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Abstract

Division of labour (DoL) is a fundamental organisational principle in human societies, within virtual and robotic swarms and
at all levels of biological organisation. DoL reaches a pinnacle in the insect societies where the most widely used model is
based on variation in response thresholds among individuals, and the assumption that individuals and stimuli are well-
mixed. Here, we present a spatially explicit model of DoL. Our model is inspired by Pierre de Gennes’ ’Ant in a Labyrinth’
which laid the foundations of an entire new field in statistical mechanics. We demonstrate the emergence, even in a
simplified one-dimensional model, of a spatial patterning of individuals and a right-skewed activity distribution, both of
which are characteristics of division of labour in animal societies. We then show using a two-dimensional model that the
work done by an individual within an activity bout is a sigmoidal function of its response threshold. Furthermore, there is an
inverse relationship between the overall stimulus level and the skewness of the activity distribution. Therefore, the
difference in the amount of work done by two individuals with different thresholds increases as the overall stimulus level
decreases. Indeed, spatial fluctuations of task stimuli are minimised at these low stimulus levels. Hence, the more unequally
labour is divided amongst individuals, the greater the ability of the colony to maintain homeostasis. Finally, we show that
the non-random spatial distribution of individuals within biological and social systems could be caused by indirect
(stigmergic) interactions, rather than direct agent-to-agent interactions. Our model links the principle of DoL with principles
in the statistical mechanics and provides testable hypotheses for future experiments.
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Introduction

Both human and animal societies display a division of labour, in

which there may be an unequal distribution of effort between or

within particular tasks, according to age or experience [1,2], sex

[3], physiology [4] or morphology [5]. Such specialisation has long

been known to improve collective productivity [6] because

learning allows individuals that focus on a subset of tasks to

perform more efficiently than generalists (note however the

exception to the rule provided by Dornhaus, 2008). Division of

labour is most advanced in the societies of insects such as ants,

bees, wasps and termites [7]. Within an insect society, there is

typically considerable individual variation in the sensitivity to

stimuli associated with particular tasks. One of the simplest models

of Division of Labour (DoL), the fixed-threshold model (FTM),

invokes this individual variation in sensitivity to such task-related

stimuli [8,9]. There is good evidence for the existence of such

response thresholds in ants [10,11,12], bumblebees [13], the

honey bee [14,15,16], wasps [17] and termites [18]. Experiments

also provide strong support for the role of response thresholds for

the maintenance of colony homeostasis [13,19,20]. Individual

variation in thresholds has genetic [21,22], morphological [11],

hormonal [23] and developmental [24] components. Although

direct evidence for a positive relationship between colony fitness

and wide threshold distributions is lacking, there is evidence in the

honey bee that genetic variation (the number of patrilines within

the colony) positively influences colony fitness [25].

In the FTM, the decision of an individual whether or not to

undertake a particular task, such as foraging or brood care, is

determined by two parameters; the sensitivity of the individual to

stimuli associated with the task (its response threshold), and the

level of demand for that task (the stimulus value). When an

individual senses that the stimulus exceeds its threshold value, it

becomes activated, and performs some work. Through such

activity, sensitive (low threshold) individuals reduce the stimulus

level such that it often does not reach the threshold of their less

sensitive nestmates. This negative feedback loop homeostatically

maintains the stimulus level (the task demand) at a steady state,

around which it fluctuates. A further consequence of this

mechanism, and one that matches the pattern observed in nature,

is that the activity distribution becomes right-skewed; a small

minority of sensitive individuals perform the majority of the work

[13,26,27,28,29].

Here, we extend the FTM by explicitly including space. This

modification induces a spatial ’percolation’ effect [30,31,32] in

which small differences amongst agents in their response

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18416



thresholds, are related to large differences in their probabilities of

performing work. The extension of the original fixed-threshold

models of DoL to include space removes the assumptions that

individuals and task-associated stimuli are well-mixed. The

movement and activity of the individuals in the spatial fixed-

threshold model (SFTM) may then be analysed as a case of

diffusion in disordered media - a well studied branch of statistical

mechanics [33,34].

The FTM assumes that individuals and stimuli are well-mixed

and that each individual experiences the same global stimulus level

equally. This is a simplifying assumption. However, it is realistic

only for a minority of cases when the stimulus is spatially uniform.

For example, honey bees homeostatically maintain the nest

temperature and CO2 levels within certain acceptable ranges

[13,20]. When it gets too hot inside the nest, the bees with the

lowest threshold to temperature begin to fan their wings, thereby

increasing the airflow and reducing the temperature such that it

never reaches the thresholds of their less sensitive nestmates. So

because temperature and CO2 levels can be expected to be fairly

uniform within the nest, the assumption of perfect mixing of

stimulus and bees is justified. Therefore modelling this process as a

non-spatial process is reasonable. However, when the stimulus in

question is heterogeneous over space, perfect mixing can no longer

be assumed. To appreciate the importance of modelling DoL

without the assumption of perfect mixing, consider the honey bee

comb, organised- or rather compartmentalised- into different

zones in which the cells contain either brood, pollen or honey [35].

Therefore, tasks are not uniformly distributed in space [36].

Furthermore, individuals themselves are not well mixed. Despite

their high potential mobility, individual ants [37], honey bees [38],

bumble bees [39] and wasps [40] tend to be faithful to particular

parts of the nest and this spatial fidelity persists even when many

tasks are removed [41].

In the FTM, the distribution of the individual response thresholds

within the colony- the Colony Threshold Distribution (CTD)- will

bear directly upon the proportion of individuals that are mobilised

to respond to a given stimulus level. Indeed, the precise form of the

CTD will have significant adaptive consequences [42]. Abrupt

discontinuities in the CTD would affect the ability of the colony to

produce an appropriate response to small changes in the demand

for labour. For example, consider the scenario in which the colony

is evenly split between two types of individual; half of the ants have

low thresholds and the other half have high thresholds. In that

case, the colony will be unable to produce a graded response to

fluctuating stimulus levels, because only 0% (both thresholds above

stimulus level), 50% (stimulus level above the low threshold but

below the high threshold level) or 100% (both thresholds below

stimulus level) of the individuals may be active at any one time. If,

on the other hand, the CTD has a continuous distribution, the

colony will produce a more finely graded response that is

proportionate to the stimulus levels.

Experimental data on the form of the CTD is rather limited. To

our knowledge, only in the honey bee, Apis melifera is there a

quantitative description of the CTD, which is approximately

Gaussian [20]. Indeed, several previous simulation studies of the

FTM have assumed a Gaussian distributed CTD [19,43]. For

simplicity, we first consider the case of the uniform CTD. Uniform

distributions lack any central tendency (they are not humped) and

so have a variance, defined by the range of the distribution.

For completeness we also investigate the influence of a Gaussian

CTD upon the ability of the colony to minimise both the total task

demand and the spatial variation thereof. As well as the

aforementioned uniform and Gaussian CTDs, we also explore the

consequences of completely removing individual threshold variation.

Methods

Before constructing a biologically relevant individual based

model in two dimensions, we will introduce several important

concepts and issues using the more abstract but simpler one-

dimensional model [44,45].

i. A model of division of labour in one dimension
Let us imagine a colony of heterogeneous and mobile ants,

along with their (stationary) brood, inhabiting a ring-shaped nest

in which the ring cross-section is so narrow that ants may not pass

one another, although they may pass over the brood. The brood

are regularly spaced, so the distance separating brood items is

fixed. This scenario is modelled using a one-dimensional cellular

automata with 500 grid squares with periodic boundary

conditions. Each grid square contains a brood item, and within

a single time-step an ant may only move one grid-square, that is,

from one brood item to an adjacent brood item. However, there

are more brood items than adult ants, so unlike the brood, the ants

need not be regularly spaced. Each brood item demands regular

labour, for example, grooming and feeding. Let us further assume

that the demand of the brood for attention is a stimulus that can be

detected by nearby ants. To reflect this, the stimulus grows over

time, a single brood item is selected every time-step and its

stimulus is increased by a fixed amount - this is the stimulus ‘drive’.

Given the ring-shaped nest geometry, and the fact that ants are

unable to pass one another, it is reasonable to allow each ant to

perceive only local information about its stimulus environment.

Thus, each ant may only detect the stimulus level of the brood

items within a ‘domain of care’. This domain of care is defined as

the brood item that the ant is standing on, plus the two items

immediately adjacent to the current item. When an individual ant

detects that one of the brood items in its domain of care requires

attention (i.e., that the brood item has a stimulus value greater

than the threshold of the attending ant), the ant moves to the site

and performs work on the brood item. The reduction in the

demand for work is reflected by reducing the stimulus value to the

threshold level of the attending ant.

There are several possible formulations of response threshold

functions in which the probability of response is not binary, that is,

not purely deterministic [8,9,46,47]. Although probabilistic

response thresholds may be more biologically realistic, they

require the choice of an extra parameter that controls the

steepness of the sigmoid curve. Hence, we simplify the response

thresholds to a step function; when the stimulus is less than the

threshold, S,h, the response probability is zero, and when S.h,

the response probability is equal to one.

It has been shown that collective regulation of task demand is

improved when the threshold distribution is broad [48,49].

Following Page & Mitchell (1998) and Theraulaz (1998) inter-

individual threshold variation was generated in the simplest

manner possible; the thresholds, h, were drawn from a uniform

distribution hi [ ½hmin, hmax�ð Þ so sensitive ants were no more

common than insensitive ants.

If the above scenario is initialised with a random spatial

distribution of ants, and with all brood having zero stimulus, the

total stimulus will grow at first, before reaching a steady state

(Figure 1a). At the steady state, the increase of brood-care stimulus

is balanced by the work performed by the ants. The collective

output (the total work done per time-step) fluctuates intermittently.

The most interesting outcome of the one-dimensional model

concerns the spatial distribution of the ants. Initially, the ants are

distributed at random positions along the ring nest, however, as

the model self-organises towards the steady-state the ants become

DoL: Removing the Assumptions of Perfect Mixing
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aggregated into a few clusters. In Figure 1b at t = 0 the ants are

randomly (uniformly) distributed around the ring, but when the

simulation reaches the steady state at t,50,000, five stable clusters

form. Interestingly, the distance separating the clusters is fairly

constant, that is, on average the clusters are regularly spaced

(overdispersed).

The mechanism behind this pattern is revealed when the

average distance from every ant to its two neighbouring ants is

plotted as a function of its response threshold (Figure 2). The

greater the sensitivity of an ant (i.e. the lower its response

threshold), the greater the distance separating the ant from its

neighbouring ants. The clusters consist of ants with relatively high

thresholds, while ants with relatively low thresholds shuttle

between these clusters.

The observation that sensitive ants ‘box in’ their less sensitive

nestmates, implies that the activity distribution is skewed. Indeed,

when the total work done by each of the ants within a given period

is accumulated, and divided by the time elapsed, one arrives at a

useful measure of the individual activity; the work done per time-

step per ant. As in real social insect colonies, the individual activity

distribution is highly right-skewed so that a minority of the ants

perform the majority of the work (Figure 3). As there are many

alternative functions for plotting distributions [50,51], for ease of

comparison, Figure 3 shows the skewed activity distribution

plotted using two common methods; a Zipf-type rank distribution

[27], and a survivorship (the complement of the cumulative

distribution) function [26].

In summary, when considering the task of attending brood

items situated on each grid square in a one-dimensional nest, the

activity of ants with a uniform distribution of threshold values and

a finite domain of care is highly skewed. Relatively few ants with

low thresholds will attend a majority of brood items while ants with

higher thresholds cluster into groups and attend only a small

fraction of the brood items. This skewness is induced by the spatial

aspect and the indirect interactions among ants.

ii. A model of division of labour in two dimensions
Pierre de Gennes’ Ant in a Labyrinth. We will introduce

the more biologically realistic two-dimensional model with a brief

discussion of the similarity between the concept of a spatially

explicit DoL in social insects and the classic ‘Ant in a Labyrinth’

model [32]. The importance of de Gennes’ model cannot be

overstated; it laid the foundation for an entire new field in

statistical physics, known as ‘diffusion in disordered media’. We

will use the statistical tools of this approach [30,52] to demonstrate

the influence the inclusion of space has on the DoL when the

’disordered medium’ is a collective environment, such as a social

insect nest, filled with stimuli that vary in intensity across space.

The aim of this approach is to explore the consequences of

removing the assumption of well-mixed stimuli and agents.

In de Gennes’ (1976) model, each site on a two-dimensional

square lattice is occupied with probability p and hence unoccupied

with probability 1-p. The probability p is known as the probability

of occupancy. For example, if the occupation probability is p = 0.5,

then, on average, half of the lattice sites will be occupied, and half

unoccupied. A single ‘blind ant’ is then randomly dropped onto an

occupied site on the lattice. The ant follows a simple rule: choose

randomly one of the four adjacent (nearest-neighbour) sites

(NESW). If the chosen site is occupied, the ant moves onto it,

however, if it is empty, the ant does not move. Either way, the time

is incremented by one unit. The ant is termed ‘blind’ because the

initial four-way choice is made irrespective of those sites’

occupancies.

A cluster is defined as a set of occupied sites which are

connected by one of their four nearest neighbours such that any

two sites in a cluster may be reached by a series of consecutive

Figure 1. Emergence of one-dimensional spatial division of labour. a) Black line: The development of the steady state (world
circumference = 500, N ants = 20, stimulus drive = 0.1 stimulus units per time-step). Red line: The total work done per time-step. b) The positions of
the ants in the ring nest as a function of time. The ants measure their position clockwise from a fixed but arbitrarily chosen point along the ring. There
is a transition from a random initial configuration, to one in which ants are aggregated into a few clusters, with low threshold ants shuttling between
the clusters. The clusters are represented by the straight lines.
doi:10.1371/journal.pone.0018416.g001

DoL: Removing the Assumptions of Perfect Mixing
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steps to the North, East, South or West. The mean cluster size,

,S., is the average cluster size to which an occupied site belongs

(excluding the infinite percolating cluster, see later). If p is

increased from p = 0, the mean-cluster size incresases and a critical

point is reached (pc = 0.59274621...) where the largest cluster spans

the lattice, and the average cluster size, ,S. diverges (goes to ‘).

The lattice is then said to ‘percolate’. When p,p c, clusters are

finite, and then the ants are unable to percolate through the lattice

even when given an infinite amount of time to do so. Such ants

remain ‘trapped’ forever. When p = 1, all sites are occupied and

there are no barriers to movement, so movement is Brownian.

However, if the occupation probability is set to pc the ant displays

‘anomalous diffusion’, characterised by sub-diffusive movement

[30].

A spatial fixed-threshold model of division of labour

(SFTM). There is only a single ant in the Ant in a Labyrinth

model, the structure of the disordered medium - the labyrinth - is

fixed and hence there are no ant-ant or ant-medium interactions

[30]. The aim of de Gennes’ (1976) model was to investigate

diffusion in disordered media, and neither the term ‘ant’ nor the

movement rules ascribed to the ant were intended to have a

biological meaning. However, the model provides a framework

upon which to extend previous non-spatial fixed-threshold models

of DoL. In our spatial fixed-threshold model,the medium is treated

as a landscape across which many ants move, and upon which they

perform work, so altering its structure. The active ants thereby

exert indirect influence on the activity of their nestmates. When

inter-individual interactions operate indirectly through the

medium of the shared environment, the process is a stigmergic

one [53,54,55]. In the spatial fixed-threshold model (SFTM) both

the movement and work rules assigned to the ants are derived

from an earlier non-spatial fixed-threshold model of DoL [9].

The Ant in a Labyrinth model shows that anomalous diffusion

occurs in a static disordered medium manually placed at a critical

point (pc), however, anomalous diffusion may also occur in

dynamical systems that self-organise to a critical point [56]

without any external fine tuning of control parameters. In many

models of self-organised criticality [52,57,58], ‘strain’ is slowly

increased and is then released intermittently in spasmodic ‘quakes’.

So the total amount of strain within the system increases until a

steady state is reached where the slow ratcheting of the strain is, on

average, balanced by intermittent dissipation of strain - termed

‘stick-slip’ behaviour. Similarly, in earlier non-spatial models of

DoL, the competition between the demand for and performance

of work is represented by adding a fixed amount of stimulus every

time-step [9].

Our spatial fixed-threshold model is initialised on an empty

lattice (all sites have zero stimulus, S = 0), with periodic boundary

conditions, across which a fixed number of ants were randomly

distributed. A spatially random stimulus dS ‘rains’ onto the lattice

such that in each time-step a single site is randomly chosen, and

the stimulus value of the site is increased by a fixed amount, dS.

This input is termed the stimulus drive.

The addition of even a single degree of freedom represented by

the spatial domain, incurs a disproportionate increase in the

complexity of the analysis of the individual and collective

behaviour. Therefore for simplicity, binary response thresholds

were implemented, rather than sigmoid or exponential response-

probability functions [8]. So when the local stimulus exceeds the

response threshold, the individual is activated with probability of

one.

Many models of stick-slip behaviour in non-biological systems

employ rules in which the strain is increased only when all sites are

stable (inactive) and hence the system is in a quiescent state

[59,60,61]. If this rule were imposed, the maximum number of

active ants at any one time would be limited to one. In reality, the

arrival of extrinsic task-related stimuli should be independent of

Figure 2. The mean distance to the left and right neighbours is
an inverse function of the response threshold. Periodic boundary
conditions apply. World circumference = 500, N ants = 20, stimulus
drive = 0.1 stimulus units per time-step, N simulations = 500.
doi:10.1371/journal.pone.0018416.g002

Figure 3. The skewed activity distribution. Individual ant activity is
measured on a per-ant basis, as the work done per time-step. Main
panel; an activity-rank plot. A rank of 1st indicates the ant was the most
active, and a rank of 20th indicates the ant was the least active. Panel
insert: the same data as the main panel plotted as the survivorship of
the individual ant activity. The distribution is exponential-like. Model
parameters as in Figure 2 legend. All realisations were run for 50000
time-steps after reaching the steady-state.
doi:10.1371/journal.pone.0018416.g003

DoL: Removing the Assumptions of Perfect Mixing
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the number of active individuals. Therefore a more biologically

realistic scenario was implemented, in which stimulus input occurs

every time-step irrespective of the activity status of the ants,

thereby enabling many ants to work simultaneously [62]. In

individual-based modelling, true concurrency is difficult to

achieve. Individual concurrency was simulated in the following

manner. Within each time-step, those individuals that detect an

adjacent site containing a greater stimulus level than their

threshold take turns to move and perform work. The turn-order

is random, so individuals that find that an adjacent site exceeds

their threshold by a very large amount are not necessarily selected to

move before those individuals for which the adjacent site only

contains marginally more stimulus than their threshold. Similarly,

the turn-order is randomised from time-step to time-step, so if it

happened that an individual was chosen to move first in the one

time-step, this is not related to its turn-order in subsequent steps.

For simplicity, the majority of the analysis is based on a uniform

colony thresdhold distribution (CTD), hi [ ½hmin, hmax�, from

which the individual thresholds were randomly assigned. For a

uniform distribution, the variation is specified only by the width of

the distribution which was fixed hmin~0, hmax~10ð Þ, hence for

the uniform CTD the threshold variation was constant (standard

deviation, s~2:89). The effect of alternative CTD’s was also

investigated. The effect of a Gaussian CTD (with increasing

standard deviation s~0:5, 1:0, 1:5, but with the same mean and

range as the uniform CTD, �hh~5, hmin~0, hmax~10) upon the

ability of the colony to minimise the total task demand (the mean

stimulus per site) and the spatial variation (the relative between-site

variation) of the task demand, was also tested.

To an outside observer, the stimulus landscape structure is

viewed as a surface that varies continuously across time and space

(Figure 4, Figure 5a). Sites may contain any stimulus value in the

range 0,?½ �. However, to the ant i, the labyrinth is viewed through

the binary lens of its threshold; each site either contains a

detectable amount of stimulus (S.hi) or it does not (S,hi). We

define a site to be occupied (from a given ant’s perspective) if the

amount of stimulus in a site if greater than the threshold of the ant.

If an ant detects that either its current site or one of the four nearest

neighbour sites (NESW) bordering the current site is occupied (i.e.,

that any of those five sites has S.hi) it moves to do work there, but

otherwise remains inactive. If more than one neighbouring site is

occupied (has S.hi) the ant makes a random choice. After moving to

a site, the ant then performs some labour there, and reduces the

stimulus to its threshold level, S = hi (see Figure 6).

So upon encountering a site containing a given stimulus value, a

low threshold ant i will reduce the stimulus there to a lower level

(i.e., it will do more work) than a high threshold nestmate j,

because hi,hj. Thus unlike previous models [8,9,47], the amount

of work done by an ant in a time-step (its efficiency) is a function

solely of the ants’ threshold and its location. This avoids the need

for additional assumptions, for example, having to specify the

stimulus reduction (task performance efficiency) as a function of

the number of active individuals working [8,47]. Our linking of

efficiency to the threshold is reasonable; in the honey bee, corpse-

removal efficiency is positively correlated with the degree of

specialisation upon the task, and thus presumably also with the

sensitivity to the stimuli associated with honey bee corpses [63].

In summary, the SFTM builds upon de Gennes’ (1976) model

by including ant-medium interactions which, through stigmergic

modification [53,54,55,64] of the medium, generates ant-ant

interactions that are indirect but still causal. For example, the

action of a sensitive ant working in the cell adjacent to a less

sensitive ant will reduce the probability that the less sensitive ant is

active in the next time step.

iii. Rationale for model analysis
Stimulus landscape structure and threshold effect on

activity. The two-dimensional model is based on interactions

between the stimulus landscape and the activity of individual ants.

However, the variation in the sensitivity amongst the ants means

that the ’perception’ (i.e. local detection) of the stimulus landscape

is dependent upon the threshold of the ant concerned (Fig. 5).

Therefore those measurements concerning the landscape structure

(site occupancy and cluster size) were calculated for each ant and

then averaged across all ants (Figure 7). Because the model was

run at various different driving rates, dS, for ease of comparison,

the measures of landscape structure were normalised by the

driving rate.

The highly skewed distribution of activity [27] that characterises

many insects may in some cases follow a power law [26]. Hence,

we examined the cumulative probability distributions for the

measures of landscape structure. This technique has a low margin

of error in estimating the power-law exponent, a, of the probability

density (P(x) ,1/xa) [51].

We also examined how individual sensitivity to the stimulus

influences how the ants ’perceive’ the structure of the stimulus

landscape and thus the amount of work they perform upon it. To

do so we plotted both the mean cluster size, and the amount of

work performed by an ant during a ’bout’ of continuous activity

(Figure 7), as a function of the response threshold.
Spatial homeostasis and the colony threshold

distribution. The ability of a social insect colony to buffer its

Figure 4. The stages involved in an ’ant bout’. The position of the
ant is indicated by the red square. Each time-step every ant checks its
local neighbourhood (the four blue squares) for any stimulus that
exceeds its individual response threshold (S.hi). Here, at t1 some
stimulus arrives in the ant’s West square, such that SW.hi, so the ant
moves onto it, instantaneously reducing the stimulus at that site to its
threshold level, hi. If more than one neighbouring site has S.hi, the ant
chooses randomly between them (at tn). At tn+1 the ant has exhausted
the stimulus in its four adjacent squares, so it is trapped.
doi:10.1371/journal.pone.0018416.g004

DoL: Removing the Assumptions of Perfect Mixing
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internal environment against the fluctuations of the external

environment has direct fitness consequences for the colony

[25,49]. It should be beneficial for a social insect colony to

minimise the absolute demand for the task (the total stimulus) as

well as its spatial variation.

Our first performance metric is the mean stimulus per site,

,S., which quantifies the absolute demand for work per site; the

greater ,S. the more work is required (Figure 7). If we assume

that it is maladaptive for a colony to allow the demand for a task

(the stimulus) to rise unchecked, then the lower ,S., the better

the colony performance.

While the above metric concerns the average demand for

labour per site, the second performance metric, the fluctuation

amplitude, measures the between-site variation of the stimulus

(Figure 7). As the sites are distributed across space, the fluctuation

amplitude measures the degree of spatial heterogeneity in the

stimulus. This dimensionless number was used to make compar-

isons of the relative amount of variation across different drives. A

similar measure of the relative variation in models of termite

building [65,66] and ant brood tending [67] have been previously

implemented, although in those studies the measure was termed

the ‘fluctuation amplitude’.

Why might it be beneficial to minimise the between-site fluctuation

amplitude? Let us assume there are penalties when the stimulus held

Figure 5. The stimulus landscape percolates at a critical response-threshold. a) A stimulus landscape as it appears to the outside observer
(dS = 1, l|l~200|200, N ants/l2 = 0.04). The more stimulus a site contains, the darker the grey. b) Threshold-dependent site-occupancy for the same
landscape as seen by a sensitive ant (hi = 1, p = 0.759). Sites with S,hi are white. The largest cluster on the lattice is coloured in red. The cluster ‘percolates’
across the lattice. c) Threshold-dependent site-occupancy for an ant with hi = 1.55, here p = 0.594. The occupancy is just above the critical occupancy
(pc = 0.5927…), where the mean cluster area displays a phase-transition. d) Threshold-dependent site-occupancy for a less sensitive ant, where hi~3 and
p = 0.32. To this ant most sites do not contain stimulus, clusters of occupied sites do not span the lattice, and hence the landscape does not percolate.
doi:10.1371/journal.pone.0018416.g005

Figure 6. Stimulus input and ant activity update rules for the
two-dimensional model.
doi:10.1371/journal.pone.0018416.g006
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on a site exceeds a given value. For example, suppose the sites

represent brood items each with an associated hunger stimulus.

There should be a stimulus level which, if exceeded, will cause the

brood item to die. Let us give a concrete example; suppose there are

100 brood items, and that a brood item will die if its hunger stimulus

exceeds Si = 7. Now suppose that the ants can provide enough brood

care to reduce the total stimulus to
P100

i~1 S~500, that is, ,S. = 5. If

the ants allocate their labour completely evenly (i.e. if there is perfect

mixing), then every item will have S = 5. However, when the tasks and

stimuli are imperfectly mixed, assuming an even distribution of

labour across space may not be realistic. For example, workers of the

bumble-bee Bombus impatiens, unevenly distribute their brood care

across space, which may cause increased size-differences between the

brood [68]. Suppose then, that this unequal allocation of effort results

in a Gaussian distribution of the stimulus across space. If the ants

manage to minimise the standard deviation of the stimulus

distribution (,S. = 5, S.D. = 0.5) then the probability that a brood

item dies is, Pdie(Si§7)*0:00003. However, if the same amount of

effort is more unevenly allocated, resulting in a doubling of the

standard deviation (,S. = 5, S.D. = 1.0), the probability that a

brood item dies is Pdie(Si§7)*0:02; an increase of three orders of

magnitude.

We compared the performance of the different CTDs against

the null scenario in which the amount of stimulus held at a site is

exponentially distributed. As any exponential distribution has

CV = 1, a distribution with CV.1 has a higher variance in units of

the mean value than the null expectation, whereas CV,1

indicates a lower variance than expected.

Ant-ant distances. The one-dimensional model indicated

that non-random spatial distribution of individuals could emerge

through threshold-based spatial mutual exclusion. Such patterns

emerged purely as a result of indirect ant-ant interactions mediated

via the stimulus landscape, rather than through explicit ant-ant

interactions [69] such as attraction or repulsion. However, in the

one-dimensional model the ants could not pass one another. In the

two dimensional model, this spatial restriction is lifted.

To test for the presence of such non-random spatial distributions,

the relationship between each ant and its nearest-neighbour ant was

measured in terms of their respective thresholds and their separation

distance. Thus, for each ant, three observables were recorded: the

distance to the nearest neighbour ant, and the thresholds of the ant,

hi, and its nearest-neighbour, hNN. From the latter two observables,

the threshold difference was calculated by subtracting the threshold of

the nearest neighbour ant from that of the active ant (hi-hNN). Thus

if the active ant is more sensitive (has a lower threshold) than its

nearest neighbour, as is most often the case, the threshold difference

is negative, whereas if the nearest neighbour is more sensitive than

the active ant, the threshold difference is positive.

Results

Stimulus landscape structure and threshold effect on
activity

Low-threshold ants observe a landscape in which finite islands of

unoccupied sites (those the ant perceives as containing no stimulus)

are embedded within a percolating stimulus ‘sea’ (Figure 5 b,c).

Conversely, insensitive ants observe a landscape in which stimulus

islands do not span the lattice, hence for these ants the clusters

holding available work do not percolate (Figure 5 d).

The survivorship of the site occupancy, ,p., displays a

discontinuity that is more exaggerated, the lower the stimulus

drive, dS (Figure 8a). The mean cluster size, ,c., of occupied

sites displays a power-law distribution, so the structure of the

stimulus landscape appears scale-free, i.e. fractal (Figure 8b).

Figure 7. Definition of parameters and response statistics for
the two-dimensional model.
doi:10.1371/journal.pone.0018416.g007
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A small decrease in the threshold results in a disproportionate

increase in the ant’s perception of the average cluster size, that is,

the amount of work available (Figure 9a). This disproportionality is

translated into a non-linear relationship between the threshold and

the work done (Figure 9b). However, the standardised bout size is

not a simple function of the threshold of the active ant, but also

depends upon how fast the system is driven. That is, for a given

threshold value, hi, the lower the driving rate the greater the

standardised bout size.

Spatial homeostasis and the colony threshold
distribution

We first examine the mean stimulus per site as a function of the

stimulus drive. For all colony threshold distributions, the mean

stimulus per site increases nonlinearly with the driving rate

(Figure 10). When the amount of stimulus added to the lattice is

large (dS.10), the mean stimulus per site is a linear function of the

drive, hence the gradient of the stimulus per site in Figure 10 is ,1

when dS.10. However, when the size of the stimulus input is low

(dS ,1), the mean stimulus per site increases as a sub-linear

function of the drive. For example, for the uniform CTD, a tenfold

increase in the drive from dS = 0.01 to dS = 0.1 only results in a

threefold, but not a ten-fold, increase in the mean stimulus per site

(S = 0.3 to S = 0.9).

For all stimulus drives, the greatest stimulus per site was always

when the ants were identical (thick dashed black line, Figure 10).

As the threshold variation increased (the Gaussian CTD’s with

increasing standard deviation), the amount of stimulus per site

decreased (the diamond shaped points, Figure 10). When the ants’

Figure 8. The scale-free structure of the stimulus landscape.
Both panels depict the survivorship (the complement of the cumulative
distribution) function for: a) mean site occupancy, ,p. and b) The
mean cluster size, ,c., normalised by the maximum cluster possible,
l6l. Both ,p. and ,c. are ensemble-averages, calculated by
averaging across all individuals irrespective of threshold. The different
curves represent different fixed drives (#; dS = 161022, X;
dS = 161021, N; dS = 16100, &; dS = 16101).
doi:10.1371/journal.pone.0018416.g008

Figure 9. The structure of the stimulus landscape- and hence
also the bout magnitude- are nonlinear functions of the
individual response-threshold. a) Mean cluster size, ,c., normal-
ised by dividing by the maximum cluster possible, l2 and b) Mean
standardised bout size (size/drive) for individual ant-bouts. Ants were
assigned to threshold bins of logarithmically increasing width. The
different curves represent different fixed drives (N simulations per
drive = 500, #; dS = 161022, X; dS = 161021, N; dS = 16100, &;
dS = 16101).
doi:10.1371/journal.pone.0018416.g009
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thresholds were drawn from the uniform CTD, they maintained

the total stimulus at a lower level than both the Gaussian and

homogeneous CTD’s. Therefore the greater the central tendency

of the CTD (the more humped it is), the more stimulus per site. If

it is adaptive for a colony to minimise the stimulus per site, that is,

the work available, it would be advantageous for the CTD to

exhibit a large variation around the mean. So the greater the

variation between individuals, the better able they are to minimise

the level of task. The relative advantage would be greater at low

stimulus drives.

The differences between the CTD’s were greatest at low drives.

For example, when dS = 0.01 the average stimulus per site for a

Gaussian CTD with standard deviation S.D. = 1.0 (S = 2.7) was

nine times greater than for a uniform CTD (S = 0.3), whereas

when dS = 1000 the mean stimulus per site for that Gaussian CTD

(S = 583) was only 1.09 times that of the uniform CTD (S = 536).

We now turn to the relative between-site variance of the

stimulus, as measured by the fluctuation amplitude (i.e. the

coefficient of variation). The greater the driving rate, the greater

the relative spatial variation in the stimulus. More precisely, the

coefficient of variation increases as a sigmoid function of the drive

(Figure 10 insert). When dS#1, the spatial variation is lower than

that produced by the ’null’ Poisson distribution across sites,

whereas when dS$10, the spatial variation is greater than that

produced by a Poisson.

It is interesting to note the trade-off between the mean stimulus

per site and the fluctuation amplitude. Ideally, a CTD should

minimise both. However, the CTD with the greatest threshold

variation- the uniform distribution- produced the lowest stimulus

per site, but the greatest fluctuation amplitude (Figure 10).

Conversely, the CTD with the least variation- the homogeneous

distribution- resulted in the greatest stimulus per site, but the lowest

fluctuation amplitude. In summary, the greater the threshold

variation, the better able the colony is to minimise the total demand

for work, but the greater the relative spatial fluctuation amplitude.

Ant-ant distances
When an active ant has a lower threshold than its nearest

neighbour ant, the distance separating the two tends to be small.

Conversely, when the active ant has a higher threshold than its

Figure 10. The mean stimulus per site as a function of the
stimulus drive. The different symbol types represent different colony
threshold distributions (N; Uniform CTD, minimum = 0, maximum = 10,
X; Gaussian CTD, S.D. = 1.5, X; Gaussian, S.D. = 1.0, X; Gaussian,
S.D. = 0.5, #; Homogeneous CTD (all ants are identical), h = 5,
l6l = 60660, ant density = 0.04, N simulations per parameter combina-
tion = 60). The error bars are standard deviations. The thin dashed line
has a slope of one. Insert: The fluctuation amplitude (CV = S.D./,S.) for
the stimulus held across all sites on the lattice as a function of the drive.
The horizontal line indicates the null expectation, that is, when the
amount of stimuli held in a site is Poisson distributed.
doi:10.1371/journal.pone.0018416.g010

Figure 11. The distance separating neighbouring ants depends
upon the difference in their response-thresholds. a) Map of ant
locations. Symbol sizes are proportional to the threshold of the ant, so
sensitive ants have small symbols. b) Mean distance between an active
ant and its nearest neighbour (NND), as a function of the difference in
sensitivity between the two (hi - hNN). Error bars are one standard
deviation. Drive, dS = 10, N simulations = 100, N time-steps per
simulation = 56104. The horizontal line shows the expected NND under
conditions of complete spatial randomness (Expected NND = 2.56,
s = 1.25, N simulations = 2000).
doi:10.1371/journal.pone.0018416.g011
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nearest neighbour ant, the separation distance tends to be

relatively high (Figure 11). So insensitive individuals are indirectly

‘repelled’ by proximity to their more sensitive nestmates.

Discussion

As in earlier non-spatial Division of Labour models based on

thresholds, the SFTM reproduces the massively right-skewed

activity distribution observed in real social insect colonies

[13,26,27,70,71] as the vast majority of the labour is performed

by a highly active minority (Figure 3).

In both the one- and two-dimensional models imperfect mixing

of heterogeneous individuals and stimuli generated a non-random

spatial structure of both the individuals (Figure 1b & Figure 11)

and the stimuli (Figure 5, Figure 8 & Figure 10). Non-random

distributions of individuals or task-associated stimuli are ubiquitous

within social insect colonies. Complex spatial structuring of the

distribution of individuals or task associated stimuli within social

insect colonies includes the aggregation of individuals by role or

caste [72,73,74], clustering of nest-building material [75,76,77]

dead individuals [78] and brood [79,80].

Whilst it is known that cells, individuals and societies can

achieve some degree of homeostasis by minimising the temporal

fluctuations of relevant stimuli [19,24,49,81], it is important to

emphasise that homeostasis may also be achieved by minimising

these fluctuations across space. In many cases this capability will

be highly adaptive. For example, it might be advantageous to

minimise the spatial variation of stimuli associated with brood

hunger, as the brood may die when a critical hunger is exceeded.

In our model for all CTD’s the spatial fluctuation amplitude of the

stimulus is minimised when the stimulus drive is relatively low (i.e.,

when the drive is less than the average threshold, dS%�hh,

Figure 10), which is actually when the activity skew is greatest

(9b). So spatial homeostasis is maximised when the division of

labour is greatest.

Let us now turn to the issue of interactions and competition for

work between individuals. Circumstances in which many individ-

uals ‘graze’ a stimulus surface are ubiquitous in biology. For

example, the removal of parasitic fungal species from the fungus

gardens in fungus growing ants [82], brood sorting and tending

[79], and the general activity of honey bee inside-nest workers [36]

all involve multiple individuals moving across and performing

work upon a spatially and temporally variable stimulus landscape.

Clearly an individual performing work on the stimulus landscape

causally influences the subsequent activity, or often the lack

thereof, of its nestmates. On the rare occasions when a high

threshold ant is active, it tends not to move very near its low

threshold nestmates (Figure 11). This is because those nestmates

have reduced the stimulus in the surrounding sites to such a low

level that they appear to contain no work, so those sites act as

barriers to movement. Conversely, when the active ant has a lower

threshold, it is not ‘repelled’ by a higher-threshold neighbour ant,

because that neighbour only reduced the stimulus in the area to its

own threshold level, and no lower, hence the active ant detects

that those sites contain work. Thus apparent aversion between

behavioural or morphological castes [8,10] resulting in spatial

segregation of individuals might arise from indirect spatial

exclusion rather than direct repulsion.

In ecology, explicit con-specific attraction or repulsion is often

invoked to explain the observation of non-random spatial patterns,

such as over or under-dispersion. The clustering of agents (under-

dispersal) is associated with attraction, whereas regularly spaced

agents (over-dispersal) is related to repulsion. In ants, spatial

clustering of individuals has been explained by invoking direct inter-

individual attraction and repulsion based on physical or

behavioural differences between individuals [83,84]. Similarly,

spatial DoL through the segregation of physical castes has been

explained by invoking explicit between-caste aversion [10]. At the

colony level a high degree of regularity in the spacing of ant nests is

ubiquitous and is conventionally understood in terms of compe-

tition for space [85,86,87]. One of the main results of this paper is

that the spatial patterns previously ascribed to individuals that ‘pay

attention’ to the proximity of their nestmates, can also be

produced when individuals do not directly account for the

proximity of nestmates. This conclusion is concordant with the

concept of self-organisation through stigmergic processes [53].

Finally, we wish to highlight the scale-free structure of the

stimulus landscape (Figure 5 & 6) and the similarity of the sigmoid

threshold-activity functions (Figure 9) to phase-transition curves.

Such phenomena are typical of complex systems at critical points

[52,88] and suggest that threshold-based DoL can self-organise

towards a critical point.

Division of labour characterises all levels of biological

organisation as well as human and artificial social systems. Our

spatial fixed-threshold model links this organisational principle

with the statistical mechanics approach to complex systems and

provides testable hypotheses for future experiments.
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115–139.

43. Bonabeau E, Theraulaz G, Deneubourg JL (1996) Quantitative study of the

fixed threshold model for the regulation of division of labour in insect societies.
Proc R Soc London Ser B Biol Sci 263: 1565–1569.

44. Hamilton WD (1971) Geometry for the Selfish Herd. J Theor Biol 31: 295–311.

45. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Physical Review A
38: 364.
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