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Abstract

The tremendous diversity of land plants all descended from a single charophyte green alga that colonized the land
somewhere between 430 and 470 million years ago. Six orders of charophyte green algae, in addition to embryophytes,
comprise the Streptophyta s.l. Previous studies have focused on reconstructing the phylogeny of organisms tied to this key
colonization event, but wildly conflicting results have sparked a contentious debate over which lineage gave rise to land
plants. The dominant view has been that ‘stoneworts,’ or Charales, are the sister lineage, but an alternative hypothesis
supports the Zygnematales (often referred to as ‘‘pond scum’’) as the sister lineage. In this paper, we provide a well-
supported, 160-nuclear-gene phylogenomic analysis supporting the Zygnematales as the closest living relative to land
plants. Our study makes two key contributions to the field: 1) the use of an unbiased method to collect a large set of
orthologs from deeply diverging species and 2) the use of these data in determining the sister lineage to land plants. We
anticipate this updated phylogeny not only will hugely impact lesson plans in introductory biology courses, but also will
provide a solid phylogenetic tree for future green-lineage research, whether it be related to plants or green algae.
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Introduction

It is hard to imagine what the planet looked like 500 million

years ago, before green algae first colonized the terrestrial habitat.

Plants now blanket the highest alpine peaks, the lowest deserts,

tropical rainforests, arctic expanses and even aquatic and marine

environments. Microfossils and fragments of plant tissue from the

middle Ordovician (458–470 mya) reveal evidence of the first

plant colonizers [1,2], but these pioneering species and their

green-algal progenitors have long since disappeared. Descendants

of these early pioneers are widespread, however, which begs the

question: Which extant green algal group is the closest living

relative of land plants?

Despite a decade of molecular phylogenetic research on land

plants and green algae, this question is far from settled. Land

plants (LP), or embryophytes, are a monophyletic group nested

within charophytes, a group of fresh water green algae. Together,

the charophytes and embryophytes constitute the monophyletic

Streptophyta. The other green algal lineage, the Chlorophyta,

contains a diverse assemblage of marine and fresh water green

algae. It was nearly a decade ago that Karol et al. [3] concluded

after a four-gene, three genome analysis that, of the charophytes,

the Charales constitute the closest living relative to land plants.

Another combined data analysis [4] supported the same topology

and, for a time, this appeared to be a settled matter. Over the past

century, the Charales-as-sister relationship has been used widely in

biology textbooks [5–7] and, from a morphological standpoint,

this relationship tells a good story: as the charophyte lineages

diverge, their body plans grow increasingly complex from

unicellular (Mesostigmatales) to sarcinoid packets (Chlorokybales)

to un-branched filaments (Klebsormidiales) to branched filaments

(Zygnematales), to parenchematous tissue (Coleochaetales) and

finally to the macrophytes (Charales). From there, the body plans

evolve into early land colonizers equipped with complex tissues

allowing life out of water. Similarly, sexual reproduction evolves

from isogamy in the ancestral lineages to oogamy into the more

derived charophyte lineages.

But in spite of morphological support for Charales as sister to

land plants, other data conflict with this interpretation. Plastid

gene phylogenies provide support for Zygnematales as sister to

land plants [8,9]. In addition, new data based on nuclear genes

[10] support this alternative topology. Zygnematales are conju-

gating (sexual) green algae with both filamentous and unicellular

(but no flagellate) forms.

One explanation for the incongruence between topologies could

be taxon sampling; the four-gene topology (Charales+LP) [3] has

much broader taxon sampling (26 algal taxa) than the reconstruc-

tions supporting Zygnematales+LP (six charophytes each) [9,10].

There is one study with broader taxon sampling (15 algal taxa [8])

that puts Zygnematales as sister to land plants, but there is much

less support for this relationship.

A second alternative topology also has emerged: Coleochaete+LP.

Molecular data supporting this relationship were derived exclu-

sively from nuclear ribosomal protein genes [11]. While additional

characters such as plasmodesmata and a nad5 intron support this

topology, Coleochaetales as an order is not reconstructed as

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29696



monophyletic in this phylogeny, which causes concern for the

overall topology.

To address this uncertainty in the field, we sought a com-

prehensive genome scale analysis using a deep sampling of many

genes drawn from seven species distributed across all major

charophyte lineages: Charales, Coleochaetales, Zygnematales,

Klebsormidiales, and Chlorokybales. In addition, we included

published Sanger sequences from a Mesostigma viride EST library

[12] and analyzed them alongside our in-house transcriptomes.

From these data we identified a set of orthologs common across

the green lineage (Chlorophyta+Streptophyta) using an unbiased

approach (no a priori gene selection). This yielded a large set of

nuclear encoded protein genes that we used to reconstruct the

phylogeny and identify the sister lineage to land plants.

Results

Our taxon sampling included a total of 14 taxa: eight

charophytes, four land plants and two chlorophytes. Five of the

charophytes were newly collected transcriptomes (Table 1). Both

Sanger sequencing (4,992–5,760 reads per taxon) and 454 GS

FLX Titanium sequences (444,743–1,077,311 reads per taxon)

were gathered. The assembled raw reads into contigs represent

mRNA in the organism at the time of collection. The contigs with

a putative coding region, as predicted by ESTscan, were referred

to as unigenes. These numbers ranged from 12,697 to 33,106

unigenes per taxon.

The Inparanoid-TC approach to finding core orthologs yielded

1624 putative orthologous groups, that, when filtered for

phylogeny, were reduced to 1118 core othologs (Fig. 1.B).

HaMStR identified hits in the charophytes for 1024 of the core

orthologs and, after filtering for good charophyte taxon represen-

tation and removing 55 genes with amino acid composition bias,

there were 160 orthologous genes remaining (Fig. 1.C, gene

annotation and associated data in Table S1).

We used all 160 orthologous genes to reconstruct the

evolutionary history of the 12 streptophytes and two outgroup

chlorophytes. To do this, we first concatenated the protein

products for 160 genes totaling 99,628 amino acids (46% missing

or gapped characters). After trimming for poorly aligned regions,

the dataset was condensed to 56,274 amino acids (26% missing or

gapped characters). On average, each gene was present in 12 of

the 14 taxa, or six of the eight charophytes (Table 2). The

representation of individual genes varied among taxa from 65 to

100%, with the exception of Mesostigma, which only contained 11%

of the 160 genes. This was presumably because of the markedly

smaller size of that dataset. Two different phylogenetic analyses

were performed on the trimmed alignment; both resulted in the

same strongly supported topology (Fig. 2).

The ML and BI analyses on the concatenated 160-gene dataset

recovered the relationship of Zygnematales as sister to land plants

with strong statistical support (ML = 100%, PP = 1.0). The Coleo-

chaetales are sister to the Zygnematales+LP clade (ML = 99%,

PP = 0.79) with Charales diverging earlier (ML = 100%, PP = 1.0;

followed by Klebsormidium: ML = 100%, PP = 1.0). Finally, Chlor-

okybales and Mesostigmatales are moderately supported as sister to

one another (ML = 75%, PP = 0.61), and together they comprise the

earliest diverging lineage in the streptophytes (ML = 100%,

PP = 1.0). In addition to the branching order of the charophyte

lineages, we included two taxa per order for Zygnematales and

Coleochaetales. Each was recovered as monophyletic, lending

further support for these classically recognized orders.

In large concatenated studies of this type, a logical concern is

that a subset of the genes might support alternative topologies. For

the most part, this is ignored in multi-gene phylogenetic analyses.

But given the propensity of plant phylogenies to have gene-tree/

species-tree conflicts [13], we addressed this issue directly by

statistically testing our data for incongruence using the program

Concaterpillar [14]. Given a multi-gene dataset, this analysis uses

a likelihood-ratio test to identify compatible partitions. The

program groups genes into sets that are ‘incongruent,’ which

Leigh et al. define as genes as having ‘‘phylogenetic incompati-

bility, either due to truly different evolutionary history, or to

systematic error’’ [14]. Fifteen sets ranging in size from 37 to 3

genes (Fig. S1) were identified from our total set of 160 genes.

None of these partitions placed Charales as sister to land plants.

Table 1. Primary sequence data and summary of clustering results.

454 reads 59 Sanger reads 454 clustering 454+Sanger clustering Unigenes

Chaetosphaeridium globosum

Number of reads 884,238 5,760 58,188 25,165 23,490

Average length (bp) 562 949 513 656 515

Chlorokybus atmophyticus

Number of reads 444,743 4,992 19,801 12,731 12,607

Average length (bp) 513 950 726 903 904

Klebsormidium flaccidum

Number of reads 994,649 4,992 51,855 25,554 24,881

Average length (bp) 538 946 629 849 731

Penium margaritaceum

Number of reads 1,077,311 4,992 76,769 30,499 29,880

Average length (bp) 527 943 571 811 638

Nitella hyalina

Number of reads 949,065 4,992 86,432 42,331 33,106

Average length (bp) 547 955 544 682 492

Unigenes are contigs with a putative coding region.
doi:10.1371/journal.pone.0029696.t001

Zygnematales: The Sister Lineage to Land Plants
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Not surprisingly, the largest set of 37 genes supported the

Zygnematales+LP relationship, which also occurred across four

additional sets totaling 71 genes (S1.d, S1.h, S1.k, S1.l) (these sets

differed in their placement of Mesostigma and other basal charo-

phytes). One noteworthy minority partition recovered the Coleo-

chaetales+LP topology (Fig. S1.c), and two others had Coleochaete+LP,

with Chaetospheridium branching earlier (Fig. S1.j, S1.o).

To ensure we were not tossing phylogenetically informative

characters when we eliminated the 55 genes with an amino-acid

composition bias, we performed similar phylogenetic analyses on

the 215-concatenated-gene set. The resulting ML topology was

almost exactly the same, with 100% bootstrap support on every

bipartition except for the Chlorokybus+Mesostigma lineage, where

73% support was recovered. However, the Concaterpiller analyses

Figure 1. Ortholog identification method. This diagram outlines the steps used for identifying orthologous genes for phylogenetic analysis. A)
Unresolved phylogenetic scheme relating chlorophytes, charophytes, and embryophytes with a list of the six taxa with fully sequenced genomes
used for the core ortholog determination. B) Core ortholog prediction from the previous six taxa. C) Charophyte orthog prediction. The core
orthologs were then used to search for proteins in each of the eight charophyte transcriptomes. We filtered for good taxon sampling and removed
orthologs with significant amino acid bias, resulting in 160 aligned proteins. These were concatenated onto one large multigene data matrix for
phylogenetic analysis.
doi:10.1371/journal.pone.0029696.g001

Zygnematales: The Sister Lineage to Land Plants
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on this larger gene set recovered an interesting gene set: one of the

15 recovered sets contained 24 genes that supported the Nitella+LP

topology. The 55 genes with amino acid composition bias were

fairly well distributed across the various incongruent sets, but eight

of them landed in the Nitella+LP set. This set/topology was not

recovered in the subsequent 160-gene Concaterpiller analysis.

Discussion

This study, which includes all charophyte lineages provides a

robust, well-supported result that LP and Zygnematales are

sister lineages. We believe our results warrant serious reconsid-

eration of charophyte evolution given that the phylogenomic

approach of our study confirms the plastid-encoded analyses of

Turmel et al. [9] and the recent nuclear-genomic study of

Wodniok et al. [10]. Some studies using a targeted gene

approach [3,11,15,16] reconstruct alternate topologies, but none

has the broad and unbiased nuclear genome sampling used in

the current study.

Two phylogenetic studies [10,11] published in the past year use

next-generation sequence data to address a similar question as

posed in this manuscript. However, the data collected and

analyzed for these studies are almost completely non-overlapping,

and consequently the three independent analyses provide diverse

perspectives on a difficult and deep evolutionary relationship.

Finet et al. [11] focused on 77 ribosomal genes (12,149

characters) that were selected a priori from the same transcrip-

tomes collected in this study. Despite the fact that both the

present study and that of Finet et al. drew from the same

transcriptomic dataset, only five genes overlap in the two studies

(out of 1118 core orthologs and 160 selected for the final dataset).

Thus, the analyses are almost completely independent. Their tree

topology differs from ours with the assignment of Coleochaete as the

sister lineage to land plants. In addition, it is noteworthy that like

the ribosomal-protein tree, ribosomal RNA gene trees do not

reconstruct a monophyletic Coleochaetales [17], which – if the

Coleochaetales are in fact monophyletic as indicated by

morphology and organellar data – suggests that some form of

molecular coevolution may underlie this apparent conflict. The

other noteworthy study of charophyte phylogenetics came from

Wodniok et al. [10]. This is also a broad transcriptomic analysis,

but like the Finet et al. study, it makes use of an a priori set of

selected genes, and draws from a smaller number of charophyte

taxa (six), and fewer aligned characters (30,270 amino acids) than

our study. While not directly comparable, the Wodniok et al. [10]

tree topology is congruent with ours, but with lower branch

support on most of the charophyte nodes. The analysis reported

here was based on a filtration of roughly 56109 characters –

selecting only for evidence of orthology and combinability –

which resulted in a dataset of 99,628 characters, and a strongly

supported tree topology. What ultimately sets our analysis apart,

however, is that we did no a priori gene selection. Thus, in

addition to the intrinsic phylogenetic interest, we demonstrate a

powerful new approach to data selection that leverages the use of

high-throughput sequence data.

However, given the genomic-scale of the data collection, our

taxon sampling is limited and may be a source of error [11].

Without additional transcriptomes, we cannot directly test this

issue. But long branch attraction is much less a factor when

amino acid data are used with an appropriate model of evolution

[18,19]. While short internal branches have been shown to be a

source of phylogenetic inconsistency [18], this is a much harder

issue to address. Two analyses suggest taxon sampling might not

be a confounding issue in this study: 1) the Turmel et al. [8] rRNA

plastid phylogeny with twice our taxon sampling recovered the

Zygnematales+LP relationship using a nucleotide based analysis,

and 2) the Charales+LP relationship still emerged when a

reduced Karol et al. [3] dataset was reanalyzed to approximate

our taxon sampling. This second line of evidence provides

tenuous support at best but is worth reporting due to its similar

taxon spread.

The well supported land plant + Zygnematales topology uses a

large suite of genes and requires a rethinking of character

evolution in charophyte lineages leading up to land colonization.

Previous hypotheses of increasing morphological complexity

[20,21] are not congruent with the results of our study. However,

multiple gains and losses of multicellularity across all green algae

have been well documented, as has the reduction of characters in

the Zygnematales [22,23]. The Zygnematales include filamentous

and unicellular organisms, but the unicellular state may well be a

derived condition [23] from branched filamentous ancestors, just

as flagellate stages were lost in this order. In this context, it is not a

stretch to imagine character reduction in the sister lineage to land

plants (Fig. 3) resulting in the loss of homologous characters

potentially shared in the common ancestor. The multicellular

complexity in Charales and Coleochaetales appears to be

independently derived from a common branched and filamentous

ancestor, one likely to have had oogamous reproduction. These

characters were probably present in the common ancestor of all

four ‘‘advanced’’ lineages, an idea that has been suggested by

previous investigators [24]. In this model, however, the parenchy-

ma-like organization, axial growth and protonema of Charales

would be examples of parallel evolution, as would the multiple

zygotic products of Coleochaete.

In conclusion, our research lends strong support to the notion

that the closest living green algal lineage to land plants is not the

plant-like stoneworts (Charales) as previously thought, but a

species-rich assemblage of fresh-water filamentous and unicellular

organisms, better known as pond scum.

Materials and Methods

Algal sampling
All seven transcriptomes were similarly processed (see Timme

and Delwiche [25] for detailed methods on Spirogyra pratensis

UTEX 928 and Coleochaete sp. CFD). In summary, Chaetosphaeridium

globosum SAG 26.98, Penium margaritaceum SKD2004_CL18 (culture

available from David Domozych, Skidmore College, Saratoga

Springs, NY), Klebsormidium flaccidum UTEX 321 and Chlorokybus

atmophyticus UTEX 2591were grown up in appropriate culture

Table 2. Summary of missing data.

Charophyte taxon Number of genes Percent genes

Chlorokybus atmophyticus 160 100

Chaetosphaeridium globosum 105 65.625

Coleochaete sp. 142 88.75

Klebsormidium flaccidum 160 100

Mesostigma viride 18 11.25

Nitella hyalina 160 100

Penium margaritaceum 142 88.75

Spirogyra pratensis 109 68.125

Genes present for each charophyte taxon in the multigene alignment (160
total).
doi:10.1371/journal.pone.0029696.t002

Zygnematales: The Sister Lineage to Land Plants
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media 18uC and a 12:12 LD photoperiod with a photon flux of

180–200 mmol s-1 m-2. Nitella hyalina KGK0190 (culture available

from Kenneth Karol, The New York Botanical Garden, Bronx,

NY) was cultured in a fresh water aquarium at room temperature.

Cultures were harvested during log phase growth in a variety of

conditions to maximize the diversity of transcripts: at intervals of 7

am, 12 pm, 4 pm and 9 pm; after sitting in a dark enclosure for

24 hours; and after being exposed to 20 minutes of 220uC. Algal

cultures were pelleted at 4000rpm (Nitella did not require

centrifugation), dropped in liquid nitrogen and stored at 280uC
until RNA extraction.

RNA isolation
Frozen tissue was ground at cryogenic temperatures using a

SPEX 6770 Freezer/Mill (SPEX Certi Prep, Metuchen, NJ). The

ground cells were then added to Tri Reagent (Molecular Research

Center, Inc., Cincinnati, OH), where the manufacture’s protocol

was followed. Extra chloroform extractions and an additional LiCl

precipitation were required to eliminate polysaccharide and

genomic DNA contamination. After each isolation, the nucleic

acid concentration and OD ratios were quantified with a

NanoDrop (Thermo Scientific NanoDropTM 1000 Spectropho-

tometer, Wilmington, DE) and the quality of RNA, was

Figure 2. Phylogenetic relationships of 14 Viridiplantae taxa determined by 160 concatenated proteins. Phylogenetic analyses are
summarized by a BI (CAT-Poisson model) consensus tree with branch support values from both BI and ML analyses (ML bootstrap/Bayesian posterior
probabilities).
doi:10.1371/journal.pone.0029696.g002

Zygnematales: The Sister Lineage to Land Plants
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determined by running 1 mg of total RNA on a 1.2% agarose

MOPS/formaldehyde gel (Applied Biosystems/Ambion, Austin,

TX) stained with ethidium bromide, then examining the rRNA

banding patterns. High-quality, clean RNA was pooled until 1 mg

of total RNA was reached.

cDNA construction and DNA sequencing
Total RNA (,1 mg) was shipped on dry ice to Agencourt

Bioscience Corporation (Beverly, MA) where Poly(A)+RNA from

total RNAs was isolated, converted to double stranded cDNA, size

fractionated (,1.2 kb), cloned directionally into the pExpress 1

vector and grown up in T1 phage resistant E. coli. Subsequent

DNA sequencing included both 5 prime Sanger reads and 454

sequencing technologies. In summary, each taxon had 5,000–

10,000 Sanger reads plus a full plate of GS FLX Titanium 454

sequences generated (see Table 1 for exact numbers). For the

Sanger sequencing, DNA from the clones was purified using

Agencourt’s proprietary solid-phase reversible immobilization

(SPRI) system. The purified DNA was then sequenced using

ABI dye-terminator chemistry and run on ABI 3730 (Applied

Biosystems Inc, Foster City, CA) machines. In addition, we

included published Sanger sequences for one additional taxon,

Mesostigma viride [12]. For the 454-sequencing, 3–5 ug of isolated

DNA was nebulized to a mean size range of 3–500 bp, followed by

a size selection of fragments .300 bp by column exclusion and

AmpureTM (Agencourt Bioscience, Danvers, MA) isolation.

Adapters were ligated onto the fragments and selected using

library capture beads. The single stranded fragments were isolated

followed by standard library dilutions. The library was amplified

onto DNA capture beads by emulsion PCR (emPCR). DNA

capture beads were collected and a sequencing primer was

annealed by a thermocycler. Beads for each genome were placed

on the picotitre plate, sequenced on the Roche 454 GS FLX

instrument, and analyzed with base-calling software using default

parameters.

Transcriptome clustering method
The clustering for each taxon was performed in a two-step

process. First, the 454 reads were clustered using MIRA vs 2.9.43

[26]. Second, the raw Sanger reads were combined with the 454

contigs and respective quality scores and processed through the

EST2uni pipeline [27], which used a variety of methods to remove

low-quality sequence, vector contamination and low complexity

regions. It then clustered the clean reads with CAP3 [28] using a

100 bp plus 95 percent identity of overlap. ESTscan [29]

predicted the protein-coding regions in the contigs and singletons

using Arabidopsis thaliana score matrix. The clustering process

resulted in a set of predicted proteins, or unigenes, for each taxon,

which were then used for all downstream analyses.

Ortholog prediction using extended HaMStR approach
(Fig. 1)

The HaMStR approach [30] to ortholog prediction uses a well-

curated set of genes, or ‘core orthologs’, to identify putative

orthologs from an EST library. For each core ortholog, HaMStR

searches a set of unigenes and identifies a set of putative orthologs,

if present. Because no curated set of orthologs exist for the entire

green lineage, we set about building our own. Six fully sequenced

genomes were chosen to construct the core orthologs: four

embryophytes and two chlorophytes (Fig. 1.A): Arabidopsis thaliana

(Uniprot v. 1.0), Populus trichocarpa (JGI v. 1.1), Oryza sativa

(Plantbiology v. 1.0), Physcomitrella patens (JGI v. 1.1), Ostreococcus

tauri (JGI v. 2.0) and Chlamydomonas reinhardtii (JGI v. 3.0). The

phylogenetic positions of the core ortholog taxa were ideal for our

purposes – unless there was gene loss, any ortholog present in both

embryophytes and chlorophytes also should be present in

charophytes. The protein sequences for each of the six genomes

were used to infer the set of core orthologs using a modified

Inparanoid [31] approach, Inparanoid-TC [30]. Because genome

duplication in embryophytes can cause paralogy issues, we used a

phylogenetic filter to confirm true orthology (Fig. 1.B). Briefly, we

aligned each putative orthologous group using Muscle [32,33],

trimmed each alignment with trimAl (gt = 0.4, w = 3, st = 0.01)

[34], reconstructed the Maximum Likelihood (ML) phylogeny

using RAxML [35,36] (f = a, # = 100, m = PROTGAMMA-

WAG), and used an in-house perl script to run the PAUP [37]

‘filter’ command, identifying the ML topologies consistent with

well-known phylogenetic relationships. The orthologs that passed

this filter were considered our core orthologs (Fig. 1.B).

These Viridiplantae core orthologs then were used as input to

the program HaMStR. Instead of identifying a set of orthologs in

each transcriptome, we modified the HaMStR program to extract

the top hit only so that, if present, we had a single putative

ortholog for each of the eight transcriptomes. This modification

allowed us to submit the top hit directly into a phylogenetic

analysis. After all eight HaMStR analyses were preformed and

alignments were made using Muscle, we gathered the set of core

Figure 3. Hypothesis of character evolution in the Charo-
phytes. The earliest branching streptophytes (Mesostigma and
Chlorokybus) were unicellular, flagellate, and isogamous. Multicellularity
in the form of unbranched filaments evolved in the common ancestor
of the remaining streptophytes and is represented in the Klebsormi-
diales. The most recent common ancestor of Charales+Coleochaeta-
les+Zygnematales+LP most likely was an alga with plant-like cell
division (phragmoplast), branched filaments, and oogamous sexual
reproduction. The Charales went on to independently evolve a complex
macrophytic form. The Coleochaetales independently acquired paren-
chymatous tissue and maternally retained zygotes. However, the
Zygnematales went the route of reduction: loss of flagellate cells
(reproduction via conjugation), loss of multicelluarity (Desmids), and
loss of the phragmoplast.
doi:10.1371/journal.pone.0029696.g003

Zygnematales: The Sister Lineage to Land Plants
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orthologs that had at least one match in the charophytes (Fig. 1.C).

Because these orthologs were collected for phylogenetic purposes,

we filtered for good taxon sampling: at least one charophyte for

each major charophyte lineage, or Chlorokybus, Klebsormidium,

Nitella, Coleochaete OR Chaetosphaeridium, and Penium OR Spirogyra

(Fig. 1.C).

And lastly, because these genes span such divergent taxa (up to

one billion years divergence time), changes in amino acid

compositional heterogeneity over time was an issue we wanted

to minimize. In this spirit, we used TREE-PUZZLE [38] to

identify orthologs with significant amino acid bias. An assumption

of any phylogenetic analyses assumes that the character compo-

sition does not change over time; so removing genes that have a

significant amino acid bias eliminated a possible source of

systematic error. This last filtering step produced a set of aligned

orthologous genes that had good taxon sampling and no amino

acid composition bias (Fig. 1.C). These were concatenated onto

one large multi-gene data matrix (detailed in the following section).

Reconstructing the multi-gene phylogeny
We aligned the amino acids for each unigene using Muscle

[32,33] (default parameters), concatenated them using an in-house

perl script, trimmed poorly aligned regions using trimAl (gt = 0.4,

w = 3, st = 0.01) [34], estimated the model of evolution for the ML

analysis using ProTest2.4 [39], and ran phylogenetic analyses on the

multi-gene dataset: Maximum Likelihood (ML) (LG+G+F model)

using RaxML [36,40] and Bayesian Inference (BI) (CAT-Poisson

model) using PhyloBayes [18,41,42]. The BI analysis allowed us to

test the effect of applying a site-heterogeneous model of evolution

(CAT) [18] to our multi-gene amino acid data matrix. To measure

phylogenetic stability, bootstrapping was performed for the ML

analysis and posterior probabilities (PP) were inferred by BI analysis.

Data access
The individual reads for each transcriptome were deposited in

GenBank, http://www.ncbi.nlm.nih.gov/. The Sanger reads are

located in dbEST under the following accession numbers:

Chlorokybus atmophyticus (GenBank: HO407395-HO431109), Chaeto-

sphaeridium globosum (GenBank: HO348296-HO407394), Klebsormi-

dium flaccidum (GenBank: HO431110-HO486407), Nitella hyalina

(GenBank: HO486408-HO574687), and Penium margaritaceum

(GenBank: HO574688-HO651665). The 454 sequences are in the

Sequence Read Archive (SRA): C. atmophyticus (GenBank:

SRX025846.1), C. globosum (GenBank: SRX025844.1), K. flaccidum

(GenBank: SRX025847.1), N. hyalina (GenBank: SRX025843.1),

and P. margaritaceum (GenBank: SRX025845.1). The clustered

454+Sanger reads are deposited in the Transcriptome Shotgun

Assembly Sequence Database (TSA): C. atmophyticus (GenBank:

JO192127 - JO204622), C. globosum (GenBank: JO157958 -

JO182157), Coleochaete sp. (GenBank: JO233843 - JO252228), K.

flaccidum (GenBank: JO252229 - JO277141), N. hyalina (GenBank:

JO277142 - JO317756), Spirogyra pratensis (GenBank: JO182540 -

JO192126) and P. margaritaceum (GenBank: JO204623 - JO233842).

The trimmed alignment, ML tree and BI consensus tree were

uploaded to TreeBase and are accessible from the following URL:

http://purl.org/phylo/treebase/phylows/study/TB2:S10897.

Supporting Information

Figure S1 Concaterpillar ML trees derived from com-
patible partitions of the multigene alignment. Set

numbers were determined by Concaterpillar and are listed in

the figure by descending size.

(TIF)

Table S1 Tab-delimited text file containing annotation
and summary data for the 160 orthologs used in the
phylogenetic analysis.
(TXT)
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