
Metabolome Based Reaction Graphs of M. tuberculosis
and M. leprae: A Comparative Network Analysis
Ketki D. Verkhedkar1, Karthik Raman2, Nagasuma R. Chandra2, Saraswathi Vishveshwara1*

1 Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India, 2 Bioinformatics Centre, Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India

Background. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various
organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to
exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph
theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in
the overall topological structures of their metabolic networks. Methodology/Principal Findings. Metabolome-based reaction
networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the
KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of
reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling
demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of
hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the
E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well
established pathways. Conclusions. We conclude that severe downsizing of the leprae genome has not significantly altered
the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while
keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human
metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome
based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from
such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics
studies to a higher dimension.
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INTRODUCTION
Recent advances in high throughput technologies and network

theory have made it possible to reconstruct and analyse large

genome-scale networks of organisms in silico. Several types of

networks reflecting different aspects of metabolism and regulation

in organisms have been reconstructed. The transcriptional

networks based on microarray data, protein-protein interaction

networks based on high-throughput yeast two-hybrid type of

experiments and metabolic networks based on reaction annotation

of the individual proteins coded by the genome are some

examples. Several of these studies have focused on elucidating

the general principles underlying the structure and organisation of

metabolic networks of a large number of organisms. For example,

a protein–protein interaction network of Saccharomyces cerevisiae

constructed based on systematic two-hybrid analyses [1] indicates

that highly connected proteins with a central role in the network’s

architecture are three times more likely to be essential than

proteins with only a small number of links to other proteins [2].

Similarly, a transcriptional regulatory network of Escherichia coli,

has been reconstructed [3] based on the RegulonDB database as

well as published literature, and has been used to identify

important structural network motifs and their role in network

function. The dynamics of the Saccharomyces cerevisiae biological

network has been investigated computationally, with the in-

tegration of transcriptional regulatory information and gene-

expression data for multiple conditions [4]. Metabolic networks

have also been constructed for a number of genomes such as E. coli

[5] and Staphylococcus aureus [6] which have been used to study the

metabolic capabilities of organisms and gene essentiality through

flux balance analyses. Protein-protein interaction networks have

been previously used for comparative genomics [7,8,9,10,11].

Here, we seek to exploit the reaction-based networks of three

organisms for comparative genomics. We use concepts from spectral

graph theory to systematically determine how differences in the basic

metabolism of various organisms are reflected at the systems level.

In the present study, we have constructed and characterised the

metabolic networks of two closely related organisms: Mycobacterium

tuberculosis and Mycobacterium leprae, which are obligate intracellular

pathogens [12]. A broad comparison with the network of E. coli

has also been presented. Both the mycobacteria are important

pathogens and hence of interest. Additionally, their comparison is

of particular interest given that the genome sequencing of M. leprae

has revealed massive gene decay as compared to other

mycobacteria. Despite having genomes of comparable sizes the

leprae genome codes for only 1406 proteins in comparison to the
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3989 proteins in M. tuberculosis, leading to the consideration of the

leprae genome as a ‘minimal genome’. The elimination of many

important metabolic activities in this organism is thought to result

in severe metabolic streamlining [12].

Various concepts from graph theory [13,14,15,16,17] have

previously been used to construct and analyse metabolic networks

for several fully sequenced organisms. Representing metabolic

networks as graphs makes them amenable to various analyses,

such as the detection of shortest and alternate paths. Such analyses

have also resulted in the identification of the highly connected

giant strong components of the networks, as well as metabolites

central to the network. Graph spectral analysis can be carried out

to obtain information on central hubs as well as the sub-clustering

and organisation of the metabolic network.

We represent the metabolic networks of these organisms in the

form of a reaction based graph with the biochemical reactions as

the nodes and an edge existing between the nodes if they share at

least one metabolite. Such a representation is essential to ascertain

the importance of different biochemical reactions in the metabolic

networks of these organisms. Alternative representations have

been previously used for representing metabolite networks. One is

a substrate graph, wherein all substrates are represented by nodes,

with edges between them indicating their participation in the same

reaction [18]. In another representation, the metabolic network is

built up of nodes, the substrates, which are connected to one

another through links, which are the actual metabolic reactions.

The physical entity of the link is the temporary educt–educt

complex itself, in which enzymes provide the catalytic scaffolds for

the reactions yielding products, which in turn can become educts

for subsequent reactions [13]. Metabolic networks may also be

represented as a directed bipartite graph, with two types of nodes

indicating reactions and metabolites separately, with edges from

metabolites directed towards the reaction they are substrates of

and edges from reactions directed towards their products [19].

Further, in our representation of the network, we have chosen

to leave out the links generated by currency metabolites. These

metabolites are ubiquitously present in metabolic networks and

although these substrates are necessary for a given reaction to take

place, they cannot be considered as valid intermediates for path

finding or establishing biologically meaningful network connec-

tions. Currency metabolites have been excluded from metabolic

networks in previous studies such as [17].

Besides characterising the constructed networks for their various

graph properties, we have systematically determined if the

differences observed between these organisms at the genomic

level reflect on the overall topology and characteristics of their

metabolic networks. To compare features of the metabolic

networks of mycobacteria with those of a more standard and well

studied organism, we have also constructed and characterised the

metabolic network of E. coli.

Metabolic networks have properties similar to other real world

networks, such as social networks and the World Wide Web.

Particularly, they have been shown to be scale-free, with a non-

random power-law distribution of node connectivity (number of

interactions of each metabolite) and distinguished by the presence

of ‘hubs’, a few highly connected nodes that are essential to the

integrity and robustness of the network [13]. These networks are

also small-world networks, characterised by a low average path

length between nodes [13,17,18,20]. Recent studies have revealed

metabolic networks to be modular in nature, comprising several

small, functional modules that combine together in a hierarchical

manner to form larger, less cohesive units [21,22].

In this work, we have studied the topological organisation of the

constructed metabolic networks by using concepts from spectral

graph theory. The graph spectral method has been applied earlier

by our group in the identification of side chain and backbone

clusters in proteins and to identify amino acid residues important

for protein structure, folding, stability, function and dynamics

[23,24]. It has also been used to successfully identify domains in

multi-domain proteins [25] and to detect clusters of structurally

similar proteins in protein chain universe graphs [26]. Bu and co-

workers [27] have applied spectral analysis to study the topological

structure of the protein interaction network in yeast. Jernigan and co-

workers [28] have used spectral graph theory for analysing the

functional clustering of the yeast protein–protein interaction network.

Here, we explore the applications of the spectral method in analysing

the topological organisation of large reaction networks. We show that

this method is useful for identifying sub-clusters of reactions in the

networks by a simple one step numerical computation.

RESULTS AND DISCUSSION
Several pathway databases have recently become available, with

curated information on biochemical reactions. Most databases are

incomplete, with missing information on various biochemical

reactions. A study undertaken recently by Kettner [29] illustrates

the poor quality in well-known databases such as BRENDA even

for pathways such as glycolysis. They conclude from their study

that the difficulty in curation and enhancing quality in databases

was largely due to both incomplete descriptions of material and

methods in the papers and difficulties considering method-

dependent results, since extraction of kinetic data from literature

is necessarily carried out manually. They suggest that it might be

useful to establish a deposition system to which authors can submit

their data to ensure maximal accuracy and accessibility and to

replace possibly the traditional retrospective process of manual

data extraction. The situation is a bit better when it comes to

reaction annotation without the quantitative data, for obvious

reasons. At this point of time, there does not appear to be an

automated method for detecting and correcting errors. Although

highly desirable, availability of a comprehensive accurate

database, hence may be quite a while away. We have used

KEGG as our primary source of data, since it was the largest

available curated database, particularly for mycobacteria. A major

problem we observed was in describing the reversibility of the

reactions, which we have corrected manually to the extent

possible. Although there are omissions and errors in detail in the

database, on the whole, most of the reactions and proteins are

annotated correctly, from the manual checks we performed.

Hence, the KEGG serves as a good starting point for systems

biology studies. KEGG has also been extensively used by several

groups previously for systems analyses [16,17,30,31] and even

genome-scale metabolic reconstructions [32]. Felix and Valiente

have performed an exhaustive validation of a substantial portion of

the KEGG LIGAND database [33], concluding that over 90% of

the reactions in the KEGG are consistent.

The reaction networks of M. tuberculosis H37Rv, M. leprae and E.

coli K-12 MG1655 were reconstructed from a dataset primarily

obtained from the KEGG LIGAND database [34]. We used

reaction files containing compound IDs, so that there was no

discrepancy in the reactions, based on the usage of synonymous

compound names. Details of the total numbers of reactions,

metabolites and enzymes comprising the networks of these

organisms have been summarised in Table 1. The total size of

the networks in the three organisms is roughly of the same order,

making their comparison quite meaningful. The networks

essentially capture the core metabolic processes, such as the

metabolism of carbohydrates, nucleic acids, amino acids and

lipids, in the three organisms. Sequence analyses of the genomes

Mycobacterial Network Analysis
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have indicated that they share similarity among a number of

individual genes/proteins, leading to several similar reactions in

the three networks. However, the precise connections with which

the reactions are associated have not been analysed previously in

a comparative context. Graphs presented here are amenable to

such comparative analysis, providing a handle to understand the

similarities and the differences between a given pair of organisms

from a systems perspective. Analysis of the various network

properties, clustering patterns, shortest and alternate paths, that

aid in this process are elaborated below.

Analysis of network parameters
Analysis of various network parameters such as the degree

distribution, clustering coefficient, average path length and size

of the largest cluster of the reaction networks of all three organisms

revealed them to have a similar overall topology with comparable

graph properties (Table 1). The degree distributions of the nodes

in the reaction networks of all three organisms exhibit a power law

behaviour as shown in Figures 1A2C. Hence, the reaction

networks of these organisms are scale-free in nature, consisting of

a few ‘hubs’ that are highly connected and hold together

numerous nodes having a small degree. The log-log plots of the

degree distributions (Figures 1D–F) for the three networks also are

characteristic of a power law behaviour, with the degree exponent

c,1.4. This result differs from the results of Wagner and Fell [18]

who did not obtain a clear power-law degree distribution for

a reaction based graph of the metabolic network of E. coli. This

was perhaps due to the reduced dataset used in their study. The

clustering coefficients of the reaction networks of the three

organisms are of the same order of 1022, indicating that these

networks are quite sparse and have approximately the same

density of connections between nodes despite a difference in their

overall sizes. Further, it implies that the observed connections may

have evolved to suit a particular metabolic requirement and are far

from random. The average path length of the three networks are also

comparable, with the networks of M. tuberculosis and M. leprae having

average path lengths of 5.58 and 5.48 respectively, while the reaction

network of E. coli has a slightly smaller average path length of 4.94.

The small values of the average path length in these organisms imply

a small-world character, where the distance between any two

reactions in the network is smaller than what is expected from

traditional biochemical pathways, as will be shown later.

Clustering patterns
The largest clusters (giant components) in the networks of M.

tuberculosis, M. leprae and E. coli were obtained by the depth-first-

search method and comprised 73–76% of the total number of

biochemical reactions in their metabolome; while 8–10% of the

total reactions form other clusters in their respective networks. It is

therefore interesting to note that the size of the giant component in

the reaction networks of these organisms is conserved and is

unaffected by the metabolic streamlining of the leprae bacillus. It is

also unaffected by differences that exist between the metabolism of

E. coli and the mycobacterial organisms. Figures 2A–C are

representations of the clusters obtained in the reaction networks of

the three organisms. Graphviz [35] was used for the generation of

Table 1. Network properties of the reconstructed metabolic networks of M. tuberculosis, M. leprae and E. coli and the
corresponding random networks.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Property M. tuberculosis M. leprae E. coli

DETAILS OF THE RECONSTRUCTED NETWORK

Total no. of reactions (nodes) 1906 1325 2080

Total no. of edges 14,100 8,508 20,316

Reversible reactions 209 152 274

Irreversible reactions 1488 1021 1532

No. of metabolites participating in the reactions 1649 1139 1633

Total no. of proteins catalyzing the reactions 1097 469 1062

No. of currency metabolites eliminated 102 84 107

NETWORK PARAMETERS

Percentage of nodes belonging to the largest cluster 73.40 76.15 73.85

Percentage of ‘orphan’ nodes 17.00 16.30 16.39

Highest degree of connections 72 50 96

Average path length 5.58 5.48 4.94

Clustering co-efficient 0.01669 0.01600 0.01614

Degree exponent of the power law degree distribution 1.3952 1.4423 1.4093

PROPERTIES OF RANDOM NETWORKS*

Percentage of nodes belonging to the largest cluster 99.94 99.85 99.99

Percentage of ‘orphan’ nodes 0.0588 0.1487 0.0058

Highest degree of connections 22 21 27

Average path length 4.0060.02 4.0760.03 3.6160.01

Clustering co-efficient (3.7860.56)*1023 (4.8460.89)*1023 (4.6760.45)*1023

Characteristic Scale 7.4060.0122 6.4260.0137 9.7660.0134

*Random networks have been generated using the Erdős-Rényi model, with the same total number of vertices and edge probability as the corresponding reaction
networks.

doi:10.1371/journal.pone.0000881.t001..
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the cluster diagrams. Clustering analysis of the three networks by

the depth-first-search method also revealed several ‘orphan’

reactions that were completely unconnected in their respective

networks. Some of these were reactions that involved only

currency metabolites and hence were unconnected with the rest

of the network due to our elimination of interactions mediated by

the currency metabolites. Other orphans represented reactions

which were either inaccurately curated in the database and did not

occur in the metabolism of these organisms or whose links with the

rest of the metabolome have not been determined to date. A few

examples of orphan reactions are shown below:

R00004 (EC 3.6.1.1.) Pyrophosphate+H2OR2 Ortho-
phosphate

R00281 (EC 1.6.99.3) Acceptor+NADHRReduced-ac-
ceptor+NAD+

As an extreme example, we even have:

R02501 (EC 1.14.14.1) Testosterone+H++Oxygen+
NADPHR19-Hydroxytestosterone+NADP+

Such information on orphan reactions can be used to improve

the curation of the database and the annotation of the genome

itself.

We compared the network properties of the three reaction

networks with those of random graphs comprising the same total

number of vertices (V) and connecting edges (E) as the

corresponding reaction network, using the Erdős-Rényi model

(see Table 1). It was observed that for the given probability of

connections, the nodes of the random network formed a single

connected cluster comprising almost 100% of the nodes. Further,

the degree distributions of the nodes of the random networks

having the same total number of (V, E) as that of the M. tuberculosis,

M. leprae and E. coli reaction networks followed a Poisson

distribution, with an average scale of 7.40, 6.42 and 9.76

connections per node respectively. Moreover, the highest degree

of connections in these networks was significantly lower with

values of 22, 21 and 27 as compared to the highest degree in the

reaction networks of M. tuberculosis (72), M. leprae (50) and E. coli

(96) respectively.

Analyses of sub-clusters in the giant component
Metabolic networks are highly integrated and complex in nature.

Hence, a rational reduction of these networks to their basic

structural and functional units is essential to gain a deeper

understanding of their design principles and functioning. Several

studies have been carried out to detect modularity in metabolic

networks [21,22,36,37]. Guimera & Nunes Amaral [38] have

shown that metabolites in the cell group together to form

functional modules with typically 80% of the nodes in the network

only connected to other nodes within their respective modules. To

determine if this modularity of metabolic networks is also reflected

at the level of the constituent biochemical reactions, we carried out

analyses to detect sub-clusters of reactions in the giant component

by graph spectral analysis.

As mentioned in the methods section, the 2evc plots of the

Laplacian matrix of the graph provide the sub-cluster information.

The 2evc plots constructed for the reaction networks of M.

tuberculosis and M. leprae comprised numerous plateau regions

which represented sub-clusters of reactions in the giant component

of these networks (Figures 3A,B). A few examples of the sub-

Figure 1. A–C: Plots of the degree distributions of nodes in the reaction networks of M. tuberculosis, M. leprae and E. coli. D–F: Log-log plots of
the degree distribution function P(k) versus the degree k. P(k) defines the probability of a given node making exactly k connections in the network.
The fit to the curve shows a power law behaviour and has an exponent of ,1.4 for all three networks. G–I: Representative degree distributions of
nodes in random networks generated with the same total number of nodes and edges as the reaction networks of M. tuberculosis, M. leprae and E. coli.
doi:10.1371/journal.pone.0000881.g001
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A (M. tuberculosis) B (M. leprae)

Nodes belonging to the giant component 

Nodes representing reactions of the mycolic  
acid pathway in the giant component 

Nodes belonging to other clusters  

C (E. coli)

Figure 2. Clusters in the reaction networks of M. tuberculosis (A), M. leprae (B) and E. coli (C). The giant component in the networks comprises 73–
76% of the total number of nodes, while 8–10% of the total nodes form other clusters in the networks. The orphan nodes have been eliminated for
better visualisation.
doi:10.1371/journal.pone.0000881.g002
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clusters obtained in the giant component of M. tuberculosis have

been shown in Table 2.

It is observed that reactions belonging to fatty acid biosynthesis

and the FAS-II cycle of the mycolic acid pathway in M. tuberculosis

form distinct, tightly connected sub-clusters. This may be due to the

iterative nature of these cycles where the metabolite passes through

several cycles of the same reactions consecutively in order to obtain

a product of the requisite carbon chain length. Hence, the reactions

within these pathways are more tightly connected with each other

than to the other reactions in the metabolome. The mycolic acid

pathway [39,40,41] is a critical pathway in M. tuberculosis and is

important for its survival and pathogenicity. The other sub-clusters

obtained are less specific and contain reactions belonging to different

pathways identified in the KEGG. For example, cluster 1 in Table 2

comprises reactions involved in purine metabolism as well in

pantothenate and coenzyme-A biosynthesis. Further, reactions

occurring in a particular pathway are not contained in a single

cluster but different reactions from the same pathway are observed in

different sub-clusters. For example, reactions involved in purine

metabolism occur in both clusters 1 and 2.

The reaction network of M. leprae comprised sub-clusters that

were fewer in number and smaller in size than those obtained in

M. tuberculosis. This is because the metabolome of M. leprae

comprises fewer reactions than that of M. tuberculosis. Analysis of

these sub-clusters revealed them to be similar in nature to those of

M. tuberculosis, with reactions of the FAS-II cycle of the mycolic

acid pathway forming closely related sub-clusters while the other

sub-clusters were less specific in nature. Therefore, the overall

topological structure and nature of the giant component is

conserved between the two mycobacteria, indicating that the

large scale downsizing of the M. leprae metabolome has not

significantly altered the global structure of its core reaction

network. Interestingly, unlike the mycobacterial networks, the

giant component in the reaction network of E. coli did not resolve

into constituent sub-clusters (Figure 3C), implying that reactions

occurring in the metabolome of E. coli are more strongly

interconnected across various biochemical pathways. Thus,

differences can be seen to exist in the finer grouping of

biochemical reactions within the giant components of the reaction

networks of the mycobacteria and E. coli.

Lastly, from the analyses of sub-clusters in the giant components

of the three reaction networks, it can be seen that functional

modules are less well defined at the level of biochemical reactions,

with the reactions forming a single, large, connected cluster

ensuring free flow of metabolites between them. However, it is

important to note that similar to other studies, our model also is

limited by the assumption of constitutive expression of all enzymes

catalysing these reactions, i.e. the temporal expression of the

enzymes on account of regulation is ignored. This may affect the

clustering of biochemical reactions.

Identification of hubs in the reaction networks
Metabolic networks are scale-free networks characterised by the

presence of hubs that are highly connected nodes serving to hold

together numerous smaller nodes having a lower degree [13]. With

a large number of links, hubs in metabolic networks integrate all

substrates in the cell into a single, complex web of biochemical

interactions. Hubs are essential to the integrity and robustness of

the network against random attacks [42,43]. They are also

responsible for the small-world behaviour of networks as any two

nodes in the network can be reached by a relatively short distance

by traversing a hub [43]. Furthermore, in biological networks, the

hubs are thought to be functionally important and phylogeneti-

cally oldest [18,20,21,44]. To identify highly connected reactions

essential and central to the metabolism of the three organisms

under study, we elucidated the hubs in their reaction networks by

graph spectral analysis as well as by degree analysis.

As mentioned in the methods section, the largest vector

component of the highest eigenvalue of the Laplacian matrix of

the graph corresponds to the node with high degree as well as low

eccentricity. Two parameters, degree and eccentricity, are involved

in the identification of graph spectral (GS) hubs. In a graph

representing a scale-free network, the highest vector component

would therefore correspond to a hub with high degree and also

closest to the geometric centre of the network. Alternatively, hubs

can be ranked based on their connectivity alone (degree hubs). Thus,

hubs obtained from graph spectral analysis may differ from the

degree hubs. However, a comparison of the ranks of GS hubs and

degree hubs did not show any significant difference (Supplementary

Table S1). This is perhaps due to the topology of the network.

However, when the reactions corresponding to the hubs were

examined in detail, we find discrimination between the two sets of

hubs. It was observed that the top 50 degree hubs in the reaction

networks of the three organisms comprised reactions involving the
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Figure 3. 2evc plots for the giant components of the reaction networks of M. tuberculosis (A), M. leprae (B) and E. coli (C). Plateaus represent sub-
clusters of reactions. The giant component in the reaction network of E. coli does not resolve into sub-clusters as indicated by the single plateau in
plot C. Arrows indicate plateaus representing the sub-cluster of mycolic acid pathway reactions in the mycobacterial networks.
doi:10.1371/journal.pone.0000881.g003
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Table 2. Examples of sub-clusters in the giant component of the metabolic network of M. tuberculosis.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2evc Node no. RID* Pathway-ID Pathway

CLUSTER 1 (SIZE: 12)

0.00902 552 R01700 map00020 Citrate cycle (TCA cycle)

0.00902 1129 R04231 map00770 Pantothenate and CoA biosynthesis

0.00902 1130 R04233 rn00770 Pantothenate and CoA biosynthesis

0.00902 181 R00439B rn00230 Purine metabolism

0.00902 168 R00429 rn00230 Purine metabolism

0.00902 278 R00722B rn00230 Purine metabolism

0.00902 173 R00434 rn00230 Purine metabolism

0.00902 118 R00332B rn00230 Purine metabolism

0.00902 164 R00416B map00530 Aminosugars metabolism

0.00902 331 R00896 rn00272 Cysteine metabolism

0.00902 200 R00480 rn00260 Gly, Ser and Thr metabolism

0.00902 443 R01214F rn00280 Val, Leu, Ile degradation

CLUSTER 2 (SIZE: 11)

0.00921 483 R01343F map00220 Urea cycle and metabolism of amino groups

0.00921 453 R01248F rn00220 Urea cycle and metabolism of amino groups

0.00921 455 R01251F rn00220 Urea cycle and metabolism of amino groups

0.00921 999 R03646B rn00330 Arg and Pro metabolism

0.00921 457 R01253 rn00330 Arg and Pro metabolism

0.00921 834 R02788 rn00300 Lys biosynthesis

0.00921 135 R00376F rn00230 Purine metabolism

0.00921 612 R01857B rn00230 Purine metabolism

0.00921 701 R02235F rn00790 Folate biosynthesis

0.00921 703 R02236F rn00670 One carbon pool by folate

0.00921 1542 R05688 rn00100 Biosynthesis of steroids

CLUSTER 3 (SIZE: 10)

0.00675 1204 R04536B rn00061 Fatty acid biosynthesis

0.00675 1206 R04543B rn00061 Fatty acid biosynthesis

0.00675 1343 R04958B rn00061 Fatty acid biosynthesis

0.00675 1346 R04961B rn00061 Fatty acid biosynthesis

0.00675 1349 R04964B rn00061 Fatty acid biosynthesis

0.00675 1351 R04966B rn00061 Fatty acid biosynthesis

0.00675 1340 R04955B rn00061 Fatty acid biosynthesis

0.00675 1180 R04429B rn00061 Fatty acid biosynthesis

0.00675 1202 R04534B rn00061 Fatty acid biosynthesis

0.00675 1338 R04953B rn00061 Fatty acid biosynthesis

CLUSTER 4 (SIZE:24)

20.07038 1810 MAP123 fasII Mycolic acid pathway

20.07038 1812 MAP125 fasII Mycolic acid pathway

20.07038 1813 MAP126 fasII Mycolic acid pathway

20.07038 1814 MAP127 fasII Mycolic acid pathway

20.07038 1816 MAP129 fasII Mycolic acid pathway

20.07038 1794 MAP107 fasII Mycolic acid pathway

20.07038 1818 MAP131 fasII Mycolic acid pathway

20.07038 1819 MAP132 fasII Mycolic acid pathway

20.07038 1820 MAP133 fasII Mycolic acid pathway

20.07038 1822 MAP135 fasII Mycolic acid pathway

20.07038 1824 MAP137 fasII Mycolic acid pathway..
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metabolite L-glutamate as well as reactions involving pyruvate.

However, the top 50 GS hubs of M. tuberculosis and M. leprae

exclusively comprised reactions involving L-glutamate while the top

GS hubs in E. coli only consisted of reactions involving pyruvate (see

Supplementary Table S2). The difference in the degree and GS hubs

suggests that the most highly connected reactions are not necessarily

the most central reactions in the metabolome of the organism (by

centrality, we mean that node which has the least eccentricity;

eccentricity is the distance between a node and the node farthest

from it). Furthermore, reactions (and metabolites) forming the

centres of reaction networks are not common across all organisms

but are specific to the metabolism of each organism. Previous studies

by Ma & Zeng [17] on a substrate based metabolic network of E. coli

have shown pyruvate to be central to the metabolism of this

organism; our results corroborate their observation. By constructing

a reaction based graph of the metabolic network, we have elucidated

specific reactions involving pyruvate that form the centre of the E. coli

metabolome. Moreover, our method of identifying hubs central to

the network by graph spectral analysis is simpler and more

advantageous as it uses a single numerical computation that takes

into account both the degree and eccentricity of the hub in the

overall network.

The quality of the initial database used to reconstruct the

network would affect the results obtained in this analysis. An

incomplete database may lead to several false positives in the

identification of hubs in the network. To determine the reliability

of the identified hubs, we randomly knocked out half the nodes in

the original reaction networks of the three organisms to generate

highly reduced networks that simulate an incompletely curated

database. This exercise was repeated 30 times for each organism

and it was observed that reactions involving L-glutamate

comprised a majority of the top 20 GS hubs in the reduced M.

tuberculosis and M. leprae networks 83% and 67% of the time

respectively. Similarly reactions involving pyruvate formed the

majority of the top 20 GS hubs in the reduced E. coli network 67%

of the time. Hence, we believe that the results of our analysis

presented here are fairly reliable.

Identification of mycobacterial hubs absent in the

human metabolome
Hubs are essential to the integrity of the network. They make the

network vulnerable to targeted attacks on them, because once the

highly connected hubs are attacked, the network starts disintegrating

[42,43]. This property makes the hubs ideal drug targets; by

targeting a drug against a suitable hub or group of hubs, it is possible

to break down the cellular network of an organism completely,

which would result in the death of the organism. Further, targeting

hubs that are unique to the pathogen and absent in humans would

minimise side-effects of the drug in the host. We analysed the GS

hubs in M. tuberculosis and M. leprae to identify highly connected

reactions that are central to the metabolism of these organisms but

absent in humans (as detailed in the Methods section). The enzymes

catalysing these reactions can be explored further as potential drug

targets in the field of knowledge-based, rational drug design. The top

fifteen ‘unique’ hubs obtained in M. tuberculosis (Table 3) mainly

comprise reactions involved in nitrogen metabolism and in the

biosynthesis of essential amino acids that are not synthesised in

humans. It is particularly interesting to note that the first reaction of

the FAS-I cycle of the mycolic acid pathway unique to mycobacteria

ranks as the 38th unique hub in mycobacterium. Thus, the enzyme

acyl carrier protein-fatty acid synthase (ACP-FAS) involved in this

reaction can be explored as a potential target for drugs against

mycobacteria. Independent studies by Sassetti and co-workers [45]

and Raman and co-workers [41] have also identified the FAS

enzyme as one of the putative anti-tubercular drug targets. Sassetti

and co-workers performed a high throughput Transposon Site

Hybridisation Mutagenesis study to identify essential genes in M.

tuberculosis while Raman and co-workers performed a flux balance

analysis of the mycolic acid pathway in M. tuberculosis, followed by in

silico gene deletions to identify essential genes/putative drug targets.

The list of the top hubs unique to M. leprae is similar and has not been

tabulated separately.

Analysis of shortest paths
Metabolic networks are small-world networks characterised by

a small average path length between the nodes. Thus, in the

metabolic network of most organisms, on an average, any

metabolite can be converted to any other metabolite by rather

small number of biochemical reactions [13]. Besides analysing the

reaction networks of the three organisms under study to determine

their average path lengths as described in a previous section, we

have also elucidated the actual steps in the shortest path between any

two nodes in their networks. We compared the shortest paths

obtained in these organisms across six different metabolic pathways:

(a) glycolysis, (b) citric acid cycle, (c) pentose phosphate pathway, (d)

phenylalanine, tyrosine and tryptophan biosynthesis, (e) valine,

leucine and isoleucine biosynthesis and (f) folate biosynthesis and

observed that a majority of the paths obtained between reactions

from these pathways were the same in all three organisms. Hence,

the streamlining of the M. leprae metabolome has not significantly

altered the shortest routes that exist between reactions in its core

metabolism. Further, the shortest paths between reactions of the

above pathways are also unaffected by the significant differences in

the metabolism of mycobacteria and E. coli.

As predicted from the low values of the average path length for

these reaction networks, the paths obtained in this analysis are

shorter than the traditionally annotated biochemical pathways.

For example, the conversion of pyruvate to oxalosuccinate by the

Table 2. cont.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2evc Node no. RID* Pathway-ID Pathway

.

.

.

20.07038 1825 MAP138 fasII Mycolic acid pathway

20.07038 1826 MAP139 fasII Mycolic acid pathway

20.07038 1795 MAP108 fasII Mycolic acid pathway

*In the RID, F indicates the reaction proceeding in the forward direction, and B indicates the reaction proceeding in the backward direction.
doi:10.1371/journal.pone.0000881.t002..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Mycobacterial Network Analysis

PLoS ONE | www.plosone.org 8 September 2007 | Issue 9 | e881



T
a

b
le

3
.

T
o

p
fi

ft
e

e
n

h
u

b
s

in
M

.
tu

b
er

cu
lo

si
s

th
at

ar
e

ab
se

n
t

in
th

e
m

e
ta

b
o

lo
m

e
o

f
h

u
m

an
s.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

R
a

n
k

a
s

a
u

n
iq

u
e

h
u

b
R

a
n

k
a

s
a

G
S

h
u

b
N

o
d

e
n

o
.

H
u

b
R

ID
E

.C
.

N
o

.
o

f
ca

ta
ly

zi
n

g
e

n
zy

m
e

N
a

m
e

o
f

E
n

zy
m

e
P

a
th

w
a

y
(s

)
fo

r
w

h
ic

h
th

e
e

n
zy

m
e

is
re

q
u

ir
e

d

1
3

3
6

8
R

0
0

9
8

6
4

.1
.3

.2
7

A
n

th
ra

n
ila

te
sy

n
th

as
e

P
h

e
n

yl
al

an
in

e
,

ty
ro

si
n

e
an

d
tr

yp
to

p
h

an
b

io
sy

n
th

e
si

s

2
4

4
8

2
R

0
1

3
3

9
F

2
.6

.1
.-

T
ra

n
sf

e
ra

se
s,

tr
an

sa
m

in
as

e
s

N
it

ro
g

e
n

m
e

ta
b

o
lis

m

3
8

1
1

9
7

R
0

4
4

7
5

B
2

.6
.1

.1
7

Su
cc

in
yl

d
ia

m
in

o
p

im
e

la
te

am
in

o
tr

an
sf

e
ra

se
Ly

si
n

e
b

io
sy

n
th

e
si

s

4
1

2
1

9
7

R
0

0
4

5
7

B
2

.6
.1

.3
6

T
ra

n
sf

e
ra

se
s,

T
ra

n
sa

m
in

as
e

s
Ly

si
n

e
b

io
sy

n
th

e
si

s

5
1

4
7

1
7

R
0

2
2

8
3

B
2

.6
.1

.1
1

A
ce

ty
lo

rn
it

h
in

e
tr

an
sa

m
in

as
e

U
re

a
cy

cl
e

an
d

m
e

ta
b

o
lis

m
o

f
am

in
o

g
ro

u
p

s

6
2

8
1

6
0

R
0

0
4

1
1

3
.5

.1
.-

H
yd

ro
la

se
s

ac
ti

n
g

o
n

ca
rb

o
n

-n
it

ro
g

e
n

b
o

n
d

s,
o

th
e

r
th

an
p

e
p

ti
d

e
b

o
n

d
s

in
lin

e
ar

am
id

e
s

A
rg

in
in

e
an

d
p

ro
lin

e
m

e
ta

b
o

lis
m

7
3

5
7

1
4

R
0

2
2

8
2

f
2

.3
.1

.3
5

G
lu

ta
m

at
e

N
-a

ce
ty

lt
ra

n
sf

e
ra

se
U

re
a

cy
cl

e
an

d
m

e
ta

b
o

lis
m

o
f

am
in

o
g

ro
u

p
s

8
4

8
1

9
R

0
0

1
1

4
1

.4
.1

.1
3

L-
g

lu
ta

m
at

e
sy

n
th

as
e

G
lu

ta
m

at
e

m
e

ta
b

o
lis

m
,

N
it

ro
g

e
n

m
e

ta
b

o
lis

m

9
4

9
5

6
2

R
0

1
7

1
6

6
.3

.5
.8

A
m

in
o

d
e

o
xy

ch
o

ri
sm

at
e

sy
n

th
as

e
Fo

la
te

b
io

sy
n

th
e

si
s

1
0

5
4

8
7

R
0

0
2

6
0

F
5

.1
.1

.3
G

lu
ta

m
at

e
ra

ce
m

as
e

G
lu

ta
m

at
e

m
e

ta
b

o
lis

m
,

D
-G

lu
ta

m
in

e
an

d
D

-g
lu

ta
m

at
e

m
e

ta
b

o
lis

m

1
1

5
5

1
4

4
0

R
0

5
2

2
5

6
.3

.5
.1

0
C

o
b

yr
ic

ac
id

sy
n

th
as

e
P

o
rp

h
yr

in
an

d
ch

lo
ro

p
h

yl
l

m
e

ta
b

o
lis

m

1
2

6
4

1
4

3
9

R
0

5
2

2
4

6
.3

.5
.9

H
yd

ro
g

e
n

o
b

yr
in

ic
ac

id
a,

c-
d

ia
m

id
e

sy
n

th
as

e
(g

lu
ta

m
in

e
-

h
yd

ro
ly

si
n

g
)

P
o

rp
h

yr
in

an
d

ch
lo

ro
p

h
yl

l
m

e
ta

b
o

lis
m

1
3

8
3

1
7

0
7

R
0

6
8

6
0

2
.5

.1
.6

4
2

-s
u

cc
in

yl
-6

-h
yd

ro
xy

-2
,4

-c
yc

lo
h

e
xa

d
ie

n
e

U
b

iq
u

in
o

n
e

b
io

sy
n

th
e

si
s

1
4

8
5

1
4

5
8

R
0

5
3

2
0

1
.1

4
.1

1
.1

7
T

au
ri

n
e

d
io

xy
g

e
n

as
e

T
au

ri
n

e
an

d
h

yp
o

ta
u

ri
n

e
m

e
ta

b
o

lis
m

1
5

8
6

4
4

2
R

0
1

1
9

7
1

.2
.7

.3
2

-o
xo

g
lu

ta
ra

te
sy

n
th

as
e

C
it

ra
te

cy
cl

e

. . 3
8

*
1

7
2

1
6

9
2

M
A

P
0

0
5

-
A

cy
l

ca
rr

ie
r

p
ro

te
in

-f
at

ty
ac

id
sy

n
th

as
e

I
(A

C
P

-F
A

S)
M

yc
o

lic
ac

id
p

at
h

w
ay

* A
C

P
-F

A
S

e
n

zy
m

e
in

vo
lv

e
d

in
th

e
fi

ft
h

re
ac

ti
o

n
o

f
th

e
m

yc
o

lic
ac

id
p

at
h

w
ay

ra
n

ks
as

th
e

3
8

th
u

n
iq

u
e

h
u

b
in

M
.

tu
b

er
cu

lo
si

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

0
0

8
8

1
.t

0
0

3

................................................................................................

Mycobacterial Network Analysis

PLoS ONE | www.plosone.org 9 September 2007 | Issue 9 | e881



experimentally determined citric acid cycle requires a minimum

of four steps (pyruvateRoxaloacetateRcitrateRisocitrateR
oxalosuccinate) while the shortest path obtained between them

by our analysis comprised only three consecutive steps:

Steps in terms of RIDs:

R00344FRR00355BRR00268b

R00344 (EC 6.4.1.1) ATP+Pyruvate+HCO32R
ADP+Orthophosphate+Oxaloacetate

R00355 (EC 2.6.1.1) Oxaloacetate+L-GlutamateR
L-Aspartate+2-Oxoglutarate

R00268 (EC 1.1.1.42) 2-Oxoglutarate+CO2R
Oxalosuccinate

Hence, it can be inferred that the traditionally annotated

pathways are not the shortest possible routes for the conversion of

one metabolite into another. They are therefore a result of several

constraints imposed within the cell, such as intracellular compart-

mentalisation and thermodynamic constraints. Whether the shortest

pathways predicted here are really feasible pathways or not should

be evaluated in the context of the constraints in the cell.

Interestingly, our analysis also revealed shortest paths in which

one or more reactions in the path produce metabolites that are

utilised by reactions other than those that would be involved in the

commonly accepted notion of the steps of a given pathway.

Though such paths do not represent an ideal shortest path

comprising consecutive steps between a pair of reactions (as in the

above example), it provides important information regarding the

interaction of reactions from different biochemical pathways. For

example, the set of reactions obtained as the shortest path between

reaction R00959 (the 1st reaction) and R00658 (the 8th reaction) in

the glycolytic pathway are indicated in Table 4.

The path comprises reactions from different metabolic path-

ways – reaction R02740 occurs in the glycolysis and pentose

phosphate pathways, reaction R01830 occurs in the pentose

phosphate pathway and reaction R01826 occurs in the phenyl-

alanine, tyrosine and tryptophan biosynthetic pathway. Further, in

reaction R01826 phosphoenolpyruvate produced in the glycolytic

pathway reacts with D-erythrose-4-phosphate produced in the

pentose phosphate pathway to yield 2-dehydro-3-deoxy-D-

arabino-heptonate-7-phosphate, a precursor for tryptophan bio-

synthesis. It is clear that the flux through each of these reactions

will influence the direction of metabolites into specific biochemical

pathways. For example, the phosphoenolpyruvate produced in

reaction R00658 can either be converted into pyruvate by the

glycolytic route or be diverted into tryptophan biosynthesis.

The results of this analysis are also likely to be useful for

metabolic engineering. A systematic study of shortest paths

between all reaction pairs in the metabolome of an organism

can reveal paths that are shorter than traditionally annotated

biochemical pathways. Understanding of such paths can have

implications in the production of industrially important secondary

metabolites and for the manipulation of particular reaction fluxes

to direct intermediates into specific metabolic pathways for

obtaining larger quantities of the desired product.

Analysis of alternate paths
We have extensively analysed the number of alternate paths, that

exist between reaction pairs in the metabolomes of the three

organisms (for this, all 312 reactions common to the three

organisms were considered). It was observed that E. coli contained

the most number of alternate paths between a given pair of

reactions, followed by M. tuberculosis, while the leprae bacillus had

the least number of alternate paths of the three organisms. This is

due not only to the differing sizes of the networks of the three

organisms, but also to the difference in the degree distributions.

Though this result is not surprising in itself, it is interesting to note

that the reductive evolution of the M. leprae metabolome has led to

a loss of multiple paths between reactions pairs in the core

metabolic pathways, while keeping the shortest possible route

between them intact. This is possibly because only the core of the

metabolome has been conserved; the alternate routes (in M.

tuberculosis) add to the redundancy. Similarly, mycobacteria and E.

coli have evolved to have differing number of alternate paths

between reactions while keeping the shortest paths between the

reactions conserved.

Conclusions
The results presented in this work show that the reaction

networks of M. tuberculosis, M. leprae and E. coli are scale-free,

small-world networks that differ significantly from random

networks. The networks of the three organisms have similar

network properties despite a difference in the overall sizes of their

metabolomes.

Graph spectral theory serves as a tool useful for analysing the

topological structure and organisation of large complex networks.

This technique yields information about the sub-clustering of

nodes in the network and identifies the cluster centres by a single

numeric computation. Analysis of sub-clusters of the mycobacte-

rial reaction networks detected by this method suggests that

modularity of metabolic networks is possibly less well-defined at

the level of biochemical reactions; clusters have been discerned

well from metabolite networks [21]. It was observed that the top

50 GS hubs of M. tuberculosis and M. leprae exclusively comprised

reactions involving L-glutamate while the top GS hubs in E. coli

only consisted of reactions involving pyruvate. We showed that the

most highly connected biochemical reactions in the reaction

network of an organism are not necessarily the reactions most

central to the metabolism of that organism. Moreover, the

reactions and metabolites forming the centre of the metabolic

networks are not common across all organisms, but are specific to

the metabolism of each organism.

Table 4. Shortest path between steps in glycolytic pathway.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Steps in terms of RIDs:

R00959FRR02740FRR01830FRR01826FRR00658F

R00959 (EC 5.4.2.2) D-Glucose-1-phosphateRalpha-D-Glucose-6-phosphate

R02740 (EC 5.3.1.9) alpha-D-Glucose-6-phosphateRbeta-D-Fructose-6-phosphate

R01830 (EC 2.2.1.1) beta-D-Fructose-6-phosphate+(2R)-2-Hydroxy-3-(phosphonooxy)-propanalRD-Erythrose-4-phosphate+D-Xylulose-5-phosphate

R01826 (EC 2.5.1.54) Phosphoenolpyruvate+D-Erythrose-4-phosphate+H2OR2-Dehydro-3-deoxy-D-arabino-heptonate-7-phosphate+Orthophosphate

R00658 (EC 4.2.1.11) 2-Phospho-D-glycerateRPhosphoenolpyruvate+H2O

doi:10.1371/journal.pone.0000881.t004..
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A systematic comparison of the topological properties of the

mycobacterial metabolic networks reveals that massive gene decay

in M. leprae does not significantly affect the global structure of its

metabolic network. We showed that the most highly connected

reactions central to the metabolism of both organisms as well as

the finer grouping of reactions within the giant component of their

networks are essentially conserved and differ from that of E. coli.

Additionally, we have determined that metabolic streamlining in

the leprae bacillus has led to the preservation of the shortest paths

between reactions in its core metabolome while reducing the total

number of alternate paths that exist between them. The results

obtained in this work are also useful likely to find applications in

rational drug design and metabolic engineering.

METHODS

Dataset
We used the KEGG LIGAND database to reconstruct the

reaction networks of M. tuberculosis H37Rv, M. leprae and E. coli K-

12 MG1655 from genome data. A list of the metabolic pathways

and their constituent biochemical reactions in these organisms

were downloaded as flat files. These files contain information

about the reactants, products, reversibility and steady state

stoichiometries of the biochemical reactions. We corrected these

files for several mistakes such as incomplete reactions and

inconsistencies in reaction reversibility and direction. Polymerisation

reactions were eliminated from these files and not included in the

network construction. The KEGG database does not contain

complete information on the mycolic acid pathway (MAP), which is

unique to mycobacteria and essential for their pathogenicity and

survival. Hence, to obtain more complete and organism-specific

models of the reaction networks of M. tuberculosis and M. leprae, we

integrated the model of the MAP developed by Raman and co-

workers [41] into the corrected flat files of these organisms. The

MAP model was integrated in toto for M. tuberculosis, while 13

reactions involved in extending the products of the FAS–II cycle of

MAP into methoxy-mycolates were not included in the M. leprae

model as methoxy-mycolates are absent in the leprae cell wall [12].

Metabolic network reconstruction
The metabolic networks of the three organisms were constructed

as follows. Each biochemical reaction in the metabolome of the

organism is a node, and nodes representing reactions that share

a common metabolite as a substrate in one reaction and a product

in the other are connected by an edge. Thus, only reactions which

exhibit such a consecutive dependence on each other with respect to

a metabolite are connected to each other. All edges have an equal

weight of 1. In order to make the network amenable to numerical

analysis, it is represented in the form of an adjacency or reaction-

interaction matrix (RIM), which is an n6n matrix; n being the

number of nodes (biochemical reactions) in the graph. The elements

[A]ij of the RIM have values according to the following rules:

[A]ij = 1 if reactions i and j exhibit a consecutive dependence

through a metabolite

= 0 if the reactions do not exhibit such a dependence, or if

i = j

To construct the RIM, the set of reactions in the flat file

representing the metabolome of each organism was first

mathematically represented as a stoichiometric matrix, Sm6n, with

every metabolite being represented by a row (m metabolites) and

every reaction by a column (n reactions). The entries in each

column correspond to the stoichiometric coefficients of the

metabolites (negative for reactants and positive for products) for

each reaction. The ith row of the matrix defines the participation of

a particular metabolite across all metabolic reactions, and the jth

column provides the stoichiometry of all metabolites in that

reaction. In order to account for the reversibility of biochemical

reactions, each reversible reaction was split up into two irreversible

reactions with opposite signs of the stoichiometric coefficients in

the stoichiometric matrix. Further, to remove interactions between

reactions by virtue of ubiquitously present ‘currency metabolites’

such as ATP, ADP, NADP, H2O, CO2, Coenzyme-A etc., matrix

rows representing currency metabolites were discarded. The

complete list of currency metabolites discarded is given in

Supplementary Text S1.

To derive the RIM from the stoichiometric matrix, consecutive

dependences between pairs of reactions were determined. This

was done by comparing the signs of the stoichiometric coefficients

of each metabolite participating in the reactions between the two

columns representing the reaction pair in the stoichiometric

matrix. A (+,2) or (2,+) relationship between the coefficients in

row m of the stoichiometric matrix compared across column i and j

indicated a consecutive dependence between the ith and jth reaction

with respect to metabolite m and the element [A]ij in the

corresponding RIM was assigned the value 1. The RIMs thus

constructed are symmetric and served as the primary input for the

various analyses carried out in this study. The construction of the

stoichiometric matrix and the corresponding RIM for 4 hypo-

thetical reactions R1–R4 has been pictorially represented in

Supplementary Figure S1.

Graph Spectral Analysis
Graph spectral theory is a sub-field of graph theory that deals with

the analysis of the spectra (eigenvalues and eigenvector components)

of nodes in the graph. Such an analysis provides information on the

overall structure and topology of the graph. To obtain the eigenvalue

spectra of the graph, the adjacency matrix of the graph is converted

to a Laplacian matrix (L), by the equation:

L~D{A

where D, the degree matrix of the graph, is a diagonal matrix in

which the ith element on the diagonal is equal to the number of

connections that the ith node makes in the graph. Diagonalisation of

the Laplacian matrix yields the spectra of the graph comprising the

eigenvalues and their corresponding eigenvector components.

Analysis of the vector components of the lower and higher

eigenvalues yields information about the clustering of nodes in the

graph and the connectivity of each node in the graph [23,46].

Specifically, the vector components of the second lowest eigenvalue

carry information about the clusters present in the graph with all

nodes of a given cluster having the same value of the vector

component [47]. In a completely connected graph, where all nodes

belong to a single cluster, the vector components of the second lowest

eigenvalue provide sub-cluster information where the nodes within

a sub-cluster have similar vector component values. A sub-cluster is

a set of nodes within a cluster that make significantly more

connections among themselves than with the other nodes in the

cluster. A plot of the sorted vector components of the second lowest

eigenvalue (2evc) versus the node number clearly reveals the sub-

cluster information, with the nodes belonging to a sub-cluster

forming distinct plateaus on the curve and the nodes connecting the

sub-clusters having vector component values in between the

plateaus. Identification of sub-clusters by the graph spectral method

has been applied successfully in various studies such as the

identification of domains in multi-domain proteins [25] and to
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detect clusters of structurally similar proteins in protein chain

universe graphs [26]. The vector components of the top eigenvalues

contain information regarding the branching of nodes in the graph

and the nodes forming the cluster centres [23,48]. The largest vector

component of the highest eigenvalue corresponds to the node with

the highest degree in the graph. However, in case there are many

nodes with degenerate highest degree, the one which is closest to the

geometric centre of the graph, takes up the highest vector

component value. Similarly, the second largest vector component

of the highest eigenvalue corresponds to the node with next highest

degree and next lowest eccentricity in the graph and so on.

Eccentricity, E(v), of a vertex v in a graph G is the distance from v to

the vertex farthest from v in G, i.e.

E(v)~ max
vi[G

d(v,vi)

where d(v,vi) represents the length of the shortest path between v

and vi.

Identification of mycobacterial hubs absent in the

human metabolome
To identify hubs in the reaction networks of M. tuberculosis and M.

leprae that were absent in the metabolism of humans, we first

obtained a comprehensive list of biochemical reactions occurring

in the metabolome of Homo sapiens from the KEGG database. Each

reaction in this database is identified with a unique reaction-id (RID)

that is common across all organisms in the database. Further, each

RID is associated with the E.C. number of the enzyme catalysing the

reaction which is further linked with the RIDs of the other reactions

catalysed by the enzyme. For each reaction in the list of hubs for the

two organisms, we obtained the E.C. number and associated RIDs of

its corresponding enzyme. These RIDs, including the RID of the

primary hub reaction were compared with the list of RIDs of

reactions occurring in humans. An absence of all the RIDs in

humans implied that the particular enzyme did not function in the

metabolome of humans and the primary hub reaction was then

classified as a hub ‘unique’ to the mycobacterium. However, since

the data on the metabolism of humans was obtained from the

KEGG database, it is important to note that the verity of the unique

hub depends on the quality of the database.

Analysis of shortest and alternate paths
The shortest paths in the network and the steps involved were

identified using the Floyd-Warshall algorithm [49]. For the

analysis of alternate paths, the adjacency matrix was used as the

primary input. The total number of alternate paths between any

two nodes in the network was determined by using classical

algorithms that count paths based on powers of matrices [50].

Essentially, by this method, the value of the element [A]ij of the

matrix [A] obtained by raising the adjacency matrix to the power n

is equal to the total number of paths of path length n that exist

between node i and node j in the graph.
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