
GHOSTM: A GPU-Accelerated Homology Search Tool for
Metagenomics
Shuji Suzuki1, Takashi Ishida1, Ken Kurokawa2, Yutaka Akiyama1*

1Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan, 2Graduate School of Bioscience and Biotechnology,

Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan

Abstract

Background: A large number of sensitive homology searches are required for mapping DNA sequence fragments to known
protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose,
but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-
generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic
analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis.

Methodology/Principal Findings: We developed a new, highly efficient homology search algorithm suitable for graphics
processing unit (GPU) calculations that was implemented as a GPU system that we called GHOSTM. The system first searches
for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local
alignments around the candidate positions before calculating alignment scores. We implemented both of these processes
on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs,
respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster
than BLAT with 1 GPU and 4 GPUs.

Conclusions: We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and
implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are
increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis
with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as
a potential solution to this problem.

Citation: Suzuki S, Ishida T, Kurokawa K, Akiyama Y (2012) GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics. PLoS ONE 7(5): e36060.
doi:10.1371/journal.pone.0036060

Editor: Narcis Fernandez-Fuentes, Aberystwyth University, United Kingdom

Received November 4, 2011; Accepted March 29, 2012; Published May 4, 2012

Copyright: � 2012 Suzuki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported in part by HPCI Strategic Program Computational Life Science and Application in Drug Discovery and Medical
Development by MEXT of Japan, Cancer Research Development funding by National Cancer Center, Japan, and the CUDA COE Program by NVIDIA. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: In the CUDA COE Program by NVIDIA, the authors are offered only funds. This does not relate to employment, consultancy, patents,
products in development or marketed products, etc. Therefore, this does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and
materials.

* E-mail: akiyama@cs.titech.ac.jp

Introduction

Metagenomics, which is the study of the genomes of uncultured

microbes obtained directly from microbial communities in their

natural habitats, has recently become more popular because of the

rapid improvement in sequencing technologies. For example,

a current Illumina/Solexa system can produce billions of base

pairs (bp) of data on a single run of the machine, and the

throughput of the system is approximately 1,000 times higher than

that of previous sequencers [1]. However, current sequencers only

produce information in short fragments, whose lengths range

between 50 and 700 bp. Only a simple mapping process is

required for single-organism genomics to identify the location of

each DNA sequence fragment if the reference genome has already

been obtained. For this purpose, many efficient short-read

mapping programs, such as BWA [2,3], Bowtie [4], and RMAP

[5], have been developed.

However, in metagenomic analysis, the DNA sequence

fragments obtained from environmental samples frequently in-

clude DNA sequences from many different species, and closely

related reference genome sequences are often unavailable. Thus,

more sensitive approaches are required for the identification of

novel genes. In the typical metagenomic analyses, sequenced DNA

fragments are translated into protein coding sequences and then

further assigned to protein families, such as COG [6,7] and Pfam

[8]. The BLASTX [9,10] program has been used for such binning

and classification because it can identify homologues that do not

have high nucleotide sequence identity, but once these sequences

are translated, the homolog can be found in a distantly related

member of a protein family [11,12]. The BLAST algorithm is

sufficiently sensitive for searching protein families and is much

faster than the classical dynamic programming method used in

SSEARCH [13]. However, its performance is insufficient for

analyzing the large quantities of data produced by a next-

generation sequencer. In practice, approximately 960 CPU days

were needed for querying 20 million short reads against the

KEGG database [14–16] using BLAST.

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36060

There are several faster homology search tools than BLAST.

For example, BLAT [17] is one of the fastest homology search

tools, and it is approximately 50 times faster than BLAST.

However, the search sensitivity of BLAT is much lower than that

of BLAST and is insufficient for identifying protein families. Thus,

there is currently a strong demand for much faster tools for

conducting sensitive sequence homology searches in metagenomic

analyses.

Graphics processing units (GPUs) are architectures that were

originally designed for graphics applications. However, new-

generation GPUs have been transformed into powerful co-

processors for general purpose computing, and their computa-

tional power supersedes that of CPUs. For example, the peak

performance of a GPU, such as the Tesla C1060, is approximately

1 TFLOPS. This speed is more than 10-fold faster than the most

recent CPUs. GPUs have already been used for several

bioinformatics applications, such as CUDASW++ [18,19] and

GPU-HMMER [20]. These applications have successfully

achieved more than a 5-fold increase in acceleration compared

to their CPU-based counterparts. Using GPUs, the BLASTP

program was also accelerated to create new applications, known as

GPU-BLAST [21] and CUDA-BLASTP [22]. BLASTP performs

protein versus protein sequence searches, whereas BLASTX

conducts a translated DNA sequence search against a protein

database with automatic translation of the query sequence into all

six of the possible reading frames. However, the calculation speed

of CUDA-BLASTP was only approximately 10 times faster than

BLAST on the CPU platform, and GPU-BLAST was only

approximately 3 times faster. The small increase in speed was

likely related to the BLAST search algorithm being complicated

and inefficient when implemented on GPUs. Therefore, a new and

efficient search algorithm optimized for GPU calculations is

required.

Here, we developed a new and efficient homology search

algorithm suitable for GPU calculation and implemented the

system on GPUs. The system accepts a large number of short

DNA fragment sequences produced by a next-generation

sequencer as the input and, like the BLASTX program, performs

DNA sequence homology searches against a protein sequence

database. We used NVIDIA CUDA to implement the GPU

computing. The search system, which we named GHOSTM

(GPU-accelerated HOmology Search Tool for Metagenomics),

demonstrated a calculation speed that was 130 times faster with

one GPU than BLAST on a CPU. This system should enable

researchers to analyze large amounts of metagenomic data from

next-generation sequencers, even with a small-scale workstation.

Results

Datasets and Conditions
To evaluate the performance of GHOSTM, we compared its

search accuracy and computation time with the NCBI BLAST+
package (version 2.2.25) and BLAT (standalone package, version

34). We used protein sequences obtained from KEGG Genes

(‘‘genes.pep’’) as of November 2010 as the search target database.

The number of sequences in the database was approximately 4.2

million, and the total length of these sequences was approximately

2.0 billion amino acids. We used DNA sequence reads obtained

from a polluted soil metagenome study with Illumina/Solexa

sequencing as the DNA query sequences. We used approximately

6.8 million high-quality reads selected from approximately 20

million reads that were obtained from the Illumina/Solexa

sequence run. We selected reads that had a quality score greater

than 15 (Q15 or over) over a continuous region of more than

60 bp. Thus, the lengths of the reads ranged from 60 to 75 bp. For

all of the evaluations, we used the BLOSUM62 matrix as the

substitution score matrix and performed all of the tests on

a workstation with two dual core CPUs (3.2-GHz Dual-Core

AMD Opteron 2224 SE) and a GPU server (1.44-GHz Tesla

S1070), which included 4 GPUs.

Table 1. Computation time for 100 thousand reads.

Program #GPUs Time (sec.) Acceleration ratio

GHOSTM 1 2,855 129.5

GHOSTM 4 909 406.7

BLAT 9,898 37.3

BLASTX (1 thread) 369,678 1.0

BLASTX (4 threads) 102,255 3.6

The first, second, third, and fourth columns show the name of each program,
the number of GPUs used for the calculation, the computation time, and the
acceleration in processing speed relative to BLAST using 1 thread, respectively.
doi:10.1371/journal.pone.0036060.t001

Table 2. Computation time for approximately 6.8 million
reads.

Program #GPUs Time (sec.) Acceleration ratio

GHOSTM 1 166,740 4.2

GHOSTM 4 47,995 14.6

BLAT 699,300 1.0

The first, second, third, and fourth columns show the name of each program,
the number of GPUs used for the calculation, the computation time, and the
fold increase in the acceleration in the processing speed relative to BLAT,
respectively.
doi:10.1371/journal.pone.0036060.t002

Figure 1. Search accuracy. The vertical axis shows the percentage of
results for each method that corresponds to the correct answers. The
horizontal axis shows the bit scores of the alignments.
doi:10.1371/journal.pone.0036060.g001

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36060

Evaluation of Computation Time
We ran GHOSTM, BLAST, and BLAT to measure their

computation times. For comparing BLAT with GHOSTM, we

used all of the 6.8 million reads as query sequences. However, we

used only 100 thousand randomly selected reads as query

sequences for comparing GHOSTM with BLAST because the

calculation cost of BLAST is too excessive to perform millions of

reads. As previously described, the queries were DNA reads, and

the database was composed of protein sequences; thus, we

executed the BLASTX program with the command line options

‘-outfmt 6 -seg no’, which instructed the program to output in

tabular format. We did not use the SEG filter [23] because

BLAST sometimes fails to find significant hits with this filtering for

short queries. We tested BLASTX with 1 thread and 4 threads.

The BLAT program does not include a function to translate DNA

reads to protein sequences. Therefore, we translated the DNA

reads into protein sequences based on the standard codon table.

We executed the BLAT program with the command line option ‘–

q= prot –t = prot –out = blast8,’ which instructed the program to

use protein queries as well as a protein database and to output data

in the BLAST tabular format. The BLAT program does not

support a multi-core processor. Thus, we executed the BLAT with

only 1 thread. For GHOSTM, we used the command line options

‘db -k 4 –l 128’ for constructing database indexes: the length of the

search seeds was K= 4, and the size of a database chunk was

128 Mbp. Using these parameters, GHOSTM generated 16

database chunks for the KEGG Genes database. The command

line options ‘aln –l 128 -s 2 -r 4 -e 2 -t 2’ were used for the search

process, with character skips at s = 2, search region size at r = 4,

extension size at e = 2, and the number of required matches at

t = 2. We determined these parameters based on the balance

between the prediction accuracy and computational time. The

performance of GHOSTM with other parameters is discussed in

the following section.

Figure 2. The relationships between search speed and accuracy and the search region size r. (A) The acceleration in processing speed
relative to BLAST using 1 thread and (B) search accuracy.
doi:10.1371/journal.pone.0036060.g002

Figure 3. The relationships between search speed and accuracy and the extension size e. (A) The acceleration of processing speed relative
to BLAST using 1 thread and (B) search accuracy.
doi:10.1371/journal.pone.0036060.g003

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36060

Table 1 shows the computational times for BLAST, BLAT, and

GHOSTM for 100 thousand reads. The GHOSTM program

achieved a calculation speed 129.5 and 35.8 times faster than the

BLAST program using 1 thread and 4 threads, respectively.

Moreover, GHOSTM was approximately 3.4 times faster than

BLAT. In addition, GHOSTM implemented on a system with 4

GPUs showed a processing acceleration that was 406.7 and 112.5

times faster than the computational speed of BLAST using 1

thread and 4 threads, respectively. Thus, GHOSTM implemented

on a system with 4 GPUs showed an acceleration that was

approximately 3.1 times greater than the speed achieved using

a single GPU.

Table 2 shows the computational times required for BLAT and

GHOSTM to analyze the 6.8 million reads. The GHOSTM

program was 4.2 times faster than the BLAT program. Moreover,

GHOSTM implemented on a system with 4 GPUs showed

a processing acceleration that was 14.6 times faster than BLAT.

GHOSTM on a 4 GPU system was 3.5 times faster than the 1

GPU system for the 6.8 million reads, while the increase in speed

with 4 GPUs was approximately 3.1 for the 100,000 reads.

Evaluation of Search Accuracy
To evaluate the search accuracy, we used the search results

obtained with the Smith-Waterman local alignment method

implemented in SSEARCH, and these results were assumed to

be the correct answers. We analyzed the performance of

a particular method in terms of the fraction of its results that

corresponded to the correct answers obtained by SSEARCH.

For this analysis, we used only 10 thousand randomly selected

reads because the calculation cost of the Smith-Waterman local

alignment by SSEARCH was excessive. We translated the DNA

reads into protein sequences in the same manner used for the

Figure 4. The relationships between search speed and accuracy and the length of search seeds K. (A) The acceleration of processing
speed relative to BLAST using 1 thread and (B) search accuracy.
doi:10.1371/journal.pone.0036060.g004

Figure 5. The relationships between search speed and accuracy and the character skips s. (A) The acceleration of processing speed
relative to BLAST using 1 thread and (B) search accuracy.
doi:10.1371/journal.pone.0036060.g005

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36060

evaluation of the computation time with BLAT because

SSEARCH does not have a translation function. For these protein

sequences, we executed the BLASTP program with the command

line options ‘-outfmt 6 -seg no -comp_based_stats 0’. We did not

use composition-based statistics [24] because this method was not

employed in the default configuration of BLASTX. We also did

not use the SEG filter. For GHOSTM and BLAT, we used the

same command line options that were used for the evaluation of

the computation time.

Figure 1 shows the evaluation of the results of the search

accuracy. The search accuracy of GHOSTM was clearly higher

than BLAT. However, the accuracy of GHOSTM was lower than

BLAST, especially for those hits whose scores were below 40.

However, low-scoring hits (e.g., ,50) are generally not used in

practice because such hits can occur by chance. With the

exception of the low-score hits, GHOSTM successfully identified

more than 90% of the hits identified by SSEARCH. This result

suggests that GHOSTM is sufficiently accurate for general usage.

Relationships between Search Parameters and their
Accuracy and Computation Time
To determine the relationships between search parameters and

their accuracy and computation time, we executed GHOSTM by

changing one of its parameters from default to different values and

measured the computation time and search accuracy. To evaluate

the search accuracy and computation time, we used the same

method used for comparing BLAST, BLAT and GHOSTM. We

tested the following parameters and compared their computation

times: K=3, 4, and 5; s = 2, 3, and 4; r = 2, 4, and 8; e = 0, 2, and 4;

and t = 1, 2, and 3.

Figure 2 and Figure 3 shows the acceleration in processing

speed relative to GHOSTM with default parameters for different

search regions size r and extension size e. As shown in the figure,

search region size and extension size do not significantly change

the search accuracy and computation time. However, other

parameters, including the length of the search seed K, character

skips s, and the number of required matches t, significantly change

the performance. Using K=5, s = 4, or t = 3, the acceleration of

BLAST increases to 931.2, 329.5, and 239.6, respectively

(Figures 4A, 5A, 6A). However, the search accuracies decrease

to levels similar to BLAT (Figures 4B, 5B, 6B). With these

parameters, GHOSTM often fails to find search seeds, including

significant hits, which causes this low search accuracy. We believe

that these search accuracies are insufficient for metagenomic

analysis; thus, we did not use these settings as default settings.

GHOSTM with K= 3, s = 1, or t = 1 shows good search accuracy

that is comparable with BLAST (Figures 4B, 5B, 6B.). However,

the calculation speed is slower, and the acceleration of BLAST

with 1 thread is 5.2, 22.2, and 5.2, respectively (Figures 4A, 5A,

6A). These accelerations are smaller than BLAT; thus, we did not

use these parameters as default settings.

Discussion

GHOSTM clearly outperformed BLAST in reducing the

computation time for conducting homology searches. The reason

for the acceleration in processing time was that the system

simultaneously processed multiple queries on different GPU cores

(the Tesla S1070 has 240 cores per GPU). Importantly, the GPU

system requires a sufficient number of queries, and in fact, when

using only one query sequence, the calculation of GHOSTM

becomes much slower than BLAST. Table 3 shows the relation-

ship between the number of query sequences and the acceleration

in processing time. This result explains why GHOSTM on

a system with 4 GPUs achieved a calculation speed that was only

3.1 times faster than GHOSTM on a system with 1 GPU for the

small query set. However, the calculation speed of GHOSTM on

Figure 6. The relationships between search speed and accuracy and the number of required matches t. (A) The acceleration of
processing speed relative to BLAST using 1 thread and (B) search accuracy.
doi:10.1371/journal.pone.0036060.g006

Table 3. Computation time and acceleration of GHOSTM on
a 1 GPU system relative to BLASTX for different query
numbers.

#queries GHOSTX (sec.) BLASTX (sec.) Acceleration ratio

1,000 213 4,180 19.6

10,000 422 37,167 88.0

100,000 2,855 369,678 129.5

doi:10.1371/journal.pone.0036060.t003

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36060

a 4 GPU system was approximately 3.5 times faster than the speed

obtained on the 1 GPU system when the number of queries was

sufficient, as shown for 6.8 million reads. Thus, we suggest that the

acceleration of GHOSTM will increase almost linearly as

a function of the number of GPUs in practical situations in

metagenomic analysis projects comprising hundreds of millions of

reads.

In addition to the number of queries, GHOSTM had another

restriction because it assumed that the length of all of the queries

was approximately the same. For calculating the local alignment of

each query, GHOSTM takes a GPU memory allocation plan

according to the length of the longest query. Once GPU memory

is allocated according to the maximum memory consumption case

at first, GHOSTM can reuse the allocated space until the end of

calculation, with avoiding overhead of GPU memory re-

allocation. Thus, if the lengths of the queries were markedly

different, GHOSTM required too much memory, which de-

creased the number of queries that GHOSTM could process

concurrently. However, the number of reads from next-generation

sequencers is large, and the lengths of the reads are approximately

the same. Therefore, these two restrictions are generally satisfied,

and we predict that they will have little impact on the calculation

speed of GHOSTM.

Methods
Our homology search tool was mainly composed of three

components, as shown in Figure 7. The first component searched

the candidate alignment positions for a sequence from the

database using the indexes. The second component calculated

local alignments around the candidate positions using the Smith-

Waterman algorithm [25] for calculating the alignment scores.

Finally, the third component sorted the alignment scores and

output the search results.

Construction of Database Indexes
Before searching a database, the indexes for all of the database

sequences were constructed. All of the sequences in the database

were connected to inserting delimiters to transform them into

several long sequences. Index keys were generated for every offset

of a K-mer in a database sequence. The position at which each key

appeared was stored in the order in which it appeared in the

database. For large database, the sequences in the databases were

divided into several chunks because of the limitation of memory

space. In a search process, the system searches for homologues for

Figure 7. Data flow and processing within GHOSTM.
doi:10.1371/journal.pone.0036060.g007

Figure 8. Search for candidate alignments.
doi:10.1371/journal.pone.0036060.g008

Figure 9. Calculation of an alignment in the region around
a candidate position.
doi:10.1371/journal.pone.0036060.g009

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e36060

each database chunk by switching them and then merges the

search results. GHOSTM automatically divides a database into

chunks according to the upper limit of the database chunk size

specified by the user.

Search for Candidate Alignment Positions
The DNA query sequences were initially translated into protein

sequences in all of the six open reading frames. The DNA

sequences were then divided into three-letter codons, and each

codon was translated into an amino acid according to the genetic

code table. There are 3 possible reading frames in a DNA strand,

and double-stranded DNA has six different reading frames. If

a codon contained an ‘‘N’’, which means any nucleotide, it was

translated into ‘‘X’’, which means any amino acid.

The index keys of protein sequences were generated in the same

way as the database indexes but with s character skips. These skips

reduce the calculation cost at the expense of search sensitivity in

the candidate search component. For confirming matches,

a database sequence was first divided into regions of size r, and

the key of each query was compared with the keys of the database

sequences. If more than a threshold number t of keys matched in

a region and the right adjacent region, the position was stored as

a candidate alignment. Figure 8 shows an example of a search

result in which three candidate positions were reported with

a threshold of t = 2.

Local Alignment
After searching for alignment positions, optimal local alignment

was performed for the region around each candidate position

using the Smith-Waterman algorithm, and the alignment score for

each candidate position was calculated. When calculating the local

alignment, we restricted the alignment target of a database

sequence to a small region of size m+2r+2e, where m was the length

of the query and e was the extension width of an alignment region,

as illustrated in Figure 9.

Mapping to GPUs
Both the candidate search and local alignment components

required a large amount of computing time. Therefore, we

processed queries on both components in parallel and mapped

them onto GPUs. Thus, multiple queries were simultaneously

processed on different GPU cores. We used NVIDIA CUDA ver.

2.2 to implement the GPU computing and mapped the two

different calculation components as the two kernel functions.

The GPU computing program has several limitations, even with

the use of current GPUs and CUDA. Thus, we introduced some

techniques to our implementation. First, because it was impossible

to access the host memory during GPU execution, the calculation

results had to be stored to memory on a GPU. However, the size

of the memory on a GPU is limited, and the global memory,

which is the largest on a GPU, is also used for storing query

sequences, database sequences and indexes. Furthermore, we

could not know, a priori, the number of candidates and the size of

the results to be stored when we generated a candidate for a large

number of queries. Consequently, the storage of the results often

failed because of the shortage of GPU memory. To overcome this

problem, we first counted the number of candidates at the

alignment position and then divided the queries into subqueries,

whose results could be stored in the global memory of the GPU.

For the implementation of local alignment, a GPU-accelerated

Smith-Waterman algorithm has already been proposed [18,19].

However, this implementation was designed for alignments

between long sequences and required the synchronization of

multiple threads. Shorter sequences require more frequent

synchronizations, which slows the calculation. Thus, in our

proposed system, a thread was assigned to each candidate

alignment position, and the synchronization among threads was

removed. In the alignment process, all of the threads randomly

and frequently accessed the scoring matrix. Thus, the matrix data

were stored on the texture memory of a GPU because the access

speed was much faster than the global memory of a GPU.

To utilize GPUs with CUDA, we must decide the number of

grids, blocks, and threads. We fixed the number of grids, blocks,

and threads to 1, 128, and 256, respectively. We optimized these

parameters for the Tesla S1070, which we used. These parameters

do not affect the performance significantly, but they should be

optimized for other types of GPUs to achieve maximum

performances.

Availability and Future Directions
GHOSTM was implemented in C++ and the NVIDIA CUDA

library and requires CUDA 2.2 or higher. It is distributed under

the MIT license and is available for download at http://code.

google.com/p/ghostm/.

Author Contributions

Conceived and designed the experiments: SS TI. Performed the

experiments: SS. Analyzed the data: SS TI KK YA. Contributed

reagents/materials/analysis tools: SS TI KK YA. Wrote the paper: SS

TI KK YA.

References

1. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS

computational biology 6: e1000667. doi:10.1371/journal.pcbi.1000667.

2. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/bioinformatics/

btp324.

3. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics 26: 589–595. doi:10.1093/bioinformatics/

btp698.

4. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome

biology 10: R25. doi:10.1186/gb-2009-10-3-r25.

5. Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer reads

improves accuracy of Solexa read mapping. BMC bioinformatics 9: 128.doi:

10.1186/1471-2105-9-128.

6. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein

families. Science 278: 631–637. doi: 10.1126/science.278.5338.631.

7. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003)

The COG database: an updated version includes eukaryotes. BMC bioinfor-

matics 4: 41. doi:10.1186/1471-2105-4-41.

8. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein

families database. Nucleic acids research 38: D211–D222. doi:10.1093/nar/

gkp985.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. Journal of Molecular Biology 215: 403–410. doi:10.1016/

S0022-2836(05)80360-2.

10. Altschul SF, Madden TL, Schäfferaa, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic acids research 25: 3389–3402. doi:10.1093/nar/25.17.3389.

11. Turnbaugh PJ, Ley RE, Mahowald M a, Magrini V, Mardis ER, et al. (2006) An

obesity-associated gut microbiome with increased capacity for energy harvest.

Nature 444: 1027–1031. doi:10.1038/nature05414.

12. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, et al. (2007)

Comparative metagenomics revealed commonly enriched gene sets in human

gut microbiomes. DNA research: an international journal for rapid publication

of reports on genes and genomes 14: 169–181. doi:10.1093/dnares/dsm018.

13. Pearson WR (1991) Searching protein sequence libraries: comparison of the

sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.

Genomics 11: 635–650. doi: 10.1016/0888-7543(91)90071-L.

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 7 May 2012 | Volume 7 | Issue 5 | e36060

14. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for

representation and analysis of molecular networks involving diseases and drugs.
Nucleic acids research 38: D355–D360. doi:10.1093/nar/gkp896.

15. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From

genomics to chemical genomics: new developments in KEGG. Nucleic acids
research 34: D354–D357. doi:10.1093/nar/gkj102.

16. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids research 28: 27–30. doi: 10.1093/nar/28.1.27.

17. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome research 12:

656–664. doi:10.1101/gr.229202.
18. Liu Y, Maskell DL, Schmidt B (2009) CUDASW++: optimizing Smith-

Waterman sequence database searches for CUDA-enabled graphics processing
units. BMC research notes 2: 73. doi:10.1186/1756-0500-2-73.

19. Liu Y, Schmidt B, Maskell DL (2010) CUDASW++2.0: enhanced Smith-
Waterman protein database search on CUDA-enabled GPUs based on SIMT

and virtualized SIMD abstractions. BMC research notes 3: 93. doi:10.1186/

1756-0500-3-93.
20. Walters JP, Balu V, Kompalli S, Chaudhary V (2009) Evaluating the use of

GPUs in liver image segmentation and HMMER database searches. In: 2009

IEEE International Symposium on Parallel & Distributed Processing IEEE. pp

1–12. doi:10.1109/IPDPS.2009.5161073.

21. Vouzis PD, Sahinidis NV (2011) GPU-BLAST: using graphics processors to

accelerate protein sequence alignment. Bioinformatics 27: 182–188.

doi:10.1093/bioinformatics/btq644.

22. Liu W, Schmidt B, Muller-Wittig W (2011) CUDA-BLASTP: Accelerating

BLASTP on CUDA-Enabled Graphics Hardware. IEEE/ACM transactions on

computational biology and bioinformatics/IEEE, ACM 8: 1678–1684.

doi:10.1109/TCBB.2011.33.

23. Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid

sequences and sequence databases. Computers & Chemistry 17: 149–163.

doi:10.1016/0097-8485(93)85006-X.

24. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, et al. (2005)

Protein database searches using compositionally adjusted substitution matrices.

The FEBS journal 272: 5101–5109. doi:10.1111/j.1742-4658.2005.04945.x.

25. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. Journal of molecular biology 147: 195–197. doi: 10.1016/0022-

2836(81)90087-5.

GPU Homology Search Tool for Metagenomics

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e36060

