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Abstract

Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life
represents such diversification processes through the evolutionary relationships among the different taxa, and can be
extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and
intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels
in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random
universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the
broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.
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Introduction

The Tree of Life is a synoptic depiction of the pathways of

evolutionary differentiation between Earth life forms [1], and

contains valuable clues on the key issue of understanding the

diversification of life in the planet [2]. The branching pattern of the

Tree of Life, which is being captured at increasing resolution by the

advent of molecular tools [3], can be examined to investigate

fundamental questions, such as whether it follows universal rules,

and at what extent random differentiation mechanisms explain the

shape of phylogenetic trees. The examination of the structure of the

Tree of Life can also help to infer whether evolution acts at

intraspecific scales in a way different from the action of evolution at

the interspecific scale. Here we address these fundamental questions

on the basis of a comprehensive comparative analysis of

phylogenetic trees representing different fractions and domains of

the Tree of Life, from interspecific to intraspecific scales. We draw

from previous analyses of the geometry of the Tree of Life [4], the

characterization of other branching systems [5,6], and using tools

derived from modern network theory [7–10] to examine the scaling

of the branching in the Tree of Life [11,12]. Our analysis is based on

a thorough data set of more than 5000 interspecific phylogenies and

a sample of 67 intraspecific phylogenies (see Text S1), thereby

testing the universality of the results derived across scales.

A phylogenetic tree is a set of nodes, each node representing a

diversification event, connected by branches (links). For each node

i, a subtree Si is made up of a root at node i and all the descendant

nodes stemming from this root. The subtree size Ai gives the

number of subtaxa that diversify from node i (including itself).

Beyond this measure of the diversity degree, the characterization

of how the diversity is arranged through the phylogenies can be

achieved through the cumulative branch size, Ci, a measure of the

subtree shape. It is defined [13] as the sum of the branch sizes

associated to all the nodes in the subtree Si, Ci =SAj. For the same

tree size, and restricting to binary branching events, the smallest

value of the cumulative branch size is obtained for a completely

symmetric, balanced tree, whereas the most asymmetric, the

pectinate or comb-like tree in which all branches split successively

from a single one, yields the largest Ci value [13]. To be clearer, we

show in Figure 1 the analysis of Ai and Ci for a completely

balanced tree (Figure 1A) and for a completely imbalanced tree

(Figure 1B). A portion of a real phylogenetic tree is also shown

(Figure 1C). How the shape of the tree (i.e., the distribution of the

biological diversification) does change with tree size (i.e., with the

number of taxa it contains) is given by the scaling of the subtree

shape C vs. the subtree size A, as described by the allometric

scaling relation C,Ag. We quantitatively characterize the shape of

each tree in our data set by calculating the functions F(A) and F(C),

which are the complementary cumulative distribution functions

(CCDF) of Ai and Ci values in the tree, respectively, and the value

of the allometric scaling exponent, g. We compare the results

derived from the analyses of inter- and intra-specific phylogenetic

trees among them, to test for the preservation of branching

patterns across evolutionary scales, and against those derived from

the analyses of randomly-generated trees to test whether the

allometric scaling derived can be modeled using simple, random

branching rules.

Results

The branch-size CCDF displays power-law tails of the form

F Að Þ*A1{tA for large branch size A (Figure 2A). The power-law

exponents tA are remarkably similar for the data sets analyzed:

tA = 1.7660.03, and 1.7460.02 for intra- and interspecific phylog-
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enies, respectively. Similarly, the cumulative-branch-size CCDF also

displays a power-law tail of the form F Cð Þ*C1{tC at large C, with a

similar agreement between the exponents of the intra- and

interspecific data sets: tC = 1.5360.02 and 1.5360.02, respectively

(Figure 2B). The discrepancy observed between the two data sets at

the tail of the distributions can be explained by the different sizes of

the typical trees on them: each tree contributes a natural cutoff to the

overall distribution, and since the intraspecific trees are smaller in

average, their cutoff appears at smaller tree sizes.

The allometric exponent, g, that characterizes the scaling of tree

shape with tree size (Figure 3A), is also remarkably similar for the

intraspecific (g = 1.4360.01) and the interspecific (g = 1.4460.01)

phylogenies. This constancy of the exponents is still more remarkable

when realizing (inset of Figure 3A) that it does not only apply to

average properties of sets of intraspecific and interspecific trees, but

also to individual phylogenies of groups of organisms pertaining to

different kingdoms and living across widely contrasting environ-

ments, as it is reflected by the very narrow range of g obtained from

different phylogenies (Ægæ = 1.47, s = 0.03, Figure 3A). The scaling

exponents for our large interspecific data set are also matched almost

perfectly (Figure S1) by those derived from a set of 67 interspecific

phylogenies randomly drawn from the published literature thereby

validating the uniformity of the scaling rules of the broad interspecific

phylogenies and the smaller set of intraspecific ones used here. The

later was also derived from a similar random sample taken from the

published literature (see Text S1).

The allometric scaling of C,A1.44 derived from our analysis falls

somehow in between those obtained by simulated phylogenies

derived from two extreme topologies: The symmetric tree gives

C,A ln A, which corresponds to g = 1 with a logarithmic

correction, while the pectinate tree has g = 2. The natural null

model for tree construction, the Equal-Rates Markov (ERM)

model [14,15], yields a scaling C,A ln A similar to the symmetric

tree with g = 1 but different from the scaling displayed by

empirical inter- and intraspecific phylogenies, particularly for

large ones (Figure 3B). Therefore some topological aspects of

phylogenetic trees are not adequately reproduced by the ERM

model. Our results imply that successful lineages diversify more

profusely than expected under random branching, generating the

large imbalances that characterize emerging depictions of the Tree

of Life [4]. Alternative models introducing correlations, such as the

proportional-to-distinguishable-arrangements (PDA) model [4,16]

or the beta splitting model [17], could generate more realistic

phylogenies. Guided by previous biological allometric scaling

analysis, we have assumed a power-law scaling of the form C,Ag.

However, other ansatz could also fit the data. The important

point, however, is that these modeling approaches should give

similar scaling properties for intra- as for interspecific branching.

Discussion

Traditionally, microevolutionary and macroevolutionary pro-

cesses have been studied independently by population geneticists

and evolutionary biologists, respectively [18]. The divide between

these two levels of generation of biological diversity is an old one,

rooted in the controversy between Darwinian gradualism and the

saltationism proposed by others, prominently paleontologists, to

explain macroevolutionary processes [19]. The debate as to

whether macroevolution is more than the accumulation of

microevolutionary events remains active [18,20,21], although

refined paleontological evidence supports the continuum between

micro- and macroevolution for some lineages [22]. The results

presented here show that the branching and scaling patterns in

intraspecific and interspecific phylogenies do not differ significant-

ly for the topological properties we have calculated. Thus, shall

saltation processes be a factor at the macroevolutive level, this is

not reflected in the topology of phylogenetic branching as

examined here. Evidence for possible differences in phylogenetic

topologies between the inter- and intraspecific levels may require a

detailed analysis of branching times, which we have not attempted.

Figure 1. Branch size and cumulative branch size examples. The
values of the branch size (A) and of the cumulative branch size (C) are
shown (in brackets, as (A,C)) at each node of three small example trees.
A: a completely balanced tree of 15 nodes; B: a completely imbalanced
tree of 15 nodes; C: a subtree of 15 nodes of a real phylogenetic tree,
the intraspecific Vibrio vulnificus phylogeny presented in full in Fig. S2A.
Note that the value of C at the root is maximum for the fully imbalanced
tree, and minimum for the balanced one.
doi:10.1371/journal.pone.0002757.g001
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Processes leading to scaling laws in size distributions in natural

systems have been formulated as growth models [23,24]. Many of

the findings carry over to scaling properties found in networks [25]

and their description in terms of branching processes [26]. But most

of these models predict branching topologies similar to the ERM

model. An alternative approach to understand the observed

exponent would be to trace analogies with scaling laws in different

branching systems [5,6,27] which have been explained by invoking

a natural optimization criterion based in the fact that the observed

trees contain the largest possible number of apices within the

smallest number of branching levels. For binary trees of size A,

where nodes are restricted to occupy uniformly a D dimensional

Euclidean space, the minimum value of C scales as Ag, with

g = (D+1)/D. This scaling also describes the D-dimensional tree

with the maximum size for a given depth (the average distance

between root and leaves). The value of g obtained in our phylogeny

analysis, g>1.44, is achieved only for optimal trees restricted to

spaces of D>2.27 dimensions. Given the apparently unlimited

number of variables that may yield differences among taxa,

restricting their representation to a space with such a small number

of dimensions seems unreasonable. This interpretation suggests that

the evolutionary process yielding the observed phylogenies is not the

most parsimonious one, which could potentially yield a similar

biodiversity with fewer branching levels. In fact, the natural choice

D = ‘ gives an optimal exponent g = 1, which correspond to the

ERM value and departs from observed scaling. Optimal traffic

networks [28] also led to the exponent tA = 2 which departs from the

empirical scaling exponent reported here for phylogenetic trees.

In summary, the remarkably similar allometric exponents

reported here to characterize universally the scaling properties of

Figure 2. Average distributions. Cumulative complementary distribution functions (CCDFs) averaged and logarithmically binned over all
phylogenetic trees in the interspecific (empty squares) and intraspecific (solid circles) data sets. A: CCDF of branch size, F(A). Solid line corresponds to
a power law F Að Þ*A1{tA with the exponent given by the best fit to the interspecific data set tA = 1.74. B: CCDF of the cumulative branch size, F(C).
The line corresponds to a power law with the exponent given by the best fit to the interspecific data set tC = 1.53.
doi:10.1371/journal.pone.0002757.g002

Scaling in the Tree of Life
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intra- and inter-specific phylogenies across kingdoms, reproductive

systems and environments, strongly suggests the conservation of

branching rules, and hence of the evolutionary processes that drive

biological diversification, across the entire history of life. Although

at short branch sizes the topology of observed phylogenies cannot

differ much from that expected under random and symmetric

trees, due to the restriction of binary bifurcations in phylogenetic

tree reconstruction, significant departures become universally

evident as trees become larger, where the null ERM model and

real phylogenies differ (Figure 2B). These deviations suggest (a)

Figure 3. Allometric scaling. A: Plot of the logarithmically binned set of values of branch size, A, and cumulative branch size, C, for the interspecific
(empty squares) and intraspecific (solid circles) data sets considered. The line corresponds to a power law C,Ag, with the exponent given by the best
fit through all data, g = 1.44. The inset shows probability distributions of the values of g fitted to each individual tree (left: interspecific, right:
intraspecific data sets) illustrating the small dispersion in the values. B: Plot of the logarithmically binned set of values of C as a function of A for the
interspecific data, normalized by the prediction from the ERM model (the horizontal line). Data systematically deviate from ERM, especially for large
size A.
doi:10.1371/journal.pone.0002757.g003

Scaling in the Tree of Life
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that the evolution of life leads to less biodiversity than an optimal

tree can possibly generate; and (b) the operation of a mechanism

generating a correlated branching, where some memory of past

evolutionary events is maintained along each branch. This

correlated branching pattern implies that entities that diversify

faster than average lead to new biological forms that diversify

more than average themselves. Invariance across the broad scales

considered here indicates that relatively simple rules govern the

phylogenetic branching and the unfolding of biodiversity. Their

deviation from random models indicates that evolutionary success

is a correlated trait within lineages, yielding present asymmetries in

the structure of the Tree of Life.

Materials and Methods

Phylogenies databases
On June 30th 2007 we downloaded the 5,212 phylogenetic trees

available at that time in the database TreeBASE (http://www.

treebase.org). TreeBASE constitutes a large database of interspe-

cific phylogenies, which were collected from previously published

research papers. The size of trees oscillates from 10 to 600 tips.

Most of the bifurcations in these trees are binary, as confirmed by

the fact that the ratio between the number of tips and the total

number of nodes gives 0.52 when averaged over all the trees (for

perfect binary trees, the ratio is 0.50).

As a comprehensive database comparable to TreeBASE does

not exist for intraspecific phylogenies, we constructed an

intraspecific data set by manually compiling 67 intraspecific

phylogenies from several published phylogenetic analysis [S1–

S45]. We compiled this data set in such a way that it contains: 1)

Organisms from the main different environments (terrestrial,

marine and fresh water), climatic regions (from polar to desert),

and branches of life (Table S1). 2) Phylogenetic trees reconstructed

with the main phylogenetic tree estimation methods, i.e.,

neighbor-joining, maximum parsimony and maximum likelihood

methods.

In order to test whether the results derived from the

examination of the relatively small (67 phylogenies) intraspecific

data base can be compared with the much larger (5212) set of

interspecific phylogenies extracted from TreeBASE, we sampled

the literature to construct a dataset of 67 interspecific phylogenies

drawn from the literature [S46–S85] using the same criteria as

those to derived the intraspecific phylogeny data base (Table S1),

obtaining full agreement (Figure S1). The intra- and interspecific

phylogenies derived from the literature ranged between 30 and

170 tips, and they contained mainly binary branching events. An

example for each kind of phylogenies is shown in Figures S2A and

S3A.

Branch size and cumulative branch size distributions
We associate to each node i of a phylogenetic tree two

quantities, the size Ai (number of nodes) of the subtree Si made up

of node i and all the descendant nodes below it, that is, the subtree

which does not contain the global root of the original tree, and the

cumulative branch size, Ci, defined as the sum of the branch sizes

associated to all the nodes in the subtree Si, Ci =SAj. To

characterize the probability distributions of the Ai and Ci values

on a particular phylogenetic tree we compute the respective

complementary cumulative distribution functions (CCDF):

F(A) = probability(Ai.A), and F(C) = probability(Ci.C). We ob-

serve that these quantities scale, for large values of A and C, as

power laws: F Að Þ*A1{tA and F Cð Þ*C1{tC . The exponents tA

and tC, thus, characterize the probabilities of {Ai} and {Ci}:

P Að Þ*A{tA andP Cð Þ*C{tC , respectively.

Allometric scaling relationship
We observe that a functional relationship among the values of C

and A, i.e. among shape and size, exists and also follows a power

law, C,Ag, characterized by an exponent g. Since this relationship

encodes the variation of a system property as size is varied, we can

call this an allometric scaling relationship, to stress its connections with

other functional relationships relating function and size [11,13,27].

We note that introduction of the change of variables C,Ag into

F Cð Þ*C1{tC leads toF Cð Þ*Ag 1{tCð Þ, from which g = (12tA)/

(12tC.). Thus, only two out of the three exponents are

independent. As simple examples for which the above exponents

can be computed by direct counting, we mention the pectinate or

fully unbalanced tree, i.e. a tree in which all branching occurs

successively along a single branch, characterized by the exponents

tA = 0, tC = 1/2, g = 2, or the fully symmetric or Cayley tree,

characterized by tA = 2, and C,AlnA, which except for the weak

logarithmic correction corresponds to g = 1 and tC = 2. Figures

S2B and S3B show, in contrast, the allometric scaling relationship

for the particular examples of intra- and inter-specific phylogenies

displayed in Figures S2A and S3A.

In order to investigate whether observations differ from random

expectations, we have compared the allometric scaling found here

with the prediction of a null model [29], the Equal-rates Markov

(ERM) model. The ERM model was attributed to Harding [30],

and to Cavalli-Sforza and Edwards [31], although it is based on

models of the diversification process that date back at least to Yule

[23]. The main assumption of the ERM model is that the

phylogeny is the product of random branching. This is the result

when the ‘‘effective speciation rate’’ (the difference between

extinction and speciation rate) is equal for all species. The effective

speciation rate may change chronologically, provided that it is the

same for all lineages at a given time [23]. For this model we obtain

C,A ln A, or g = 1, and also tA = tC = 2. The random asymmetries

introduced by the ERM are not strong enough to change the

scaling behavior from the symmetric tree result.

The quantity Ci/Ai can be thought as a measure of the average

depth or distance of the phylogenetic tree leaves to the node i. This

can be seen taking into account that Ci =S(dij+1), where dij

corresponds to the distance of each of the nodes j of the subtree Si

to the root i. Thus, the relationship between C and A can be

written as Ci = Ai+ÆdæiAi, where Ædæi is the average depth of the

nodes in the subtree Si. The relationship between Ci/Ai and the

depth is obtained: Ci/Ai = Ædæi+1. This quantity is closely related to

the Sackin’s index defined as the distance of the leaves to the root:

S =SlMleavesdl,root [32,33]. It can be shown that for binary trees

C = 2S+1, where C =S;idi,root. Since the scaling law relating the

increase of the depth or Sackin’s index with three size is known to

be the same as the scaling of the Colless’ index, measuring the

symmetry or balance of a phylogenetic tree [34], our results for g
can be put in the context of the numerous studies available on the

unbalance of phylogenetic trees [4,17,35]. Thus, connections

between several methodologies previously used to analyze the

topology of trees, such as size distributions [10,23], unbalance and

depth [4,8,32–35], and transport efficiency [7,13,27,28], are

revealed within the framework presented here.

Supporting Information

Text S1 Scaling of branch size and cumulative branch size:

TreeBASE vs. manually selected data sets. We provide the list of

references corresponding to the selected intraspecific and inter-

specific phylogenetic trees; the statistics of all data sets with two

specific examples; and a summary table of taxa in the data sets.
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Found at: doi:10.1371/journal.pone.0002757.s001 (0.06 MB

DOC)

Table S1 Break-down of the number of analyzed inter- and

intra-species trees with respect to taxa.

Found at: doi:10.1371/journal.pone.0002757.s002 (0.03 MB

DOC)

Figure S1 Cumulative complementary distribution functions

(CCDFs) for branch size (F(A), panel A) and cumulative branch

size (F(C), panel B), and the allometric scaling relation (C {similar,

tilde operator } Ag, panel B) averaged and logarithmically binned

over all phylogenetic trees. Empty squares are for the interspecific

TreeBASE data set, solid circles are for the manually compiled

intraspecific data set, and triangles are for the new manually

compiled interspecific data set of reduced size. Solid lines are

power laws fitted to the TreeBASE behavior, as in Figs. 2 and 3 of

the main text.

Found at: doi:10.1371/journal.pone.0002757.s003 (1.22 MB TIF)

Figure S2 A: An example of an intraspecific phylogenetic tree:

different strains of the bacteria Vibrio vulnificus [S19]. Most of the

branchings are binary, but there are some 3rd order branchings.

B: The allometric scaling plot showing the relationship of

cumulative branch size (C) to branch size (A) from each node of

that tree. The solid line corresponds to the fitting C {similar, tilde

operator } A1.43 to this intraspecific dataset.

Found at: doi:10.1371/journal.pone.0002757.s004 (2.66 MB TIF)

Figure S3 A: An example of an interspecific phylogenetic tree:

the catfish species (order Siluriformes) [S80]. Most of the

branchings are binary, but there are some 3rd order branchings.

B: The allometric scaling plot showing the relationship of

cumulative branch size (C) to branch size (A) from each node of

that tree. The solid line corresponds to the fitting C {similar, tilde

operator } A1.44 to this intraspecific dataset.

Found at: doi:10.1371/journal.pone.0002757.s005 (2.58 MB TIF)
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