizations of common

biomedical verbs.

Alternations involving verbs
We examined the incidence of two types of Levin alternations:

the passive alternation, and alternations related to transitivity.

The verbal passive alternation is almost caricatural of academic

scientific prose. Biber et al. report that 25% of all finite verbs in

academic prose are passives, versus 15% of all finite verbs in

newswire text, and 2% of all finite verbs in conversation (1999

[35]:476). So, we expected to find a high incidence of passive

constructions.

Alternations related to transitivity are the dominant character-

istics of Change Of State verbs. Biologists conceptualize many

molecular events as ‘‘state-changing,’’ so there seemed to be a

potential for transitivity alternations in a biomedical corpus.

However, we suspected that in fact it would be the case that these

verbs appear consistently in just a single form, probably transitive.

Additionally, we present data on the occurrence of adjectival

alternations. These include Levin class 5.3 Adjectival Passive, and

also an adjectival present participle alternation, first reported here,

that can occur both transitively and intransitively.

Alternations involving nominalizations
The Levin-style literature on alternations has paid little

attention to nouns. Levin (1993) [1] included limited discussion

of zero-related nominals (this term contrasts with zero-derived in that

it makes no assumptions about the direction of the derivation), but

eschewed treatment of derivationally related nouns.

We develop the paradigm further by extending our analysis to

derivationally related nouns. Our descriptive perspective on

nominalizations is drawn primarily from Biber et al. (1999) [35],

Quirk et al. (1985) [36], and Bauer and Huddleston (2002) [37].

The theoretical perspective comes from various publications by

Meyers and his collaborators (Meyers, undated [38]; Meyers et al.

2004(a,b,c) [32,33,26]); in particular, the model of nouns as

argument-taking predicators is consistent with Meyers’s work (and

with that of the PUNDIT project (Dahl et al. 1987) [39], of

Johnston et al. 1995 [40], of Johnston and Busa 1996 [41], and of

the FrameNet project, as well).

Argument nominalization versus verbal nominaliza-

tion. For intelligibility, we give a short overview of typologies

and terminology related to nominalizations.

Typologies of nominalization typically divide nominalizations

into three broad categories. Morphologically unmarked nomina-
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lizations such as increase are known variously as zero-related (Levin)

[1], zero-derived, or converted (Quirk et al. 1985 [36], Biber et al. 1999

[35], Bauer and Huddleston 2002 [37]).

Derivationally marked nominalizations are typically divided

into two major categories.

Bauer and Huddleston contrast the broad categories of person/

instrument nominalizations and action/process/state nominalizations. Their

analysis focusses more on the behavior of the derivational

morphemes involved than on any characteristics of the bases to

which they are attached (beyond relatively superficial ones—

specifically, part of speech). They lump person and instrument

nominalizations together based on the observation that ‘‘…some

processes…are used for both. Suffixation by -er is a clear example:

compare bottle-washer (person) and dish-washer (instrument)’’

(p. 1697).

Meyers (2004a) [32] contrasts argument nominalizations and verbal

nominalizations. His analysis focusses more on the nominalized

entities than on the morphemes that are used to derive them. His

argument nominalizations are nouns that denote a participant in some

predicate—for example, activator. His verbal nominalizations are

nouns that denote the predicate itself—for example, activation.

Meyers’s argument nominalization category does not posit any

distinction between persons and instruments, which seems

appropriate for this domain (see footnote 3, below).

Quirk et al. primarily organize nominalizations around the

output of derivation, e.g. processes that produce concrete count

nouns versus aggregate nouns versus abstract nouns. They

describe two different -ations (p. 1551), and break down deverbal

conversion into seven distinct categories.

Biber et al. (op cit) [35] are somewhat unusual in that they do

not make a distinction beyond zero-derived or conversion

nominalizations on the one hand, and suffixally derived nomina-

lizations on the other (pp. 318–325).

Gerunds or participles are generally left out of these discussions,

and we did not annotate them as nominalizations.

Of these various terms, we use zero-related, per Levin, and verbal

and argument nominalization, per Meyers et al. We did not work with

argument nominalizations at all in this project, so when we use the

term nominalization without further qualification, we are referring to

zero-related and verbal nominalizations.

Nouns do participate in alternations
Although the classic Levin approach to alternations mostly

eschews discussion of alternations involving nouns, there is ample

evidence that nouns do participate in alternations. We show here

that both transitivity and passivization alternations occur with

English nominalizations.

Nominalization and passivization. Although not all uses

of the term ‘‘passivization’’ are truly referring to passivity when

applied to nouns, there does seem to be some consensus that

passivization is a concept that is applicable to nouns. (Jespersen

used the term passive noun to refer to ‘‘nouns designating the

receiver of the action of a verb, words like appointee, draftee,

grantee.’’ This is not the sense of passivity that we are concerned

with here.) Work in theoretical linguistics has a long history of

discussion of passivization and transitivity issues in relation to

nominalization, reaching back at least to the transformational

perspective of Lees (1963) [42] and extending through work from

a cross-linguistic and typological perspective (Koptjevskaja-

Tamm 1993) [43]. Recent work in theoretical linguistics has

had a rich notion of passivity that clearly applies to

nominalizations, differentiating between at least two kinds, viz.

the passive of a nominalization, e.g. …the receptor’s phosphorylation by the

kinase (PMID 6090944) and ‘‘the nominalization (–ity) of a

passive (-able)’’ (Roeper and van Hout 2006) [44], e.g.

…phosphorylability by cAMP-dependent protein kinase… (PMID

9660676). (The distinctions between these types of passive

nominalizations are based on a variety of forms of syntactic

evidence, in addition to the obvious morphological differences.

We have replaced Roeper and van Hout’s examples with

comparable ones from the biomedical literature.) Roeper and

van Hout’s passive nominalizations are explicitly contrasted with

active nominalizations, e.g. RK’s phosphorylation of R (PMID

10448166).

Nominalization and transitivity. It is also clear that

notions of transitivity can be applied to nominalizations. For

example, Koptjevskaya-Tamm refers to transitive and intransitive

nominalizations and presents a small typology of their argument

types (1993 [43]:11–12). Similarly, Quirk et al. discuss -tion-derived

nominalizations with respect to transitivity.

The field of alternations for nominalizations is much

larger than this. However, there is an enormous amount to be

observed about alternations in the argument structure of

nominalizations that transcends the small number of labels

(active vs. passive, transitive vs. intransitive, etc.) that we have

applied to verbs in this work. In particular, there are differences in

the presence or absence of arguments, and for arguments that are

not absent, there are differences in the position of arguments,

which may be either within or external to the noun phrase (NP);

for arguments that are NP-internal, there are differences in

whether the argument appears to the left or to the right of the

nominalization. For example, the Arg1 of a ‘‘transitive’’

nominalization can precede it as a bare noun, e.g. TRKA

expression (5 tokens in the PennBioIE corpus—TRKA is the name

of a gene) or can follow it within a prepositional phrase, e.g.

expression of TRKA (one token in the PennBioIE corpus). If we

consider three things: (a) that any argument of a nominalization

may, in theory, be absent, be present but external to the NP, or be

present within the noun phrase in either of two structurally distinct

positions; and (b) that in general, perhaps all nominalization tends

to be similar to verbal passives in permitting the omission of

agents, and similar to verbal intransitives in permitting the

omission of patients, and (c) that there are more than just the

two arguments Arg0 and Arg1 to take into account in considering

nominalizations, then it perhaps makes less sense to focus on

squeezing the potentially enormous number of distinct patterns of

argument realization for a given nominalization into the same

categories as we apply to verbs than it does to try to characterize

the range of possible alternations that is attested.

For these reasons, we refer to any combination of the set of

values for each ArgN of a nominalization, drawn from the set of

four values listed and described in Section Representation of arguments,

as ‘‘an alternation,’’ without attempting to name them further. We

will consider a set of data like the following to attest five distinct

alternations:

N activation [of molecular oxygenArg1] [by alkaline heminArg0]

alternation: [Arg0 post-nominal] [Arg1 post-nominal]

N [K(ATP)Arg1] activation [by cromakalimArg0]

N alternation: [Arg0 post-nominal] [Arg1 pre-nominal]

N [mutationalArg0] activation [of the ras genesArg1]

N alternation: [Arg0 pre-nominal] [Arg1 post-nominal]

N [H-ras, K-ras, and N-ras oncogeneArg1] [mutationalArg0] activation

N alternation: [Arg0 pre-nominal] [Arg1 pre-nominal]

N activation [of an N-ras oncogeneArg1]

alternation: [Arg0 absent] [Arg1 post-nominal]
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…and to a set of data like the following as attesting three tokens

of the same alternation:

N activation [of ras proto-oncogenesArg1]

N activation [of MMP-2Arg1]

N activation [of CYP1A1 gene transcriptionArg1]

…since they all have the pattern [Arg0 absent] [Arg1 post-

nominal].

Contrasts between this work and NomBank annotations
Our annotation of nominalizations attempts to be consistent

with NomBank’s guidelines to the greatest extent possible. Our

approach and guidelines differ from NomBank’s in three ways:

N Markables: The NomBank project does not mark nominaliza-

tions that have no argument instances (see p. 7 of Meyers

(undated) [38], and pp. 1 and 2 of Meyers et al. (2004a) [32] to

validate this and for their rationale). We do annotate these

nouns, since they are cases of intransitives.

N Spans: NomBank arguments are mostly bounded by some

syntactic element in the Penn Treebank annotation. We

worked without syntactic annotation, which introduced issues

of span selection (see SectionSpan selection below).

N NP-external arguments: In principle, NomBank constrains its

use of NP-external arguments to specific syntactic constructs.

Like NomBank, we ruled out arguments whose identification

would rely entirely on inference, but unlike NomBank, we did

not attempt to place any syntactic constraints on what could

count as an NP-external argument (beyond the obvious

requirement that it be external to the NP).

Materials and Methods

Materials
We used release 0.9 of the PennBioIE corpus (Kulick et al.

2004) [45] and release 3.0p of the GENIA corpus (Kim et al. 2003)

[46]. (Due to space considerations, in all table captions we refer to

the PennBioIE corpus as the BioIE corpus.) Both of these corpora

are composed of the titles and abstracts of scientific journal

articles. The PennBioIE corpus is divided into two parts reflecting

two distinct semantic domains: CYP450 (cytochrome P450 is the

name of a family of proteins involved in, among other things,

determining individual responses to pharmaceutical agents), and

Oncology. Although the PennBioIE corpus is intended to have

fully curated part-of-speech tags and syntactic parses, various

issues with the current (early and pre-1.0-release) version made it

impractical to make use of much of the annotations.

The limited data that we present from the GENIA corpus is

primarily for comparison of word distributions in the two corpora—

all data on alternations in the paper is from the PennBioIE corpus.

All examples in this paper are drawn from naturally occurring

data. Almost all examples are drawn from the PennBioIE corpus.

In the case of such examples, we do not give further citations. For

the occasional examples that we draw from other published

articles, we identify the source by giving its PubMed identifier, or

PMID. PubMed is a freely available database of scientific articles

made accessible by the National Library of Medicine.

Finding the frequent domain-specific predicates
The first step in this project was to determine the most frequent

domain-specific predicates represented in the data. We first

extracted all verb tokens from both corpora by using egrep to

search for tokens whose tags matched the pattern VB.? in the

PennBioIE .mrg files and the GENIA GENIAcorpus3.02.pos.
txt file. (This is a potential source of a small amount of noise in the

PennBioIE data, since not all POS tags are curated in that data.

Fifty tokens from the PennBioIE data, including numerals,

punctuation marks, and single letters, were clearly mis-tagged as

verbs.) We then collapsed inflected forms of verbs by applying the

Porter stemming algorithm (Porter 1980) [47], using a publicly

available implementation from the Tartarus web site. We filtered

the lists of verbs from the combined halves of the PennBioIE

corpus, the separate halves of the PennBioIE corpus, and the

GENIA corpus by removing the most common non-domain-

specific verbs (e.g. be, use, and have) found in the combined

PennBioIE corpus. (Note that the boundary between ‘‘domain

specific’’ and ‘‘general English’’ verbs is not always clear-cut. For

example, scientific writing commonly personifies non-animated

agents (Biber et al.,p. 372), and the molecular biology genre is not

known to be an exception to this generalization, so e.g. occur, which

might not seem like a biologically relevant verb, often encodes

relations between biological processes, entities, and events. For

example, in The metabolism of saturated nitriles, including acetonitrile, has

been assumed to occur by a cytochrome P-450-dependent oxidation at the alpha

carbon… the verb occur is what asserts the relationship between

metabolism of nitriles and CYP450-dependent oxidation.) The

result was a list of the domain-specific verbs in each corpus, ordered

by frequency. In the analysis that follows, we concentrate on the ten

most common domain-specific verbs.

Having determined the ten most frequent verbs, we then

retrieved all sentences containing any form of these verbs from the

CYP450 portion of the PennBioIE corpus. (This resulted in a data

set with somewhat different verb distributions from the corpus as a

whole, but a much more clearly defined semantic domain.) For

each verb, we extracted all tokens of each of four word forms

independently: the bare stem/non-third-person-present-tense

form (e.g. inhibit, induce, and increase), the third person singular

present tense form (e.g. inhibits, induces, and increases), the present

participle (e.g. inhibiting, inducing, and increasing), and the past tense/

past participial form (e.g. inhibited, induced, and increased).

There were a number of potential sources of noise in this

process:

N We considered adjectival passives and perfect participles to be

verbs, since they constitute alternations (Levin classes 5.3 and

5.4). However, they generally are tagged in PennBioIE not as

verbs, but as adjectives. This causes a discrepancy between the

verb counts that we came up with when determining the most

frequent verbs and the count of tokens that we extracted when

retrieving sentences containing verb forms. The latter is

higher, since it contains tokens that were tagged as JJ (the Penn

Treebank tag for an adjective).

N Our sentence segmentation was naive, and we occasionally

retrieved fragments smaller than a sentence.

N After completing the verb analysis, we belatedly realized that

our retrieval script was case-sensitive, so we missed some verb

tokens. The number of such tokens was small—for example,

the number of tokens of associated with and without case

sensitivity is 108 and 109, of treated is 327 in both cases, of

activated is 82 and 83, of containing is 144 in both cases, and of

expressed is 175 and 180.

Annotation of verbs
We made two passes through most of the data, eventually

settling on a single set of nine tags that could be applied to all verbs

and all of their forms. Table 2 gives the tag set, with examples.
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Eight of the tags capture the three axes of active versus passive,

transitive versus intransitive, and verbal versus adjectival. A ninth

tag was used only for nouns. We used X’s to indicate when we

could not determine a value. In practice, we almost always used it

for passives for which we could not determine transitivity versus

intransitivity. (The notion of a passive intransitive might seem

counterintuitive, but see Levin (1993:87), and note that two of her

examples (collapsed lung and slipped disc) are medical in nature.) Two

of the tags were never used: PI, and pi. All of the terms correspond

to some Levin alternation, with the exception of the two tags that

we used for prenominal adjectival present participles, at and ai. We

suggest that although they do not correspond to any alternation in

Levin (1989), they are parallel constructions to the adjectival

passives that manifest as past participles. Correspondence with

Beth Levin did not yield a counterargument.

Inter-annotator agreement for verb labeling
105 tokens were annotated by a second annotator. We calculated

inter-annotator agreement (IAA, a quantitative assessment of the

extent to which multiple annotators’ judgements agree with each

other, which is generally thought to give a direct measure of the

reliability of annotations and thereby an indirect measure of the

validity of annotations (Artstein and Poesio 2007) [48]) as the

percentage of tags on which we agreed divided by the total number

of tags. The second annotator was first provided with written

directions. We then reviewed a small set of examples, and the second

annotator labelled a few examples until they felt comfortable.

The 105 tokens represent a stratified sample distributed equally

across the seven attested tag types—fifteen of each, for a total of 105.

Within the tag types, we biased our selection of target words towards

the most ambiguous ones. For example, activated appears in active

transitive verbal (AT), passive transitive verbal (PT), and passive

transitive adjectival (pt) forms, so we included more samples of it in

the test set than of occurred, which only appeared in active intransitive

verbal form. They were presented to the second annotator as we

annotated them—grouped by word form (e.g. all tokens of increase

together, all tokens of increases together, etc.); within a word group,

ordered by UNIX sort of the source filename.

Methods: nominalizations
Representations of nominalizations. The annotation work

for the verb portion of this project was approachable based on

obvious and implicit assumptions about the argument structure of

the verb types and their tokens in the corpus. In contrast, the

annotation work for the nominalization portion of this project

required explicit definitions of predicate-argument structure as a first

step in the analysis (see Meyers, who used the PropBank

representations whenever possible). As work by Wattarujeekrit et

al. [27], by Kogan et al.[28], and by our group (Cohen and Hunter,

2006) [49] has pointed out, the overlap between biomedical-domain-

specific verbs and verb senses and the publicly available resources is

not high. (For a dissenting opinion, see Tsai et al. (2006) [31], but

their view is not widely held, and the data in their own paper actually

argues in favor of the majority opinion on this.) To assemble our

PAS, we consulted four sources, using their representations where

they were applicable, and adding to or modifying them when they

were not. The full set of ten PAS that we settled on is available as a

Protégé project. Three of the sources are publicly available; the

fourth, reported in Tsai et al. (2006) [31], is not, but the authors were

kind enough to share it with us. The four resources that we consulted

were:

N PropBank (Palmer et al. 2005) [2]: this is a set of about 6500

PAS that has been shown to suffice for representing WSJ data.

N BioProp (Tsai et al. 2006) [31]: this is a set of PAS for 30

biomedical-domain-specific verbs. It is built on the assumption

that PropBank PAS should be used whenever they exist, and

should be augmented only when a biomedical verb is

completely absent from PropBank.

N PASBio (Wattarujeekrit et al. 2004) [27]: this is a set of 31

predicates (distributed across 29 verbs) in the biomedical

domain. It maps to PropBank PAS and WordNet senses to the

greatest extent possible, but adjusts PropBank representations

to reflect biomedical senses; they found this to be necessary

quite often, with only six of the 29 verbs that they examined

having the same sense and same argument structure as the

corresponding PropBank verbs.

N FrameNet (Fillmore et al. 2003) [50]: this is not a set of PAS

per se, but its frames are mapped to lexical units, and when the

verbs under analysis in this project were represented there, we

considered the FrameNet core arguments for representational

suitability for the biomedical senses of those verbs.

Our representations for nominalizations consisted of framesets,

or groupings of a wordform; a sense label, where differentiation

was needed; and a set of argument slots. Figure 1 shows the

argument slots for activate—Arg0 is the activator, and Arg1 is the

activatee. Except for the obvious case of negatives, we did not

assume any distinction between core and adjunct arguments (see

Cohen and Hunter (2006) [49] for a review of the controversy over

Table 2. The tag set for verbs.

Tag Example

AT active Transitive verbal Halofantrine and chloroquine inhibit CYP2D6 activity…

AI active intransitive verbal Thus, thecal lyase activity increased as the follicle matured…

At active Transitive adjectival Selenoxidation by flavin-containing monooxygenases…

Ai active intransitive adjectival In the presence of increasing concentrations of BH4…

PT passive Transitive verbal Diazinon is activated by CYP2C19 in human liver.

PI passive intransitive verbal Not attested

Pt passive Transitive adjectival Cortisol-induced aromatase activity in Om adipocytes…

Pi passive intransitive adjectival Not attested

N Noun This increase was partially inhibited by carbon monoxide…

doi:10.1371/journal.pone.0003158.t002
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this distinction in the biomedical domain). Like PropBank, we

reserved the Arg0 slot for agents. Arity of the argument sets ranged

from a low of one (for occur) to a high of five (for increase).

Representation of arguments. We labelled arguments in

text with one of five categories, primarily differentiated from each

other on positional criteria:

Pre-nominal: Within the NP, as a prenominal modifier.

Post-nominal: Within the NP, as a post-nominal

modifier.

No argument present: Completely absent.

NP-external: Argument is external to the NP of the noun

to which it is an argument. See below for a fuller discussion

of NP-external arguments.

Can’t tell: Could not decide whether the argument is

present or not, or if so, which NP it maps to. See below for

a fuller explanation.

Pre-nominal: Pre-nominal arguments occur as leftward mod-

ifiers of the nominalization, within the noun phrase, e.g. phenobarbital

induction and trkA expression. They are most often (in this data, and

probably elsewhere) nouns. However, they very occasionally also

occur as adjectives. We followed the NomBank guidelines (Meyers,

undated) [38] for those cases, annotating adjectives only when they

had argument-filling roles, but not otherwise. Thus:

N Mutational activation of the beta-catenin proto-oncogene: A mutation is

doing the activation, i.e., is the Arg0 of activation, so mutational is

annotated.

N transcriptional activation of AP-1: transcription is neither what is

being activated (i.e., is not the Arg1 of activation) and is not what

is doing the activation (i.e., is not the Arg0 of activation), so it is

not annotated. (Transcriptional activation is a kind of

activation.)

N Surgical treatment of anterior callosal tumors: Surgery is the

‘‘instrument,’’ i.e. is the Arg2 of treatment, so surgical is annotated.

N metabolic activation of DMBA: Metabolism is neither what is being

activated (i.e., is not the Arg1 of activation) nor is what is doing

the activation (i.e., is not the Arg0 of activation), so it is not

annotated.

Figure 1. A screen shot showing the representation of a predicate and the annotation of a token of that predicate in text. The top
pane shows the textual data. The slots in the bottom right pane indicate the arguments of the predicate activate: an Arg0, the activator, and an Arg1,
the activatee. The subpanes corresponding to those slots show the text in which the arguments are instantiated—by either cromakalim or NS-1619
and K+ channel—and indicates the syntactic position—post-predicate and pre-predicate, respectively—of each. The bottom left pane lists all
segments of text that have been annotated. Since the predicate itself is highlighted in the bottom left pane, its argument structure and arguments
are displayed in the bottom right pane.
doi:10.1371/journal.pone.0003158.g001
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This is discussed in greater detail, and with more examples, in

our annotation guidelines.

Post-nominal: Post-nominal arguments occur in prepositional

phrases to the right of the nominalization, within the noun phrase.

For example, increases [of oxygenArg1] [from 10Arg3] [to 70%Arg4] has

three post-nominal arguments—the Arg0 (thing increasing), Arg3

(starting point of the increase), and Arg4 (end point of the

increase). (If our analysis of the noun phrase seems questionable,

the full sentence is Post hoc analysis of the data showed that, with the

greatest concentration of propofol (1000 microM), there was increasing

inhibition of metabolism of midazolam with increases of oxygen from 10 to

70%.)

No argument present: Arguments with no surface realiza-

tions were explicitly marked as absent. (This had the advantage of

allowing for a quality check on our annotations with the

Knowtator tool, since it allowed us to distinguish between an

argument slot that was empty because we had not dealt with it yet

versus an argument slot that actually had no argument in the

data.) For example, for the predicator Induction in

N Induction followed a slower kinetic compared to that observed for c-fos and

NGF1A

…none of the three arguments of induce are present: neither the

Arg0 Inducer, nor the Arg1 Induced, nor the Arg3 Extent of

Induction.

The explicit marking of these absent arguments is a deviation

from the NomBank guidelines, but is similar to ‘‘null instantia-

tions’’ in FrameNet.

NP-external arguments were the most troublesome category

in the annotation scheme. Meyers et al. (2004c) [26] is an extended

treatment of the notion that nominalizations can have arguments

that occur outside of the noun phrase of the nominalization. For

example, in

N [this enzymeArg1] can undergo activation at Ph 5.5 (PMID 1482371),

…this enzyme is an NP-external argument of activation (see Meyers

(undated) [38], p. 64, for the status of undergo as a support verb).

They present reasoned arguments for why specific syntactic

constructs should be analyzed in this way, and a number of similar

issues are discussed in Fillmore et al. (2003) [50]. The main

difference between Meyers et al. and Fillmore et al. with respect to

this is that Meyers et al. extend the licensors of NP-external

arguments beyond the support verbs and transparent nouns of

FrameNet to a wider variety of multi-word expressions. The

argument is reasonable; from an annotation perspective, the

challenge is to draw the line between arguments that are actually

licensed by some syntactic criterion, and ones that are only

licensed by inferential processes or by zero anaphoric reference

(see Dahl et al. 1987 [39] for a system that implements this

distinction). Like NomBank, we ruled out arguments whose

identification would rely entirely on inference, but unlike

NomBank, we did not attempt to place any syntactic constraints

(in terms of SUPPORT constructions, transparent nouns, etc.) on

what could count as an NP-external argument (beyond the obvious

requirement that it be external to the NP). Looking at the

examples in Meyers (undated) [38], it is not clear to me that

NomBank necessarily respects them, either; not surprisingly, this

category is a large contributor to annotator disagreement in the

NomBank project (Meyers et al. 2004b [33]:28).

‘‘Can’t tell’’: The classification scheme included a label for

the specific case where an annotator could not tell whether or not

an argument was present. The ‘‘can’t-tell’’ class was used for two

distinct situations: where the annotator could not tell because the

data was defective (almost always due to a fault in the sentence

segmenter of our search script), and where the annotator could not

tell because the example was genuinely ambiguous or otherwise

unclear. In future work, it would be useful to differentiate between

these cases—the former are artifacts of the text processing strategy,

while the incidence of the latter is a genuine index of the difficulty

of the task.

Span selection. Annotation projects similar to this one have

typically been carried out using text sources that already had

hand-curated syntactic parses, reducing the question of what span

of text to annotate for a given argument to the question of node

selection (for the distinction between node selection or role

identification and role classification, see Palmer et al. 2005 [2]). Due

to technical issues with the pre-1.0 version of the PennBioIE

corpus that we used as our source corpus, we had no recourse to

this, and the annotation process therefore involved making

decisions about the text span to select, in addition to the class

assignments (i.e. role/argument assignment, as well as the

‘‘syntactic’’ classes of pre-nominal, NP-external, absent, etc.).

Even in the case of projects involving pre-parsed data, related

issues arise, such as the PropBank issue of whether numbered

arguments in prepositional phrases should be labelled at the level

of the NP or at the level of the parent PP (Palmer et al. 2005 [2]);

see also Meyers (undated) [38]. In our case, part of the motivation

for gathering data on these alternations related to nominalizations

is to use the data to write patterns for language processing systems,

so information about the identity of prepositions is crucial. In brief,

our span selection guidelines were:

N When arguments are post-nominal, include the preposition

(and the rest of the noun phrase, including all material to the

left of the noun). For example, in activation [of the beta catenin

gene], of the is included in the span.

N When arguments are pre-nominal, include leftward material

up to the determiners, but do not include prepositions. For

example, in for [quinidine] inhibition, quinidine is marked as the

Arg0 of inhibition, but for is not included in the span.

N When arguments are NP-external, include content words only.

For example, in activation undergone by [transducin], the by that

precedes transducin is not included in the span.

Much more explicit guidelines for span selection are included in

the annotation guidelines, along with numerous examples.

Annotation process. We did annotation of nominalization

arguments using the Knowtator text annotation tool (Ogren

2006a,b [51,52]). When a nominalization is identified and labelled

in a text source, Knowtator displays a set of argument slots for that

nominalization (See Figure 1). It provides a very simple interface

for mapping the realizations of those arguments to the

nominalization itself, and for labelling them or for indicating

them as absent (or ‘‘can’t tell’’) when appropriate. For example, in

the figure, the Arg0 is the text string by either cromalakin or NS-1619,

which has been labelled as [post-predicate]. The Arg1 is the text

string K+ channel, which has been labelled as [pre-predicate].

(Knowtator also has functionality for managing annotator IDs,

merging the work of multiple annotators, and automatically

calculating an extensive set of inter-annotator agreement metrics.)

We first annotated all 746 tokens. A second annotator then

annotated a stratified sample of 114 (15%) of these.

Nominalization annotation data selection. We attempted

to annotate 100 tokens of each verbal nominalization—50 from

each section of the corpus. Table 3 shows the number of tokens

that we actually annotated for each nominalization. If one section

had fewer than 50 tokens of a given nominalization, we annotated
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extra tokens from the other section to make up the difference.

Some nominalizations had only a very small number of tokens in

either corpus, so the total number of nominalizations that we

annotated was only 746.

We retrieved sentences containing the specific lexical items from

the PennBioIE corpus using the script described above. In some

cases, the naive sentence segmentation of the script returned

defective sentences. The search returned both singular and plural

nominalizations; we did not attempt to balance them, except in the

case of increase(s), which required special handling since its zero

derivation makes it indistinguishable from a verb without access to

POS tagging. For the case of increase(s), we used the data that we

had labelled in the first part of this study—the tag set that we used

there included N(oun), so we were able to retrieve hundreds of

samples of both the singular and the plural form easily.

Inter-annotator agreement for nominalizations. 15% of

the data (114 nominalization tokens) were annotated by a second

annotator. The 114 tokens represent a stratified sample distributed

across the eight nominalizations that had enough tokens in the

data to allow us to train the second annotator with data that we

would not be using to calculate IAA. (This meant excluding the

two nominalizations mediation and containment, which only had two

and one tokens each in the corpus, and including all of the other

eight.) They were presented to the second annotator as we

annotated them—grouped by nominalization (i.e. all tokens of

inhibition together, all tokens of induction together, etc.), ordered by

the order in which they were retrieved from the corpus.

The preferred metric to report for inter-annotator agreement is the

Kappa statistic. We calculated inter-annotator agreement as F-

measure, treating one annotator as the gold standard. (The

calculation is not affected by which annotator is treated as the gold

standard.) When the probability of chance agreement P(E)

approaches zero, this is equivalent to Kappa (Hripcsak and

Rothschild 2005 [53]); since the data is not parsed (and therefore

there are no constraints imposed on span selection) and the number

of potential slot-filling classes is large and includes ‘‘absent argument’’

and ‘‘can’t tell’’ options, the P(E) arguably is essentially zero.

Although we collected data for all of the nominalizations (and for

intra-annotator agreement, as well as for inter-annotator agreement),

software problems with the Knowtator tool necessitated painful

manual collection of the IAA data and calculating IAA manually,

making determination of IAA practical for only a subset of the verbs

and slots. To get the most stringent evaluation possible under the

circumstances, we calculated inter-annotator agreement only for the

two nominalizations for which we expected the lowest agreement.

Impressionistically, we found activation to be the most difficult

nominalization to annotate (almost all of the consultations with

‘‘native speakers’’ that we mention in the Acknowledgments were

about this nominalization), and expression is a notoriously difficult

concept to represent in this domain (see Cohen and Hunter (2006)

[49] for a discussion of the issues), so we chose those two verbs.

Additionally, inter-annotator agreement will presumably be lower

than intra-annotator agreement, so the limited IAA data that we

present for nominalizations in Section Inter-annotator agreement for

nominalizations should represent the lower bound on both inter-

annotator and intra-annotator agreement. We calculated confusion

matrices for the various labels and subparts of the task.

Results

The most frequent domain-specific verbs
Table 4 lists the most common domain-specific verbs (i.e. after

filtering out non-domain-specific ones) for the PennBioIE corpus

as a whole and for its two divisions. GENIA data is given for

comparison.

Alternations: verbs
Passive and transitive alternations occurred frequently. Table 5

gives a broad overview of what alternations occurred with which

verb forms. Incidence of the individual alternations is given in the

text that follows.

Passive alternations
As Table 6 shows, alternations related to passivity were quite

frequent in this data. 473 of the verb tokens were passive, while

1,142 were active, so passives constituted 29.3% (473/(473+1,142))

of all verb tokens. Two types of passive alternations—the verbal

passive (Levin class 5.1), and the adjectival passive (Levin class

5.3)—were well represented. Verbal passives occurred in two very

different syntactic structures—as main-clause verbs, e.g.

N This protection was associated with decreased formation of the toxic

metabolite…),

…and as the matrix verb of a post-nominal relative (typically a

reduced relative) clause, e.g.

N mortality associated with the development of opportunistic infections).

Table 4. Most common domain-specific verb lemmas.

BioIE (both) BioIE-P450 BioIE-Onc GENIA

inhibit (637) inhibit (615) associate (101) induce (1322)

induce (310) induce (238) identify (84) activate (1122)

increase (257) increase (188) occur (81) express (827)

express (135) treat (102) activate (78) inhibit (811)

associate (133) decrease (102) include (73) demonstrate (734)

mediate (130) catalyze (100) induce (72) bind (730)

contain (125) mediate (94) contain (70) increase (700)

occur (124) reduce (74) increase (69) regulate (659)

treat (118) follow (69) express (68) contain (595)

activate (116) stimulate (68) analyze (62) require (555)

doi:10.1371/journal.pone.0003158.t004

Table 3. Counts of annotated tokens.

Nominalization BioIE (both) BioIE-P450 BioIE-Onc

inhibition 100 50 50

induction 100 50 50

increase 100 50 50

expression 101 50 51

association 91 14 77

mediation 2 1 1

containment 1 0 1

occurrence 51 3 48

treatment 96 46 50

activation 100 50 50

Rows are ordered by frequency of the corresponding verb in the BioIE corpus.
The goal was 100 tokens per type.
doi:10.1371/journal.pone.0003158.t003
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Alternations related to transitivity
Table 5 gives the argument structures in which the various verbs

appeared, and Table 7 gives the incidence of transitive and

intransitive verb tokens for the verbs that appeared with more

than one transitivity-related valence structure. Seven of the ten

most common verbs appeared only as transitives. The three

most common verbs appeared predominantly as transitives. All

three showed at least one example each of an intransitive,

but only the one clearly change-of-state verb, increase, showed

a large proportion of intransitives (96 transitive, 60 intransitive).

Only one verb, occur, always appeared intransitively.

Adjectival alternations
Alternations related to adjectival forms of the verb were quite

common. In the 10 most common verbs, there were 294 adjectival

forms, versus 1,321 verbal forms, so 18.2% (294/(294+1,321)) of

all non-noun tokens were involved in this alternation. Two

different forms of adjectival alternation were well-represented,

with both passive and active (present participial) forms occurring.

Table 8 gives the distribution across the various alternations.

Transitive and intransitive forms both appeared amongst the

present participial forms; surprisingly, the incidence of the

transitive form is higher.

Alternations: nominalizations
Quantifying data on alternations for nominalizations. It

is less obvious how to quantify the data on alternations in a way

that will allow us to test the predictions of the sublanguage

hypothesis for nominalizations than for verbs. Tokens of verbs are

straightforwardly categorizable in terms of three (mostly

orthogonal) binary categories—active vs. passive, transitive vs.

intransitive, and verbal vs. adjectival. In contrast, in the case of

nominalizations of those verbs, there are multiple arguments to be

considered in relation to each other, and each argument may vary

in terms of presence or absence, and in the case of present

arguments, may vary with respect to location inside or outside of

the noun phrase, and in the case of arguments within the noun

phrase, may vary with respect to position relative to the

nominalization. (There is an additional possible axis of

variability with respect to whether the nominalization is the

head of the noun phrase or is itself a pronominal modifier, e.g.

inhibition in inhibition constant. We annotated such nominalizations

when they occurred, but did not consider them separately in the

analysis. Impressionistically, our data seem to support Meyers et

al.’s claim that non-head nouns have the same argument structures

as head nouns, but we do not have enough tokens of them to really

test the hypothesis.)

The most basic measure would be to simply count the number

of alternations that occur. However, this must be normalized in

some way to make it interpretable. One candidate for normalizing

the count of the number of normalizations that occur would be to

do so with respect to the size of the set of logically possible

alternations for that nominalization. In principle, for any verbal

nominalization, the size of the set of possible alternations is equal

to the number of possible role-fillers raised to the power of the

number of arguments. The number of possible role-fillers is equal

Table 5. Alternations involving BioIE top-10 verbs in the
CYP450 section.

Lemma bare -s -ing -ed

inhibit AT, AI AT AT, at, ai AT, AX, PT, pt

induce AT AT AT, at, ai AT, PT, pt

increase AT, AI, N AT, AI, N AT, AI, ai, X AT, AI, ai, PT, X, PX, px

express AT AT AT, at AT, PT, pt, PX

associate — — — PT, pt

mediate AT AT AT PT, pt

contain AT AT AT, at AT, PT

occur AI AI AI, ai AI

treat AT — AT PT, pt

activate AT AT AT, at AT, PT, pt

Dashes indicate that a verbal form did not occur in the corpus. AT = active,
transitive, verbal. at = active, transitive, participial modifer. N = nominalization.
P = verbal passive. p = adjectival passive. PT = verbal passive, transitive.
pt = adjectival passive, transitive.
doi:10.1371/journal.pone.0003158.t005

Table 6. Passive alternations in the 10 most common verbs.

Alternation count

Verbal passive (5.1) 287

Adjectival passive (5.3) 186

Adjectival perfect participle (5.4) 0

All passive (5.1+5.3+5.4) 473

All active 1,142

The top half of the table breaks down the passives by type. The bottom half
gives the sum of the passives, and the corresponding number of actives.
doi:10.1371/journal.pone.0003158.t006

Table 7. Incidence of transitives and intransitives for verbs
that varied.

Lemma Trans. Intrans. Couldn’t tell

inhibit 539 2 1

induce 187 1 0

increase 96 60 5

doi:10.1371/journal.pone.0003158.t007

Table 8. Adjectival alternations among the ten most
common verbs.

Alternation count

Adjectival passive (5.3) 184

Adjectival perfect participle (5.4) 0

Adjectival ‘‘X’’ 2

Present participial adjective (transitive) 59

Present participial adjective (intransitive) 49

Present participial adjective (all) 108

All adjectival 294

All non-adjectival verbs 1,321

The top half of the table gives the breakdown among adjectival types. The
bottom half of the table gives the sums across all types.
doi:10.1371/journal.pone.0003158.t008
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to four—arguments can be pre-nominal, post-nominal, NP-

external, or absent. So, the size of the set of alternate realizations

ranges from a low of four for single-argument predicates (e.g. occur)

to a high of 45 or 1,024 for a five-argument predicate (e.g. increase).

In practice, although there are generally no limits on the

possibilities for the most ‘‘core’’ arguments (Arg0, Arg1, and often

Arg2), the actual possibilities are somewhat lower for other

arguments. For example, Arg3 and Arg4 of increase (the starting

and ending points of the increase) can have at least three

realizations, since they may be (1) absent, (2) NP-external, or (3)

post-nominal, but it is difficult to get them pre-nominally. Such a

nominalization would still, in principle, have 576 possible

alternations.

A small number of attested alternation types relative to the

possible number of alternation types would be consistent with the

predictions of the sublanguage model, while a large number of

attested alternation types relative to the possible number of

alternation types would seem to falsify it. However, this analysis is

untenable for a number of reasons. From a theoretical perspective,

it makes an assumption of independence between arguments and

of independence between positional variants that is almost

certainly not justifiable—for example, it is difficult to get the

Arg3 and Arg4 of increase (the starting and ending points of the

increase) pre-nominally. From an argumentational perspective, it

is not convincing to claim that the attestation of all four variants

for a single-argument verb constitutes syntactic complexity, nor

that the attestation of ‘‘only’’ 21 variants out of a total possible

number of 1,024 variants constitutes syntactic simplicity. From a

practical perspective, the amount of data that would have to be

available to convincingly test the hypothesis is implausibly large—

even if no variant occurred more than once, we would need at

minimum 1,024 tokens of the noun, which happens to be twice the

size of the number of tokens of ‘‘increase’’ and ‘‘increases’’ in the

corpus (an unknown number of which are nouns—see footnote 6

above).

One corpus-based approach to characterizing the fit of a textual

genre to the sublanguage model is to determine the degree of

closure that it exhibits at some level of the grammar. Closure is a

tendency towards finiteness, e.g. in the size of the lexicon

(McEnery and Wilson 2001) [54]. It is evaluated by graphing

the number of observations of some phenomenon (e.g. novel word

types) as increasingly large amounts of text are examined. Closure

manifests as a flattening of the line, while lack of closure manifests

as a continual rise in the line. McEnery and Wilson provide an

example of such a corpus-based study, looking at closure in the

lexicon, in word-type/POS pairs, and shallow parses for three

corpora. They demonstrate closure analysis by graphing the

increase in the size of the lexicon, in the set of sentential shallow

parses, and in the set of word-type/POS pairs against the increase

in the total number of words of text examined. This type of

analysis could be applied to the data on nominalizations, for which

it has a distinct advantage, since it allows all ten nominalizations to

be grouped together irrespective of the number of arguments (and

hence possible alternations) for the individual nouns. (It is

analogous to the case of word-type/POS growth.) However, the

amount of text needed for this sort of analysis to be probative is,

again, larger than is available in this case.

A compromise position that suggests itself is to consider the ratio

of alternations observed to tokens annotated. This is useful, but

potentially misleading. Sublanguages typically have a restricted

vocabulary relative to other genres, and there is some evidence

that this smaller set of lexical items may be coerced into a larger set

of syntactic functions. As McEnery and Wilson (2001 [54]:176–

180) point out, this leads to a higher type:token ratio for word-

type/POS pairs for the sublanguage than for General English

genres, making the sublanguage actually appear more diverse than

unrestricted language; however, this ratio fails to account for the

difference between the sizes of the lexicon of the sublanguage

versus that of the unrestricted genre, and it is only when we graph

the growth in count of novel types as increasingly large amounts of

text are observed that we see the true closure tendency of the

sublanguage.

Frequency of the nominalizations. Table 9 lists the

nominalizations of the top-10 verbs, ordered by frequency of the

corresponding verb in the PennBioIE corpus as a whole, and gives

the counts of each nominalization in the corpus as a whole, in the

CYP450 section of the corpus, and in the Oncology section of the

corpus. (We cannot even estimate the number of tokens of increase

as a noun in the PennBioIE corpus. As a zero-derived noun, it is

tagged incorrectly in revision 0.9 of the corpus (i.e, as a verb) more

often than it is tagged correctly.) As in the case of the verbs, the

numbers from the GENIA corpus are given for comparison. It is

striking how poorly the rank ordering by frequency of the verbs

corresponds to the frequency of the nominalizations.

Although a majority are derived by the -ation suffix, a

surprisingly wide range of derivational morphemes are represent-

ed. Only one (increase) is zero-related. Two are derived by the non-

productive -ment suffix— one (containment) in its typical use of

producing an abstract noun (Bauer & Huddleston [37] p. 1703),

and the other (treatment) with both the typical abstract noun and the

less typical (but possibly more frequent for this lexical item)

concrete noun. One (occurrence) is non-productive and relatively

uncommon. The rest are derived by -tion and its variants. This

distribution across the word types accords well with the occurrence

of derivational suffixes and the word tokens containing them in

nominalizations in scientific literature in general—Biber et al.

compared the frequencies of the four most common derivational

suffixes used to form abstract nouns (-tion, -ity, -ism, and -ness) and

found that (besides being overwhelmingly more common in

academic writing than in conversation, fiction, or news) the -tion

suffix was the most common suffix, and was more than twice as

frequent as the second-most common suffix (-ity) and 22 times

more frequent than the fourth-most common one (-ness) (their

Table 4.29, [35] p. 322). They also took productivity into account,

and looking specifically at academic prose, differentiated between

frequencies of lexicalized and novel nominalizations involving ten

Table 9. Counts of the nominalizations in the BioIE and
GENIA corpora.

Nominalization BioIE (both) BioIE-P450 BioIE-Onc GENIA

inhibition 861 774 87 445

induction 342 273 69 826

increase – – – 324

expression 1,306 300 1,006 3,190

association 112 14 98 92

mediation 2 1 1 0

containment 1 0 1 0

occurrence 51 3 48 9

treatment 690 477 213 455

activation 552 250 302 2,403

Totals 3,917 2,092 1,825 7,744

Rows are ordered by frequency of the corresponding verb in the BioIE corpus.
doi:10.1371/journal.pone.0003158.t009
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nominalizing morphemes, finding that the number of word tokens

with -tion far outstripped the other nominalizing morphemes in

both the lexicalized and the novel categories (their Figure 4.7, [35]

p. 323).

Incidence of alternations for nominalizations. All

nominalizations that occurred more than once evinced multiple

alternations, with a range from two (for a nominalization (mediation)

that only occurred twice) to 24 (for inhibition). In the data that

follows in this section, we give granular data about the distribution

of alternations for the lone single-argument verb and for one of the

two-argument verbs, and less granular data for the higher-arity

verbs. (Granular data on the distribution of alternations involving

Arg0 and Arg1 for all verbs is given in Section Data on alternations

involving Arg0 and Arg1 for all predicates.) In all cases, we exclude from

the counts of alternations any nominalization token whose set of

arguments included any argument labelled ‘‘can’t tell.’’

Note that compared to the case of the verbal alternations

discussed above, quantifying the numbers of alternations observed

is much less straightforward for nouns. A number of alternatives

are presented earlier in this section; we have tried to combine

them here in a way that makes the situation clear.

Table 10 shows the distribution of alternations for occurrence.

Three alternations were observed. Occur is a single–argument

predicate, so we could see four different argument realizations; the

ratio of possible/observed alternations is 0.75. No tokens of occur

were labelled ‘‘can’t-tell.’’ With three different alternations attested

and 51 tokens labelled, the type/token ratio is 0.059. Note that the

distribution is extremely skewed—84.3% (43/51) of the tokens had

the same pattern, [post-nominal].

Tables 11–13 show the distribution of arguments for the two-

argument predicator activation. (Note that these are not confusion

matrices. The value 3 in the Arg0 Pre/Arg 1 Pre cell of Table 10

indicates that the nominalization activation occurred with both its

Arg0 and its Arg1 in the pre-nominal position (e.g. [Ki-rasArg1]

[codon 12 point mutationalArg0] activation, PMID 10025877, Ko et al.

1998 [55]) three times.) Table 11 gives the data for the entire

PennBioIE corpus. Note that the number of alternation types is

equal to the number of non-empty cells in the table—in this case,

14. For a two-argument predicator, 16 alternations are possible;

the ratio of possible/observed alternations is 0.875 (14/16). 100

tokens were annotated, of which 9 had at least one ‘‘can’t-tell’’

argument, and are excluded from the analysis, yielding a type/

token ratio of 0.154 (14/91). Table 12 shows the full set of

realizations for just the CYP450 section of the corpus, and

Table 13 shows it for just the Oncology section. The number of

alternations observed does not drop lower than 6. The ratios of

possible/attested alternations does not drop lower than 0.375, and

the lowest type/token ratio is 0.125 (all three for the Oncology

section of the corpus).

In Table 14 we show the data on alternations for each of the

two-argument verbs. In each case, we give the raw count of

Table 10. Occurrence, the lone single-argument predicate.

P450 Onc Both

Pre-nominal 1 4 5

Post-nominal 2 41 43

NP-external 0 3 3

Absent 0 0 0

Total 3 48 51

doi:10.1371/journal.pone.0003158.t010

Table 11. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre 3 3 1 32

Post 4 6 3 27

Ext – 1 3 3

Abs 1 1 – 3

Data is combined from both parts of the BioIE corpus. 14/16 possible patterns
are attested in 91 tokens (9 can’t-tell).
doi:10.1371/journal.pone.0003158.t011

Table 12. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre – 3 1 9

Post 1 3 – 14

Ext – 1 3 3

Abs 1 1 – 3

Data is from the CYP450 section of the corpus. 12/16 possible patterns are
attested in 43 tokens (7 can’t-tell).
doi:10.1371/journal.pone.0003158.t012

Table 13. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre 3 – – 23

Post 3 3 3 13

Ext – – – –

Abs – – – –

Data is from the Oncology section of the corpus. 6/16 patterns are attested in
48 tokens (2 can’t-tell).
doi:10.1371/journal.pone.0003158.t013

Table 14. Alternations for the four two-argument predicates.

Alternations Tokens X attested/possible type/token

expression 6 97 4 0.375 0.062

mediation 2 2 2 0.124 1.0

containment 1 1 0 .063 1.0

activation 14 91 9 0.875 0.154

The maximum number possible is 42. Data is given for the full BioIE corpus. The
column labelled tokens shows the number of tokens for which no argument
was labelled ‘‘can’t tell.’’ The column labelled X shows the number of tokens
with at least one argument labelled ‘‘can’t tell.’’
doi:10.1371/journal.pone.0003158.t014
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alternations, the number of non-‘‘can’t-tell’’ tokens, the ratio of

attested/possible alternations, and the type/token ratio.

The corresponding data for the three-argument verbs are shown

in Table 15. Data for the lone four- and five-argument verbs are

combined in Table 16.

Inter-annotator agreement
Inter-annotator agreement for verbal alternations. With

about fifteen minutes’ worth of training, inter-annotator

agreement for the verb data was 78%. The majority of the

disagreements were mismatches in transitivity judgements and

were related to the single word-form expressed. Specifically, many

tokens that we tagged as PT were tagged as PI by the second

annotator, and many tokens that we tagged as pt were tagged as pi

by the second annotator. We generally agreed on the active/

passive contrast and on the verbal/adjectival contrast.

Inter-annotator agreement for nominalizations. Inter-

annotator agreement data for nominalizations is given in Table 17.

The annotation task included selecting and labelling the

nominalization itself; although this process was manual, and

choices had to be made about span selection and about sense

selection for the nominalizations association and treatment, there were

no sense selections to be made for the two verbs for which we

calculated IAA data, and the span selection guidelines for the

nominalizations themselves were quite straightforward, so it is not

surprising that the IAA for predicator selection was trivially quite

high at 100%. IAA for the arguments is more interesting.

With about two hours’ training for the second annotator, overall

IAA across all arguments for both predicates was 87.5%. (For

comparison: Meyers et al. (2004a) [32] reported ‘‘inter-annotator

consistency scores ranging from 82% to 90%’’ during the training

phase (p. 803). Palmer et al. (2005) [2] reported kappa of 0.91 for a

more constrained task than the one that we describe here.) IAA

varied considerably between the two positionally-defined types

(i.e., pre- and post-nominal arguments) and the others: across both

predicators, IAA for the positionally defined argument types was

95.8%, falling to 68.4% for the others. Arg0s and Arg1s also

differed markedly—IAA for Arg0 across both predicators was only

74.1%, while IAA for Arg1 was 96.4%. These findings are almost

certainly related: Arg0s were absent much more often than Arg1s,

and as the confusion matrices will show, absent arguments and

NP-external arguments were frequently associated with disagree-

ments between annotators. This accords generally with the

findings of Meyers et al. (2004b) [33], who reported inter-

annotator agreement rates of around 85% and below and noted

that their primary sources of disagreements were ‘‘SUPPORT

verbs and the shared arguments that go with them [NP-external,

in this paper]…role assignment to prenominals…[and] errors’’

(p. 28).

Tables 18 through 24 give the confusion matrices for various

views on the data. Columns are the primary annotator’s

judgements, while rows are the second annotator’s judgements.

Fractions are the count for that cell divided by the number of slots

labelled (which varies from table to table and is identified in the

table caption). Following Palmer et al. (2005) [2], we include

matches in the confusion table, and so the mismatches are

percentages of the total judgements, not percentages of the errors.

Table 18 gives the overall picture. The positionally defined

categories (pre- and post-nominal) contributed the smallest

number of disagreements overall. The largest overall contributor

of disagreements was confusion of absent arguments with NP-

external arguments.

Table 15. Alternations for the five three-argument
predicates.

Alternations Tokens X
attested/
possible type/token

Inhibition 24 95 5 0.375 0.253

Induction 19 92 8 0.297 0.21

association.01 5 8 0 0.078 0.625

association.02 10 78 1 0.156 0.128

treatment.04 9 58 7 0.141 0.155

The maximum number possible is 43. Data is given for the full BioIE corpus. The
column labelled tokens shows the number of tokens for which no argument
was labelled ‘‘can’t tell.’’ The column labelled X shows the number of tokens
with at least one argument labelled ‘‘can’t tell.’’
doi:10.1371/journal.pone.0003158.t015

Table 16. Alternations for the lone 4-argument predicate
(treatment.03) and the lone 5-argument predicate (increase).

Alternations Tokens X
attested/
possible type/token

treatment.03 16 29 2 .063 0.552

Increase 21 83 17 .021 0.253

The maximum number possible is 44 and 45, respectively. Data is given for the
full BioIE corpus. The column labelled tokens shows the number of tokens for
which no argument was labelled ‘‘can’t tell.’’ The column labelled X shows the
number of tokens with at least one argument labelled ‘‘can’t tell.’’
doi:10.1371/journal.pone.0003158.t016

Table 17. Inter-annotator agreement for the two most
difficult nominalizations.

IAA TP FP FN

Both predicates 100% 28 0 0

All arguments for both predicators 87.5% 49 7 7

Positionally defined types for both predicators 95.8% 34 3 0

Other types for both predicators 68.4% 13 5 7

Arg0 for both 74.1% 20 7 7

Arg1 for both 96.4% 27 1 1

doi:10.1371/journal.pone.0003158.t017

Table 18. Confusion matrix for both nominalizations and
both arguments.

Pre Post Ext Abs X

Pre .321 .018

Post .018 .286 .018

Ext .089 .089

Abs. .143

X .018

Confusion between NP-external and absent arguments was the largest source
of disagreements. Fractions are the count for the cell divided by the number of
slots (56). They sum to 1.
doi:10.1371/journal.pone.0003158.t018
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Tables 19 and 20 demonstrate that overall, Arg0 is the major

source of disagreements.

Tables 21–22 and Tables 23–24 show that this is true for

the individual nominalizations, as well: IAA is lower for Arg0

than for Arg1 for both nominalizations, and not just in the

aggregate.

Semantic roles and syntactic position
Palmer et al. examined associations between semantic roles and

syntactic roles (e.g. subject, object, and SBAR), finding ‘‘evidence

for the notion of a thematic hierarchy in which the highest-ranking

role present in a sentence is given…subjecthood’’ (2005 [2]:90–

91). This analysis cannot be carried out for the nominalization

data, since the notion of syntactic role for nominalizations is not

well-defined (pace Roeper and van Hout). However, associations

between semantic roles and syntactic positions relative to the

nominalization are testable with this data. Following Palmer et

al.’s analysis, Tables 25 and 26 show the most frequent syntactic

positions for each semantic role, and the most frequent semantic

role for each syntactic position.

Note that the post-nominal position blurs the distinction between

complements and adjuncts, which may well be relevant here, as

well as potential diathesis alternations specific to ditransitives, and

possibly other interesting phenomena, as well.

If contrasting these numbers with Palmer et al.’s findings for

verbs, note also that the numbers of semantic and syntactic roles

are both much larger in PropBank.

Examining the most frequent syntactic positions for each

semantic role, the most striking finding is that for Arg0, the most

frequent syntactic position is complete absence. This finding

accords with the general observation that nominalization is similar

Table 22. Confusion matrix for Arg1 of activation.

Pre Post Ext Abs X

Pre .643

Post .286

Ext .071

Abs.

X

The denominator is 14.
doi:10.1371/journal.pone.0003158.t022

Table 20. Confusion matrix for Arg1 of both nominalizations.

Pre Post Ext Abs. X

Pre .61

Post .036 .32

Ext .036

Abs.

X

The denominator is 28.
doi:10.1371/journal.pone.0003158.t020

Table 21. Confusion matrix for Arg0 of activation.

Pre Post Ext Abs X

Pre .071 .071

Post .286

Ext .143 .143

Abs. .286

X

The denominator is 14.
doi:10.1371/journal.pone.0003158.t021

Table 23. Confusion matrix for Arg0 of expression.

Pre Post Ext Abs. X

Pre

Post .214 .071

Ext .143 .214

Abs. .286

X .071

doi:10.1371/journal.pone.0003158.t023

Table 24. Confusion matrix for Arg1 of expression.

Pre Post Ext Abs. X

Pre .61

Post .036 .32

Ext .036

Abs.

X

doi:10.1371/journal.pone.0003158.t024

Table 19. Confusion matrix for Arg0 of both
nominalizations.The denominator is 28.

Pre Post Ext Abs. X

Pre .036 .036

Post .25 .036

Ext .143 .179

Abs. .286

X .036

doi:10.1371/journal.pone.0003158.t019

Table 25. The most frequent syntactic positions for each
semantic role (cf. Palmer et al.’s Table 7, 2005:91).

Semantic role Total Most common syntactic positions

Arg0 570 Absent (378), NP-external (82), Post-nominal (64),
Pre-nominal (46)

Arg1 612 Post-nominal (341), Pre-nominal (124), Absent (79),
NP-external (68)

See Tables 43 and 44 for the raw data.
doi:10.1371/journal.pone.0003158.t025
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to passivization in that it allows for the omission of agents. (It also

helps to explain the most frequent semantic roles that we observe

for each syntactic position—we return to this point momentarily.)

The next most frequent syntactic position for Arg0 is NP-external.

This implies a real challenge for semantic role labelling: the inter-

annotator agreement data indicates that even for humans, this

distinction was the most difficult to make.

For Arg1, two points are evident. The first is that the pre-

nominal position, although not the most common, is nonetheless

quite commonly observed in this data. The second is that about a

quarter of the nominalizations in the data have an Arg1 that is

either absent or NP-external; on most analyses, these are

intransitives (specifically, unergatives), demonstrating that this

alternation is attested in nouns, as well as in verbs, in this domain.

These findings emphasize the importance of dealing with pre-

nominal arguments in biomedical information extraction systems:

20% (124/612) of all Arg1s and 8% (46/570) of all Arg0s in this

data are pre-nominal. Similarly, we see the importance of the

ability to recognize when arguments are entirely absent: 66%

(378/570) of all Arg0s and 13% (79/612) of all Arg1s in this data

are absent. This finding argues strongly against the NomBank

policy of not annotating argumentless nominalizations at all.

(Higher-arity predicates may lack overt Arg0 and Arg1, but still

have other arguments present—we return to this point below.)

Finally, the data on the most frequent syntactic positions for

each semantic role are a reflection of the data on the most frequent

semantic role for each syntactic position. Table 26 shows that for

the syntactic positions within the noun phrase, Arg1s outnumber

Arg0s by at least a ratio of 3:1. This is not surprising given the data

in Table 25, as well as in the fourth row of Table 26: overall, non-

absent Arg1s simply outnumber non-absent Arg0s in the data, so it

is not surprising that they would tend to outnumber them in any

given (non-absent) syntactic position. (A single one of the ten

predicates (occur) considered in this work has an Arg1, but no Arg0,

and this fact makes a small contribution to the ratio of Arg0s and

Arg1s potentially present; however, only 51 tokens of this

nominalization were present in the data, so the contribution is

not large.)

Nominalizations with no overt arguments
The granular data presented in this paper allows us to evaluate the

consequence of the NomBank decision not to annotate nominaliza-

tions that have no overt arguments. (In this work, we annotated all

nominalizations, whether or not there were arguments present—see

Section 1.4, Contrasts between this work and NomBank.)

Table 27 gives the data on the incidence of argumentless

nominalizations: about 12% of the verbal nominalizations in this

data have no Arg0 or Arg1. (Note that since we did not distinguish

between core and adjunctive arguments, treating all arguments as

core arguments, while NomBank preserves the core/adjunct

distinction, Arg0/Arg1 are probably a better estimate of the

incidence of argumentless nouns in projects like NomBank than

are the ‘‘no arguments at all’’ row in Table 27.) For some

predicates, Arg0/Arg1-less tokens were near-majorities or even

near-total—22/29 tokens of treatment.03 had no Arg0 or Arg1,

while 26/58 tokens of treatment.04 had no Arg0 or Arg1. Clearly,

NomBank’s decision not to annotate argumentless nominalizations

results in omission of a non-trivial amount of data from the

analysis, at least in the genre under examination in this paper. It

also means sacrificing otherwise very clear generalizations about

the behavior of specific predicates. Other implications of this

choice (and a potential solution) are discussed below in Section

Implications for annotation efforts.

Data on alternations involving Arg0 and Arg1 for all
predicates

Tables 28 through 41 give granular data on each nominaliza-

tion. Contra the tables in the body of the text, the number of

alternations in this appendix is not necessarily equal to the number

of non-empty cells, since the tables only show patterns involving

Args 1 and 2—for predicates with greater than two arguments, it

may be larger. See the earlier tables in the body of the paper for

the number of alternations attested for such verbs.

Table 27. Argumentless nominalizations.

No arguments at all 20

No Arg0 or Arg1 71

doi:10.1371/journal.pone.0003158.t027

Table 26. The most frequent semantic roles for each
syntactic position (c.f. Palmer et al.’s Table 6, 2005:90).

Position Total

Pre-nominal Arg1 (124) Arg0 (51) 175

Post-nominal Arg1 (341) Arg0 (107) 448

NP-external Arg0 (85) Arg1 (68) 153

Absent Arg0 (378) Arg1 (79) 461

Only Args 0 and 1 are indicated. Association.02,03 are omitted. See Tables 43
and 44 for the raw data.
doi:10.1371/journal.pone.0003158.t026

Table 28. Occurrence, a 1-argument predicator (Arg1).

P450 Onc Both

Pre-nominal 1 4 5

Post-nominal 2 41 43

NP-external 0 3 3

Absent 0 0

Data is combined from both parts of the BioIE corpus. 3/4 possible patterns are
attested in 51 tokens (0 can’t-tell).
doi:10.1371/journal.pone.0003158.t028

Table 29. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre 3 3 1 32

Post 4 6 3 27

Ext – 1 3 3

Abs 1 1 – 3

Data is combined from both parts of the BioIE corpus. 14/16 possible patterns
are attested in 91 tokens (9 can’t-tell).
doi:10.1371/journal.pone.0003158.t029
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Data on role/position and position/role associations
Table 42 gives the counts of each syntactic position for Arg0 for

each individual predicate. Table 43 gives the same data for Arg1.

In both tables, we included the data for association.01 but excluded

all data for association.02 and .03.

Discussion

Implications for annotation efforts
In the Introduction, we reviewed the implications of our

findings for biomedical language processing. Here, we discuss the

implications of our work for annotation efforts. A major focus of

this paper is alternations involving nominalizations. Our annota-

tion guidelines differed in a number of ways from that of

NomBank, the only large-scale effort to annotate the argument

structures of nominalizations to date (see Section Contrasts between

this work and NomBank annotations).

These differences allow us to evaluate the consequences of one

of NomBank’s design decisions: specifically, the project’s decision

not to annotate nominalizations that have no overt arguments.

The data presented here shows that a non-trivial proportion of the

nominalization tokens in our data have no arguments at all, and

that some nominalizations lack arguments more often than not. If

applied to this data, NomBank’s decision not to annotate

argumentless nominalizations would come with a number of costs.

Some of these would hurt the researcher theoretically: we would

lose a non-trivial amount of data for our analysis, and the frequent

Table 30. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre – 3 1 9

Post 1 3 – 14

Ext – 1 3 3

Abs 1 1 – 3

Data is from the CYP450 section of the corpus. 12/16 possible patterns are
attested in 43 tokens (7 can’t-tell).
doi:10.1371/journal.pone.0003158.t030

Table 31. Activation, a two-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre 3 – – 23

Post 3 3 3 13

Ext – – – –

Abs – – – –

Data is from the Oncology section of the corpus. 6/16 patterns are attested in
48 tokens (2 can’t-tell).
doi:10.1371/journal.pone.0003158.t031

Table 32. Inhibition, a 3-argument predicator (Arg0, Arg1,
and Arg2; only Args 0 and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre – 2 8 4

Post 1 15 16 26

Ext 1 3 5 1

Abs 3 2 2 6

Data is combined from both parts of the BioIE corpus. 24/64 possible patterns
are attested in 95 tokens (5 can’t-tell).
doi:10.1371/journal.pone.0003158.t032

Table 33. Induction, a 3-argument predicator (Arg0, Arg1,
and Arg2; only Args 0 and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre 1 3 – 8

Post 11 12 3 33

Ext 3 2 2 3

Abs 2 1 – 8

Data is combined from both parts of the BioIE corpus. 19/64 possible patterns
are attested in 92 tokens (8 can’t-tell). For comparability with other tables in the
paper, tokens where any arg is X are omitted from this table, but there are 3
additional tokens where the X is in Arg2 that could be added to this table: 1
Arg0-Ext/Arg1-Ext, and 1 Arg0-Ext/Arg1-Abs.
doi:10.1371/journal.pone.0003158.t033

Table 34. Increase, a 5-argument predicator (Arg0, Arg1,
Arg2, Arg3, and Arg4; only Args 0 and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre – – – 7

Post 6 10 27 30

Ext – 1 2 3

Abs – – – 2

Data is combined from both parts of the BioIE corpus. 21/1,024 (45) possible
patterns are attested in 83 tokens (17 can’t-tell).
doi:10.1371/journal.pone.0003158.t034

Table 35. Expression, a 2-argument predicator (Arg0 and
Arg1).

Arg0

Pre Post Ext Abs

Arg1 Pre – 1 1 42

Post – – 3 44

Ext – – – 6

Abs – – – –

Data is combined from both parts of the BioIE corpus. 6/16 possible patterns
are attested in 97 tokens (4 can’t-tell).
doi:10.1371/journal.pone.0003158.t035
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omission of arguments is clearly a salient characteristic of the

behavior of some lexical items. If we are concerned with

understanding alternations for the light that they shed on the

relationship between syntax and semantics, we would be at a

minimum eliminating a number of evidently intransitive nouns

from consideration completely.

Table 36. Association.01, a 3-argument predicator (Arg0,
Arg1, and Arg2; only Args 0 and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre – – 1 –

Post – – 2 –

Ext – – 3 2

Abs – – – –

Data is combined from both parts of the BioIE corpus. 5/64 possible patterns
are attested in 8 tokens (0 can’t-tell).
doi:10.1371/journal.pone.0003158.t036

Table 37. Association.02 (reciprocal); only Args 0 and 1 for
non-plural associands are shown.

Arg0

Pre Post Ext Abs

Arg1 Pre – – – 1

Post 8 39 13 4

Ext 1 – 8 –

Abs – – – 48

Data is combined from both parts of the BioIE corpus. 10 patterns are attested
in 78 tokens (1 can’t-tell); the number of possible patterns is greater than 64,
but its exact value depends on how reciprocal tokens are handled.
doi:10.1371/journal.pone.0003158.t037

Table 38. Mediation, a 2-argument predicator.

Arg0

Pre Post Ext Abs

Arg1 Pre – – – –

Post 1 1 – –

Ext – – – –

Abs – – – –

Data is combined from both parts of the BioIE corpus. 2/16 possible patterns
are attested in 2 tokens (2 can’t-tell).
doi:10.1371/journal.pone.0003158.t038

Table 39. Containment, a 2-argument predicator.

Arg0

Pre Post Ext Abs

Arg1 Pre – – – 1

Post – – – –

Ext – – – –

Abs – – – –

Data is combined from both parts of the BioIE corpus. 1/16 possible patterns
are attested in 1 token (0 can’t-tell).
doi:10.1371/journal.pone.0003158.t039

Table 40. Treatment.03 (medical), a 4-argument predicator
(only Args 0 and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre – – – 1

Post – – – 3

Ext – – – 3

Abs – – – 22

Data is combined from both parts of the BioIE corpus. 16/256 (44) possible
patterns are attested in 29 tokens (2 can’t-tell).
doi:10.1371/journal.pone.0003158.t040

Table 41. Treatment.04 (affect a change in something by
applying a substance), a 3-argument predicator (only Args 0
and 1 are shown).

Arg0

Pre Post Ext Abs

Arg1 Pre – – – –

Post – – – 14

Ext – – – 18

Abs – – – 26

Data is combined from both parts of the BioIE corpus. 9/64 possible patterns
are attested in 58 tokens (7 can’t-tell).
doi:10.1371/journal.pone.0003158.t041

Table 42. Most frequent syntactic positions for Arg0
(association.02,.03 (reciprocal, and .03 omitted).

Total
Arg0
absent

Arg0
external

Arg0
post-nom

Arg0
pre-nom

Occurrence – – – –

Activation 65 7 11 8

Inhibition 37 31 22 5

Induction 52 5 18 17

Increase 42 29 11 6

Expression 92 4 1 0

Association.01 2 6 0 0

Mediation 0 – 1 1

Containment 1 0 0 0

Treatment.03 29 0 0 0

Treatment.04 58 0 0 0

Total 378 82 64 46

Note that occurrence is a single-argument predicate and has no Arg0.
doi:10.1371/journal.pone.0003158.t042
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Other costs would have practical consequences: we are less

likely to improve the comparatively low performance of the

current nominalization semantic role labelling systems if we

cannot learn to recognize when arguments are absent, and we are

less likely to recognize when they are absent if we deliberately

exclude argumentless nouns from our data. The high incidence of

the difficult-to-distinguish Absent and NP-external categories high-

lights the importance of being able to make this distinction. The

data presented here suggests that, pace Meyers and his coworkers,

argumentless nouns should not be excluded from annotation

efforts. It is possible that automatic methods could be effective in

ameliorating the effects of that decision for the specific case of the

NomBank effort at relatively low cost.

Related work
Hirschman and Sager (1982) [56] discuss alternations in the

semantic classes of verb arguments, e.g. the alternation between

lab tests and body parts as the subject of the verb show in medical

texts (X-rays of spine show extreme arthritic change versus The dorsal spine

shows moderately severe degenerative changes…, p. 34), but do not focus

on syntactic alternations.

The only previous quantitative data on alternations that we are

aware of appears in Biber et al. (op cit). They give data on the

relative incidence of valence types across broad semantic domains

such as activity, communication, occurrence, and existence, finding that

verbs with at least one transitive pattern are the most common,

36% of common verbs occurring transitively only, 47% occurring

both transitively and intransitively. Just 10 verbs in total occurred

solely intransitively (p. 382). For the verbs that can participate in

transitivity alternations, they found that although there are clear

verb-specific differences, transitive uses tended to be more

common. The PennBioIE data accords with both of these General

English tendencies.

We are not aware of any quantitative data on alternations

involving nominalizations. Herbst et al. (2004) [57] is a corpus-

based description of the valency patterns of 511 verbs, 274 nouns,

and 544 adjectives (p. XL). A small fraction of the valency patterns

listed in the book contain very non-granular indications of their

relative frequencies: ‘‘Patterns for which only a few instances could

be found in the corpus are labelled rare’’ (p. XL). A subset of verbal

patterns, and a different subset of nominal and adjectival patterns,

are marked as ‘‘.30%’’ if that pattern makes up at least 30% of all

occurrences of the word in the corpus, as ‘‘very frequent’’ if the

pattern ‘‘is significantly more frequent than other…patterns,’’ or

‘‘frequent’’ if the pattern is ‘‘relatively frequent.’’ No information is

available on the number of patterns in the book that have even this

very coarse sort of quantitative data, but impressionistically, it

appears to be only a fraction of the patterns presented in the book.

Alternations and semantic representations
The low representation of Change Of State verbs in the top-ten

list is surprising. Biologists conceive of many molecular events as

‘‘state-changing,’’ but only the single predicate increase clearly has

such semantics. Table 44 gives the Levin class assignments of the

top-10 verbs. Levin classes that seem to fit the domain-specific

meanings attested in the corpus are bolded. The predicate increase

is the single clear example of a Change Of State verb. Only seven

of the ten verbs appear in Levin (1993) [1] at all, and two of those

seven verbs are not adequately represented in Levin (1993) [1]

with respect to their biomedical semantics. In this domain, express

behaves more like a Create verb (Levin class 26.4) than like either of

the classes to which it is assigned. (This sense is not found in

WordNet 2.1, either.) Treat has at least two senses in this domain,

neither of which is represented in Levin (1993) [1], one

representing WordNet 2.1’s process, treat synset, and the other

corresponding to the treat, care for synset. Filling these gaps in the

representations of these verbs seems worthwhile.

In light of the high incidence of alternations in the corpus, it is

notable that the majority of the top-ten verbs are result verbs,

rather than manner verbs. Rappaport-Hovav and Levin’s (1998)

[58] work on semantic representation of verb meaning predicts

that result verbs participate in a smaller number of alternation

types than manner verbs; apparently this does not correlate with a

low number of alternation ‘‘tokens.’’

Table 43. Most frequent syntactic positions for Arg1.

Total
Arg1
post-nom

Arg1
pre-nom

Arg1
absent

Arg1
external

Occurrence 43 5 0 3

Activation 40 39 5 7

Inhibition 58 14 13 10

Induction 59 12 11 10

Increase 73 7 2 6

Expression 47 44 0 6

Association.01 2 1 0 5

Mediation 2 0 0 0

Containment 0 1 0 0

Treatment.03 3 1 22 3

Treatment.04 14 0 26 18

Total 341 124 83 68

doi:10.1371/journal.pone.0003158.t043

Table 44. Levin classes of the most common verbs.

Lemma Class

inhibit — —

induce — —

increase 45.4 Verbs of Change of State: Other alternating verbs of
change of state

45.6 Verbs of Change of State: Verbs of calibratable
change of state

express 11.1 Verbs of Sending and Carrying: Send verbs

48.1.2 Reflexive verbs of appearance

associate 22.2 Verbs of Combining and Attaching: Amalgamate
verbs

mediate — —

contain 8.2 Verbs Requiring Special Diatheses: Obligatorily reflexive
object

47.8 Verbs of Existence: Verbs of contiguous location

54.3 Measure Verbs: Fit verbs

occur 48.3 Verbs of Appearance, Disappearance, and
Occurrence: Verbs of occurrence

treat 8.5 Verbs Requiring Special Diatheses: Obligatory adverb

29.2 Verbs with Predicative Complements: Characterize verbs

Verbs are ordered by frequency. Dashes indicate that the verb does not appear
in Levin (1993). Bolding indicates that the Levin class seems to fit the semantics
of the verb as used in the CYP450 section of the BioIE corpus.
doi:10.1371/journal.pone.0003158.t044
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Although our data suggest that alternations in this genre are

frequent, this finding does not contradict either the sublanguage

hypothesis itself, or Friedman et al.’s claim that scientific abstracts in

this domain fit the sublanguage model. The sublanguage model

predicts that the range of syntactic and semantic phenomena in a

sublanguage will be limited, but it does not necessarily claim that they

will be simple. Indeed, the history of sublanguage research includes a

number of phenomena that are syntactically and semantically quite

complex, e.g. Dunham (1986) [59] on noun phrases, Finin (1986)

[60] on compound nouns, and ellipsis and anaphora in recipes and

technical manuals (Kittredge 1982 [61], Palmer et al. 1986 [62]).

Indeed, some of the phenomena that we identify as troublesome for

biomedical IE systems are quite repetitive and amenable to relatively

simple interpretation rules. For example, of the 59 tokens of the

transitive present participial adjective alternation, 20 of those tokens

fit the pattern NP1-containing NP2, where the semantic relation is that

NP2 contains NP1. Of the 184 tokens of adjectival passive

alternations, 13 (7%) are the single type cDNA-expressed, and 12

(6.5%) are some variant surface form of the single underlying

concept calcium-activated potassium channel. Similar phenomena are

observable in the nominalizations—recall the skewedness of the

distributions of alternations for the two nominalizations for which we

saw granular data (Table 9 for occurrence and Tables 10–12 for

activation). For example, of the 101 tokens of expression that we

annotated, 44.6% (45/101) had the Arg1 in pre-nominal position,

while 48.5% (49/101) had it in the post-nominal position. Of the 49

post-nominal Arg1s for expression, in a full 39 cases the Arg1 was in an

immediately adjacent prepositional phrase headed by the preposi-

tion of; in the remaining 10 cases, the PP was still an of -phrase

(although either an intervening head noun or another conjoined

nominalization intervened). So, despite the semantic and syntactic

complexity, the predictions of the sublanguage model hold.

Future directions
There are a number of future directions for this work.

A methodological one would be to extend the annotation work

beyond verbal nominalizations to include argument nominaliza-

tions (e.g. agentives). Examining alternations involving additional

types of nominalizations would round out our picture of syntactic

and semantic variability in this domain.

There are also additional theoretical directions in which this

work could be taken. The data in this paper answered the basic

question that we set out to ask: do alternations occur in biomedical

text? With the nominalization data in hand, a number of deeper

questions can now be addressed. Some of these are big questions.

Having seen that alternations occur, it would be interesting to ask

if the actual alternations attested correlate with the semantics of

the verbs, as Levin would lead us to expect—granular analyses like

the data that we present for activation suggest that alternations

involving verbal nominalizations are exactly the ‘‘intricate and

extensive patterns of syntactic behavior’’ that Levin (1999 [1]:16)

suggests will lead us to an understanding of relationships between

semantics and syntax. Other questions are much more specific.

For example, Roeper and van Hout’s 2006 paper [44] makes a

strong claim: ‘‘Our theory depends upon a claim that extends to all

affixation: affixes determine argument structure.’’ This counter-

intuitive claim could be investigated with data like that which is

presented in this paper, for a larger number of verbs and

derivational morphemes.
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