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Abstract

Remarkable advances in DNA sequencing technology have created a need for de novo genome assembly methods tailored
to work with the new sequencing data types. Many such methods have been published in recent years, but assembling raw
sequence data to obtain a draft genome has remained a complex, multi-step process, involving several stages of sequence
data cleaning, error correction, assembly, and quality control. Successful application of these steps usually requires intimate
knowledge of a diverse set of algorithms and software. We present an assembly pipeline called A5 (Andrew And Aaron’s
Awesome Assembly pipeline) that simplifies the entire genome assembly process by automating these stages, by
integrating several previously published algorithms with new algorithms for quality control and automated assembly
parameter selection. We demonstrate that A5 can produce assemblies of quality comparable to a leading assembly
algorithm, SOAPdenovo, without any prior knowledge of the particular genome being assembled and without the extensive
parameter tuning required by the other assembly algorithm. In particular, the assemblies produced by A5 exhibit 50% or
more reduction in broken protein coding sequences relative to SOAPdenovo assemblies. The A5 pipeline can also assemble
Illumina sequence data from libraries constructed by the Nextera (transposon-catalyzed) protocol, which have markedly
different characteristics to mechanically sheared libraries. Finally, A5 has modest compute requirements, and can assemble a
typical bacterial genome on current desktop or laptop computer hardware in under two hours, depending on depth of
coverage.
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Introduction

High throughput DNA sequencing continues to revolutionize

our understanding of biological systems. In particular, the de novo

sequencing and assembly of genomes and metagenomes has

yielded basic scientific insight into the relationship between

genotype and phenotype, in addition to biotechnological advances

in enzyme discovery, bioprospecting, medicine, and agriculture.

Although many high throughput sequencing instruments have

been developed, such as the ABI SOLiD, Helicos Heliscope,

IonTorrent PGM, Roche 454, and Pacific Biosciences RS1, we

focus on data generated by the Illumina instrument in this work

because it is the most prevalent data type at the moment. Current

Illumina instruments such as the HiSeq 2000 and MiSeq generate

paired nucleotide sequence reads of length up to 150 nt per read

from fragments as long as 600 nt, with longer reads and inserts

under development. Currently one run of a HiSeq 2000

instrument generates up to 600 Gbp of sequence data. Despite

the widespread use of Illumina sequencing, de novo genome

assembly from Illumina data continues to pose a challenging

problem.

A tremendous number of software tools have been developed to

assist with genome assembly from Illumina data. These include

tools for base calling of the images from the sequencer [1,2], error

correction of the sequence reads [3,4], removal of adapter

sequence contamination [5], contig assembly [6,7], and scaffolding

[8–10]. This list is not complete, but rather meant to illustrate

some of the many tools for Illumina sequence analysis. As part of a

project to sequence and assemble de novo the genomes of 64

halophilic archaea, we have evaluated many of these software tools

and constructed a new genome assembly pipeline that incorpo-

rates methods for data cleaning, error correction, contig assembly,

and scaffolding together with a new algorithm for assembly quality

control.

The new assembly quality control algorithm uses paired-end

read information to detect and fix misassembled contigs and

scaffolds. The first stage involves mapping reads back to assembled

contigs. The second stage involves detecting statistically significant

clusters of read pairs that conflict with the assembled contigs.

Having identified putative regions of misassembly, the algorithm

then determines the region of misassembly as precisely as possible

and removes that region from the assembly, breaking the contigs

or scaffolds at that point. The quality control algorithm is

implemented in a software module that can also be used

independently of the assembly pipeline.

The new assembly pipeline, called A5, can operate directly on

FastQ format data generated by an Illumina sequencing run

without any prior processing. The A5 pipeline also contains
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methods to infer many of the assembly parameters directly from

the data, and in cases where that was not practical, default values

have been chosen by tuning their values on assemblies of Haloferax

mediterranei and Haloferax volcanii DS2 [11], for which high quality

reference genomes were available.

We present comparison of the A5 pipeline’s performance

relative to the SOAPdenovo assembler [12] on two datasets

wherein we attempted to fix the human time budget, in terms of the

number of steps that must be performed by a user, to be roughly

equal for the two approaches. We also compare against

SOAPdenovo in an ideal setting where extra effort has been

taken to clean and error correct the reads prior to use of

SOAPdenovo. The first dataset is the halophilic archaeon, H.

volcanii DS2, for which a high quality published reference genome

is available [11]. For this dataset we are able to use reference-

based assembly metrics to evaluate assembly quality [13]. We also

evaluate assembly quality on an Escherichia coli CC118 isolate

sequenced using transposon-catalyzed library preparation methods

(Epicentre Nextera). No high quality reference genome exists for

the E. coli isolate, so we report basic descriptive statistics for

assemblies generated by each method.

De novo genome assembly from Illumina data is an extremely

active area of research, with many assembly algorithms published

and many more continuing to be produced. A thorough

comparison of the performance of all these methods is a highly

nontrivial undertaking and well outside the scope of the present

work. Instead, we chose to compare A5 to a single other widely-

used assembly method, namely SOAPdenovo. We selected

SOAPdenovo for comparison because it ranked among the best

in two recent surveys of assembly algorithms [14,15], because it is

able to run on a single paired-end library, and like A5 is relatively

simple to download, install, and use. Although methods that

require both small insert paired-end libraries and large insert

mate-pair libraries can produce very high quality results [16], the

time, cost and technical expertise required to construct large insert

libraries is significantly beyond that required for small insert

libraries (especially using transposon-catalyzed library construc-

tion). For this reason we feel there is a great need for methods to

easily produce assemblies of the highest quality possible without

large insert mate-pair data. A5 can be considered a first attempt at

such a method.

Although the A5 pipeline was parameterized using archaeal

genomes, it is readily applicable to genome assembly of other

organisms including bacteria, virii, and homozygous eukaryotes.

Compute requirements are likely to be the limiting factor for

assembly of large genomes; these requirements are discussed

below.

Results

We evaluated the performance of A5 on two real Illumina data

sets and compared the results to those obtained when running

SOAPdenovo v1.05 [12] on the same datasets. The first data set

(called Volc) is a paired-end short insert library constructed from

H. volcanii DS2 genomic DNA using sonication followed by end-

repair, A-tailing, and adapter ligation, and was sequenced on an

Illumina GAIIx instrument. Sequencing yielded 6844701 read

pairs, with each read being 78 nt in length. These data have been

deposited at the NCBI Short Read Archive, accession SRX105348

(data can be downloaded from http://edhar.genomecenter.

ucdavis.edu/*andrew/ngopt_pipeline/ms/). We chose H. volcanii

for this evaluation because it is a model organism among the

archaea, we have an ongoing project to sequence 64 other

haloarchaea genomes, and a high quality reference genome is

available for H. volcanii DS2 [11], enabling the use of reference-

based assembly metrics [13]. The second data set, called Tn and

previously published by [17], is a paired-end library constructed

from E. coli CC118 genomic DNA using transposon-catalyzed

adapter ligation (Nextera) and was sequenced on an Illumina

HiSeq 2000 instrument using TruSeq 2 chemistry. Reads from

this dataset were obtained from the NCBI Short Read Archive,

accession SRX030179.

We executed A5 and SOAPdenovo for each data set. Table 1

reports the assembly performance for Volc assemblies. Table 2

reports the assembly performance for Tn assemblies. Volc
assemblies were scored using Mauve Assembly Metrics [13],

Table 1. Assembly metrics for H. volcanii DS2.

SOAPdenovo A5

Assembly ctg-CDS scaf-CDS ctg-N50 scaf-N50 ctg-LCB scaf-LCB ctg scaf scaf-QC

Sequence count 7686 211 10258 212 19508 226 853 106 95

N50 5111 125642 4775 125739 2832 107081 8170 101041 110196

Miscalled bases 379 573 270 395 409 377 120 315 247

Uncalled bases 0 92290 0 11430 0 13304 0 6436 6727

Extra bases 269960 18582 27069 14295 32797 19732 14096 17903 18496

Missing bases 149253 151966 148291 142017 160773 156254 128909 107421 106626

Extra sequences 6129 75 8604 76 17194 95 33 5 5

Missing replicons 0 0 0 0 1 1 0 0 0

DCJ Distance 1559 143 1656 140 2317 134 839 123 100

LCB Count 15 22 9 14 7 10 45 55 28

Broken CDS 434 434 454 454 634 634 276 214 212

Reference-based assembly metrics on ten assemblies of H. volcanii DS2 (Volc) dataset. ‘‘scaf’’ indicates an assembly that has been scaffolded, while ‘‘ctg’’ indicates no
scaffolding. Labels ‘‘-CDS’’, ‘‘-N50’’, and ‘‘-LCB’’ indicate SOAPdenovo assemblies run with parameter combinations that minimized broken coding sequences, maximized
scaffold N50, and minimized LCB (Locally Collinear Block) count, respectively. For A5, assembly ‘‘scaf-QC’’ has been broken using the A5QC algorithm and rescaffolded
using SSPACE. The DCJ Distance is the Double-Cut-and-Join distance [35], a measure of the minimum number of rearrangement operations required to transform one
genome assembly into another.
doi:10.1371/journal.pone.0042304.t001

The A5 Assembly Pipeline
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which quantifies differences between the reference and assembly

using whole genome alignment. We note that aligner error may

cause additional errors to be found between the assembly and the

reference. Although high quality reference assemblies exist for

other E. coli isolates, none are available for strain CC118. We can

not use another E. coli as a reference due to the potential for

extensive genomic divergence among E. coli isolates [18]. Contigs

from A5 were broken using the A5QC algorithm. Volc contigs

were broken up into 859 contigs (N50 = 8170) and Tn contigs

were broken up into 342 contigs (N50 = 27316). N50 is defined as

the contig length N for which 50% of all bases in the assembly are

in a contig (or scaffold) of length LwN.

We initially ran SOAPdenovo with default parameters; howev-

er, the resulting assemblies were of extremely poor quality. For

Volc there were 280985 contigs (N50 = 76) and 14433 scaffolds

(N50 = 209), and for Tn, there were 1572720 contigs (N50 = 76)

and 8144 scaffolds (N50 = 121). Rather than reporting poor results

for SOAPdenovo, we endeavored to manually optimize its

assembly parameters so that we can compare the A5 assembly

to the best possible SOAPdenovo results. To do so, we ran

SOAPdenovo with different combinations of values for the

parameters K and d, where K is the k-mer size for SOAPdenovo

and d is the threshold for the minimum number of times a k-mer

must be observed in the data to be considered valid. For both

datasets, we selected combinations that maximized scaffold N50.

In addition, for the Volc dataset we also present assembly scoring

results for the parameter combination that minimized LCB (locally

colinear block) count between the assembly and the reference, as

well the combination that minimized the number of broken coding

sequences. The parameter combination that maximized scaffold

N50 for Volc also minimized the sum of missing and extra bases

relative to the reference. The parameter space queried was

SK +Sd
, where SK~f23,25,27,29,31g is the set of values over

which K was varied, and Sd~f1,2,:::,9,10g is the set of values

over which d was varied. Using this process, the optimal

parameters were found to be

N Volc (-N50): K~27, d~2.

N Volc (-LCB): K~27, d~1.

N Volc (-CDS): K~29, d~2.

N Tn: K~27, d~2

Labels ‘‘-CDS’’, ‘‘-N50’’, and ‘‘-LCB’’ indicate SOAPdenovo

assemblies run with parameter combinations that minimized

broken coding sequences, maximized scaffold N50, and minimized

LCB (Locally Collinear Block) count, respectively. Locally

collinear blocks are continuous regions of assembly which can

span zero or more contigs and scaffolds which are free from

rearrangement relative to the reference genome. See [13,19] for a

more complete discussion. A5 assemblies were generated using

source code from revision 625 of A5.

In addition to the reference-based assembly metrics, we present

the scaffold and contig size distribution as a ‘‘length accumulation

curve’’ in Figure 1. In that figure, scaffolds (contigs) are sorted in

descending order by length and the cumulative length is plotted as

additional scaffolds (contigs) are added. The scaffold length

distribution for A5 and SOAPdenovo appear to be very similar.

However, the contig length distributions are quite different, with

SOAPdenovo generating much shorter contigs than A5. This

exemplifies a fundamental difference between the contig-genera-

tion strategies employed by SOAPdenovo and IDBA (used in the

A5 pipeline). SOAPdenovo is conservative during contig genera-

tion and avoids introducing misassembly and chimerism, but

produces only very short contigs, whereas IDBA produces long

contigs that occasionally contain misassemblies that the A5

pipeline’s QC step must resolve.

A5 and SOAPdenovo assemblies on error corrected reads
As reported elsewhere [15], assemblers such as SOAPdenovo

can be highly sensitive to errors in the read sequence data and

cleaning and filtering the reads prior to assembly can offer large

improvements in some cases. In the previous section we report

results of a comparison between A5 and SOAPdenovo assemblies

when each pipeline is run in a single step from raw Illumina data.

However, common practice involves manually performing several

read cleaning steps prior to a SOAPdenovo assembly.

A direct comparison of A5 to SOAPdenovo is challenging

because A5 incorporates read cleaning steps whereas SOAP does

not. Therefore, we also ran SOAPdenovo assemblies of Volc and

Tn on cleaned and error corrected reads generated by stage 1 of

the A5 pipeline. For these assemblies we also scanned a larger

range of possible k-mer sizes for SOAPdenovo at the suggestion of

an anonymous reviewer: SK~f27,29,31,33,35,37,39,41,78g. The

-CDS, -N50, and -LCB metrics were optimal in scaffold assemblies

with K~27,27, and 41, respectively.

Table 2. Assembly metrics for E. coli CC118.

SOAPdenovo A5

Assembly ctg scaf ctg scaf scaf-QC

Sequence count 4348 197 323 111 87

N50 12825 83067 27846 72166 82719

Mean seq len 1056 22647 13800 40207 51300

Max seq len 48725 200327 113049 330689 330689

Total bases 4590705 4461465 4457409 4462953 4463084

Uncalled bases 0 26290 0 220 290

Non-reference based metrics on assemblies of E. coli CC118 (Tn) dataset. Data
for SOAPdenovo were calculated from the assembly run with parameters that
maximized scaffold N50. ‘‘scaf’’ indicates an assembly that has been scaffolded,
while ‘‘ctg’’ indicates no scaffolding. For A5, assembly ‘‘scaf-QC’’ has been
broken using the A5QC algorithm and rescaffolded using SSPACE.
doi:10.1371/journal.pone.0042304.t002

Figure 1. Sequence length accumulation curve for six assem-
blies of the model archaeon H. volcanii DS2. Curves represent the
number of bases in an assembly as a function of the N largest
sequences. Assemblies generated from SOAPdenovo and A5 are
labelled with ‘‘SOAP’’ and ‘‘A5’’, respectively. ‘‘scaf’’ indicates an
assembly that has been scaffolded, while ‘‘ctg’’ indicates no scaffolding.
For A5, assembly ‘‘scaf-QC’’ has been broken using the A5QC algorithm
and rescaffolded using SSPACE. A perfect assembly would have exactly
the number of sequences as the organism has replicons (5 in this case),
and the curve would be in the extreme upper left corner.
doi:10.1371/journal.pone.0042304.g001

The A5 Assembly Pipeline
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SOAPdenovo assembly results on cleaned reads are provided in

Table S2. As expected, using cleaned reads reduced the number of

miscalled bases by 37–59% in the SOAPdenovo contig assemblies.

Surprisingly, the number of miscalled bases in scaffold assemblies

was lower only for K~31, with scaffold assemblies at other K
values having higher miscalled base counts than the optimal -

CDS, -N50, and -LCB runs on uncleaned data. We speculate that

this may be result from two factors. First, the currently available

version of SOAPdenovo does not support setting dw1 when

Kw31. Therefore all assemblies on clean data with higher K
settings were done with with d~1. However we observed that

d~2 produced better assemblies when Kƒ31 in some settings

(see above). Second, the scaffold gap filling process used by

SOAPdenovo may explain the extra error in scaffold assemblies

relative to contig assemblies. Scaffold gap filling identifies reads

with pairing information suggesting they belong in the scaffolded

region between two contigs and adds them to the assembly. In

some cases these regions might have low coverage, making error

correction less effective.

In comparing the SOAPdenovo results on raw and cleaned

reads, we observe that the highest achieved scaffold N50 and the

LCB count metric (a measure of misassembly error) are apparently

unaffected by the read cleaning process, with a difference of only

0.1% between cleaned and raw data in scaffold N50, and no

change in LCB count. We observe a slight reduction in contig N50

and increase in broken CDS when SOAPdenovo is run on cleaned

reads.

Compute time and memory requirements
The A5 pipeline can construct genome assemblies with limited

memory and CPU requirements. For microbial genomes around

4 Mbp sequenced to 1006coverage, memory as low as 4 GB can

be sufficient (data not shown). Typically the error correction using

SGA is the most resource intensive stage in the pipeline. SGA’s

implementation of error correction offers a configurable space/

time tradeoff wherein temporary files on a filesystem can be used

to reduce RAM requirements at the expense of extra compute

time. A5 makes use of this configurable tradeoff by determining at

runtime the available memory on the system and allocating a fixed

fraction of it to SGA for error correction. This approach enables

error correction to run faster on machines with larger available

memory.

The A5 assemblies of Volc and Tn were conducted on a 8 core

64-bit system with 48 GB RAM. On this machine, the Volc
assembly took 1 hour, 20 minutes with a peak memory usage of

20 GB during the SGA error correction step. The Tn assembly

completed in 1 hour, 29 minutes with a peak memory usage of

21 GB.

Discussion

When constructing assemblies directly from Illumina sequence

output in a single step, A5 produces higher quality assemblies than

SOAPdenovo on the datasets we analyzed. In particular, A5

assemblies have a 50% lower rate of broken coding sequences

relative to SOAPdenovo assemblies. For gene-oriented analyses

such as inferring metabolic potential and surveys of natural

selection via dN/dS ratios, the reduced error in coding sequences

may be very advantageous. To obtain the SOAPdenovo results we

conducted a parameter sweep over 50 combinations of k-mer

length (K ) and the minimum k-mer frequency (d), while A5

required only a single run of the pipeline. SOAPdenovo

outperforms A5 in scaffold N50 on the H. volcanii DS2 dataset,

but on the E. coli dataset (for which no high quality reference

assembly is available) A5 produces a better assembly when

measured by scaffold count, mean scaffold size, and max scaffold

size. The scaffold N50 of SOAPdenovo on the E. coli was higher by

about 1%. One possible reason that A5 may produce better results

on the transposon catalyzed library is that the insert size using that

library preparation protocol often does not fit a normal

distribution. Instead the insert size distribution depends greatly

on the relative concentrations of transposase and target DNA and

can range from a truncated uniform to roughly lognormal

depending on the enzyme concentration and what size selection

steps are taken during library preparation. Most scaffolding

programs to-date model the insert sizes for paired-end reads using

a normal distribution with a particular mean and standard

deviation. A5 also uses this model, but has been configured to be

permissive of scaffolding using libraries with broadly distributed

insert sizes. We speculate that another explanation for A5’s

improved performance on transposon-catalyzed libraries may be

that the method is more robust to low coverage regions. Illumina

libraries constructed by in-vitro transposition with Tn5 transpos-

ase have considerable target site preference (data not shown),

leading to highly nonuniform coverage around a genome.

In all cases where reference data was available A5 produced

fewer miscalled bases. This is to be expected, as A5 first performs

error correction on reads before assembling them into contigs.

Running SOAPdenovo on error corrected reads did reduce base

call errors in assembled contigs, however both contig and scaffold

assemblies still had more basecall errors than A5’s assemblies. A5

also produced assemblies with 50% fewer broken CDS than

SOAPdenovo when run on our data. This may have important

implications for downstream analysis of gene function, regulation,

and metabolism.

The strategy used for detection of misassmblies demonstrates

the utility of paired-end data for improving draft genome

assemblies. In addition to identifying misassemblies after scaffold-

ing, paired-reads may also be used to identify repetitive regions.

Although we use paired short reads, the methodology is not limited

to this type of data. Long reads with split mapping positions could

in theory be used in the same manner as the paired short read

data.

Limitations and scope
A limitation to misassembly detection is the underlying

assumptions about the structure of misassemblies. The first

assumption we make is that the only feature of the misassembly

is a false adjacency between two bases. In many cases, however, a

misassembly consists of more than a single false adjacency and

includes extra inserted sequence. One approach to overcome this

would be to employ a model that characterizes the insertion of

additional sequence. A related limiting assumption is that coverage

within each of the two regions surrounding the misassembly is

uniform. This assumption is frequently violated, as sequence

coverage is rarely uniform. We also assume that coverage is equal

on both sides of the false adjacency. In cases where coverage is not

equal between the two regions flanking a misassembly, as may be

the case in metagenomes, a spatial clustering algorithm that allows

for variable density clusters, such as AMSTLSC [20], would more

accurately identify blocks. Finally, we assume that all replicons in

the target genome are circular. In genomes containing linear

chromosomes, a misassembly combining a whole linear chromo-

some with a position internal to another chromosome would result

in a single block on one side of the misassembly. Identifying a

misassembly in this case would require additional information.

When two chromosomes have been assembled together at their

ends (telomeres, for chromosomes with such structures), no such

The A5 Assembly Pipeline
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blocks will be found necessitating a different approach to

identifying misassemblies.

In addition to theoretical limitations, A5 also also has practical

computational limits. Large datasets, such as a full lane of data

generated on the Illumina HiSeq 2000 platform, require resources

beyond that typically available in a desktop or laptop computer.

The major computational bottlenecks of A5 are the first two

stages: read cleaning and contigging. Memory requirements for

read error correction grow with total data volume, requirements

for contigging grow with data volume and total size/complexity of

the assembled genome (since the de Bruijn graph is more complex

in these cases). The DBSCAN algorithm has O(n log n) time-

complexity and O(n) memory-complexity. One approach to

reduce the memory complexity of DBSCAN would be to

implement a grid-based density clustering algorithm that operates

on cell densities rather than individual data points. Such

algorithms exist [21]; however, employing a grid may compromise

the resolution at which a misassembly can be identified. Finally,

when coverage is high, subsampling the dataset can lower the

memory load without sacrificing sensitivity.

Previous efforts have been made toward identification of

misassemblies [22]. Implementations identify locations of putative

misassemblies and require further manual inspection to remove

these regions. The algorithm we developed for misassembly

detection is conceptually similar to algorithms applied for

segmental homology detection that operate by ‘‘chaining’’

homologous fragments into collinear blocks. Chaining algorithms

such as FISH [23] and DAGChainer [24], are not permissive for

this task, as they depend on a collinear arrangement of points.

Because fragment lengths vary in size, points of mapped read pairs

rarely fit this model of collinearity. The algorithm is also related to

structural variant detection algorithms [25,26]. Structural variant

detection begins with mapping reads back to the reference and

using read orientation information and mapping distance to

identify anomalous pairs. In theory, some of these algorithms

could also be employed to detect misassembly.

Our characterization of the performance of A5 also has

limitations. We have only compared A5 to a single other assembler,

SOAPdenovo, on a limited number of datasets. We chose this

assembler because it is widely used and like A5 can assemble

individual libraries without an additional mate pair library. Broad

performance comparisons of many assemblers on many datasets is a

major undertaking and we hope that A5 can be included in future

comparisons like GAGE and the Assemblathon [14,15].

Design and Implementation

A5 pipeline
The A5 (Andrew And Aaron’s Awesome Assembly) pipeline

consists of five stages: 1) read cleaning, 2) contigging, 3)

scaffolding, 4) misassembly checking, and 5) rescaffolding.

Figure 2 provides an overview of these stages.

Stage 1. For the first stage A5 uses two previously published

programs. First, ambiguous and low quality portions of reads are

Figure 2. Overview of the stages in A5. The first stage of the A5 pipeline cleans reads, removing any contaminant reads and correcting base-call
errors. Then the pipeline assembles contigs with IDBA using these error corrected reads. These contigs are then scaffolded using the original read set.
Scaffolds are then checked for misassemblies, and broken at regions containing misassemblies. Finally, the broken scaffolds are rescaffolded using
the original read set.
doi:10.1371/journal.pone.0042304.g002

The A5 Assembly Pipeline
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removed from the dataset. Then sequencing errors are corrected in

the reads. Both of these steps use tools from from the SGA software

package [27]. Although many read error correction packages have

been published, we found the implementation in SGA to have

reasonable compute time and memory requirements compared to

others while also providing good accuracy. Next, the pipeline

applies Tagdust [5] to remove any sequencing adapter contamina-

tion that may be present in the data. The default set of adapter

sequences used for screening include the standard Illumina TruSeq

adapters and those used in Epicentre Nextera (transposon-

catalyzed) library preparation protocols [17]. User-specified adapter

sequences can be screened by adding them to a FastA file.

Stage 2. Using the newly cleaned reads derived from stage 1,

stage 2 of the A5 pipeline builds contigs with the the assembler

IDBA [28]. We selected IDBA due to its ability to produce long

contigs in the presence of inconsistent depth of sequence coverage

more robustly than other methods (data not shown). Like many

current assembly algorithms, IDBA uses a de Bruijn graph-based

algorithm to assemble contigs. A de Bruijn graph is a directed graph

that represents overlap between all k-mers found in a nucleotide

dataset. For a more complete description and comparison to other

assembly approaches please see [29]. Many de Bruijn-based

assemblers require the user to specify a single k-mer length, and

the optimal choice of k depends intimately on characteristics of the

genome being assembled. Moreover it is possible that for a

particular dataset with given read lengths and error profiles,

different regions of the same genome may be optimally

reconstructed by different values of k. In contrast, IDBA simply

requires a minimum and maximum value of k to use when

processing the de Bruijn graph into contigs. This simplifies

parameter choice. One final factor entering into the choice of

IDBA was its ability to generate highly contiguous sequence even

with unpaired sequence reads. Although assemblers using paired-

end read information during contigging can often produce

exceptional results [16,30], we did not want to impose the

requirement of paired reads (or multiple libraries with different

insert sizes) upon users of the pipeline. This keeps applicability of

A5 as broad as possible.

Stage 3. In stage 3 of A5, contigs are scaffolded and extended

using the software SSPACE [9].

Stage 4. In stage 4 of A5, crude scaffolds are subjected to a

quality control check for misassemblies. An undesirable side-effect

of using a contigging algorithm that is unaware of read pairing

information is that misassemblies can occur in contigs that could

have been avoided if the longer-range linkage information present

in read pairs (or long reads) had been used. As described in Results

below, we observe occasional misassemblies in the contigs

generated by IDBA. Although the version of IDBA currently

incorporated into A5 (v0.20) has an option to use pairing

information, it has little effect on the assembly (data not shown).

Cleaned reads are mapped back to crude scaffolds using the read

mapping software, BWA [3]. Custom code (described in detail

below in section 0) is then used to extract all read pairs that are

discordant with the crude scaffold assembly and two-dimensional

spatial clustering [32] is used to identify clusters of discordant read

pairs that are suggestive of a misassembly. The A5 pipeline then

breaks the crude scaffolds at the estimated position of the

misassembly.

Stage 5. Finally, in stage 5 the broken-up scaffolds are

rescaffolded using SSPACE [9].

Automated parameter selection
Most currently available assembly programs have a wide variety

of parameters which must be specified by the user, and some of

these can have a profound impact on the quality of the resulting

assembly. The software employed within A5 is no exception.

Often these parameters require dataset-specific tuning. A common

approach employed by the hapless bioinformatician involves

repeatedly executing the assembly software and evaluating the

results until a perceived optimum has been achieved (or a pressing

deadline looms). Scripts for automating this iterative tuning

procedure have been developed [33], however, it is not always

feasible, depending on available compute resources and the size of

the dataset. The A5 pipeline avoids the problem for users by

calculating reasonable parameters for each stage of the pipeline

using values derived from the data itself. In some cases, default

parameters have been set to data-independent values. Supple-

mentary Text S1 summarizes the many parameters in the pipeline

and Table S1 describes how they are set.

Automated misassembly quality control
After crude scaffolds have been built, A5 performs an

automated quality control step.

As exemplified in Figure 3, reads are first mapped to scaffolds,

and then read pairs are spatially clustered on the points where they

map. After mapping, read pairs that support the current assembly

architecture, which we refer to as proper connections, must be

removed before spatial clustering. Without their removal, proper

connections among read pairs would form large spatial clusters.

Including these data in the clustering input would not only waste

considerable computational resources but may also obscure or

subsume clusters caused by local misassemblies in scaffolds.

Proper connections can be identified using the DNA fragment

length (insert size) distribution of the library. However, two

common features of Illumina datasets can skew the mean and

inflate the variance estimates of the insert size distribution. The

first of these features is referred to as a shadow library. Briefly, a

shadow library is a population of small-insert (v600 nt) paired

end reads that are a product of imperfect construction of large-

insert mate-pair libraries using the standard Illumina protocol.

The Illumina mate-pair protocol involves circularization of

fragments, further subfragmentation of the circular molecules,

and purification of the linear subfragments containing the

circularization junction. The purification of subfragments con-

taining circularization junctions (from which the large-insert mate-

pair reads derive) often fails to remove all DNA fragments lacking

a circularization junction, those fragments yield the small insert

read pairs termed a shadow library. The second feature that can

interfere with insert size distribution calculations is inherent noise

in the dataset. Such noise can be caused by chimeric fragments

and ambiguous read mapping due to repetitive regions or highly

erroneous reads.

Accurate estimates of insert size distributions
To avoid including noise in mean and variance estimates from

shadow libraries and other error sources, we perform a round of

Expectation-Maximization (EM) clustering of insert sizes before

calculating sample statistics [34]. Choice of the number of clusters

K in the EM-clustering algorithm is derived from a preliminary

estimation of the library insert size using the method implemented

in BWA [31]. Libraries with a preliminary insert size estimate

greater than 1000 bp are assumed to have been constructed using

a mate-pair protocol, and therefore may contain a paired-end

short insert shadow library in addition to the large insert mate-pair

library. To separate the short insert library from the large insert

library, K is set to 3: one cluster for improper connections, one

cluster for the short insert shadow library, and one for the desired

large insert library. If the preliminary insert size estimation is less
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than 1000 bp, the library is assumed to have been constructed

using a paired-end protocol, and K is set to 2: one for improper

connections and one for the short-insert library. Clusters returned

from EM-clustering are identified as containing improper

connections if they have high variance, defined as swm, and

proper connections if they have low variance (sƒm), where m is the

mean insert of pairs within the cluster, and s is the standard

deviation. In practice, the (K{1)th lowest-variance clusters are

identified as proper connections. Each low-variance cluster is then

used to remove mapped read pairs having inserts in the range

(m{ns,mzns), where n~min(t
m

s
s,6). The remaining read pairs

represent improper connections and may contain clusters sugges-

tive of misassembly.

After proper connections have been removed, misassemblies are

identified by locating clusters of many read pairs mapped within a

scaffold or between two scaffolds. We treat the mapped read pairs

as points in two-dimensional spaces defined by each possible

scaffold pair and self-pair. When the outer boundaries of a cluster

of points is projected back onto the one dimensional sequence(s),

we call the resulting intervals blocks. These blocks define regions of

misassembly.

To identify blocks, we use the spatial clustering algorithm

DBSCAN to cluster points in each of these 2-dimensional spaces

[32]. The two key parameters of DBSCAN are e, the maximum

allowed distance between two points in a cluster and MinPts, the

minimum number of points allowed in a cluster. The first

parameter is used to locate the neighboring points of each point,

where a point b is considered a neighbor of point a if

Dax{bxDve and Day{byDve. We set e by modelling read mapping

positions as a Bernoulli process. The probability of success p in the

Bernoulli process is set by calculating a minimum read mapping

frequency across the genome assembly. This is done by

partitioning the assembly into windows of length L, where

L~max(1000,m) for a library with mean insert m. Let wi be the

ith window and ni be the number of reads that map to wi. We then

set p according to the following equation

p~
mini(ni)

L
ð1Þ

The rationale for using the portion of the crude scaffold assembly

with the fewest mapped reads is that in practice, sequencing

coverage is often highly variable, with some regions receiving

excessive coverage and others receiving little. This variation in

coverage can be caused by systematic biases in the library

construction and sequencing procedures, including fragmentation

Figure 3. Demonstration of the automated misassembly quality control process. Upper Left: A hypothetical whole genome alignment of
an assembly containing misassemblies relative to the true genome, consisting of three circular chromosomes, and the resulting broken assembly.
Red, green, and blue lines connect aligned regions. Black connecting lines represent real paired read connections between contigs and orange
connecting lines represent erroneous connections. Black boxes in the broken assembly highlight blocks identified by the DBSCAN algorithm. Upper
Right and Bottom Row: Plots of connected points between contigs. Black and orange dots correspond to black and orange connections lines from
left figure, respectively. Dotted lines correspond to misassembly breakpoints. Gray circles highlight the set of points that are clustered by DBSCAN.
doi:10.1371/journal.pone.0042304.g003
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bias, PCR bias, and uneven representation of genomic DNA after

DNA extraction. By estimating this parameter on a region of low

coverage, we ensure sensitivity to detect misassemblies in low-

coverage regions.

Assuming the positions of mapped reads follow a Bernoulli

process, the distance between two independent reads in a sequence

follows a geometric distribution with parameter p. We derive a

maximum allowable distance, d(p), between two points (mapped

reads) in one sequence by selecting the 1{a quantile of a

geometric distribution with parameter p. This is done by setting

the cumulative distribution function, 1{(1{p)k, equal to 1{a
and solving for k:

1{(1{p)k~1{a

(1{p)k~a

k � ln(1{p)~ln(a)

k~
ln(a)

ln(1{p)
~d(p) ð2Þ

for some av1. In practice we set a~0:001, to select the 99.9th

quantile. Furthermore, we assume overlapping reads belong to the

same block, and set e~max(d(p),lr) where lr is the read length.

The second parameter of the DBSCAN algorithm, MinPts, is set

to be the expected number of points in the minimum allowed

block length in a region of minimal coverage. Assuming a block

will consist of 3 points at minimum and allowing a maximum

distance between consecutive points to be e, we allow the

minimum block length to be ‘mint2es. We then calculate the

expected number of points in a window of length ‘min given that

the probability of a read mapping to a single position is p, setting

MinPts~tp‘mins.
Finally, regions of length ƒ2m within individual scaffolds that

are flanked by two blocks are identified as containing misassem-

blies and are removed from the assembly, breaking the scaffold

into two subscaffolds. The removed region contains the mis-

assembly breakpoint, but the exact position of the misassembly

may not be well-defined in many cases, either due to lack of

coverage by reads spanning that position or due to errors in the

assembled sequence.

Availability
Software for Linux and Mac OS X, along with source code is

freely available from http://code.google.com/p/ngopt/ The

source code has been licensed under the GNU Public License

(GPL) v3.0.

Supporting Information

Text S1 Description internal assembly pipeline param-
eters. The A5 pipeline incorporates many algorithms, each of

which require certain parameters to be set. Each of these

parameters is described in detail here.

(PDF)

Table S1 Automatically set parameters. Assembly param-

eters within the a5 pipeline and how their values are chosen. e is

the maximum inter-point distance used for spatial clustering and

MinPts is the minimum number of points in a cluster.

(PDF)

Table S2 Assembly metrics for SOAPdenovo running on
error corrected reads from H. volcanii DS2. Reference-

based assembly metrics for SOAPdenovo assemblies of H. volcanii

DS2 (Volc) reads cleaned by stage 1 of the A5 pipeline. ‘‘scaf’’

indicates an assembly that has been scaffolded, while ‘‘ctg’’

indicates no scaffolding. Labels ‘‘-CDS’’, ‘‘-N50’’, and ‘‘-LCB’’

indicate SOAPdenovo assemblies run with parameter combina-

tions that minimized broken coding sequences, maximized scaffold

N50, and minimized LCB (Locally Collinear Block) count,

respectively. SOAPdenovo with K~27 produced the best

assemblies for -CDS, -N50, while K~41 was optimal for -LCB.

Contig statistics are on the contigs matching the optimal scaffold

assemblies.

(PDF)
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