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Abstract

Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations.
Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory
units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on
network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior.
Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods,
which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the
chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of
transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on
expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an
integrative mining approach to identify regulatory modules over time by combining transcriptional control with response,
while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of
genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent
regulators targeting the modules at each time point using a network of documented regulatory associations and the
expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time
points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and
human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases,
respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these
biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or
regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots.
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Introduction

Gene regulation is the major orchestrator of cellular activity,

directing the creation of proteins designed to participate in every

biological process. Considerable effort has been undertaken to

unveil regulatory mechanisms and advance the knowledge on

complex system responses and dysregulation events leading to

medical conditions. In particular, transcription has been exten-

sively studied for its essential role in gene regulation, determining

which genes should be transcribed into mRNA and influencing

their expression rates. Explaining the translation of a biochemical

stimulus into a cellular outcome is however a challenging task.

One of the reasons is that most transcriptional responses result

from a concerted action of multiple transcription factors (TFs).

Regulatory players are often involved in diverse pathways

simultaneously or over time. Additionally, mechanisms such as

dynamic feedback loops, add layers of complexity as they generate

intricate responses with transient gene products frequently found

in regulatory cascades.

Individual regulatory associations have been actively predicted

using diverse techniques, from ChIP-chip experiments to auto-

mated assessment of TF-binding site affinity. Transcriptional

responses have also been investigated looking for significant

changes and patterns. Nonetheless, research has been progres-

sively evolving toward the study of organisms from a systemic

standpoint and the next endeavour is to assemble heterogeneous

elementary data into functional representations of regulatory

networks, considering both control and behavior, to support the

modeling and prediction of system’s responses to specific

conditions. Available computational solutions usually fit into one

of two groups. Reverse-engineering, also termed network in-

ference, regards the system as a mathematical function with

parameters. Models such as bayesian networks or differential

equations are fitted to the experimental data using learning

algorithms [1–3]. Alternatively, a mining perspective motivates the

identification of functional components, or modules, considered as

the basic building blocks of regulatory networks [4,5]. This

modular organization of biological systems has been defended
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under the assumption that their design resembles the architecture

of complex computational and communication systems [5–7].

Hybrid methods combine mining and inference in an integrated

optimization approach where each technique feeds the other

complementary information [8,9].

Several authors have addressed the module identification

problem [4,10–17], focusing mainly on structural or static

properties [4,10–12]. Nevertheless, regulatory activity is described

by a series of events pertaining a particular order, relevant to the

outcome. Notably, the ability to monitor transcriptional trends

and to observe the emergence of patterns in expression time series

can provide important insights into regulation dynamics [18]. A

number of module identification methods proposed to date

considers expression time series [13–17,19–21]. Yeang and

Jaakkola [13] compute latencies in transcription activation using

a TF-target graph and expression time series and then apply

greedy clustering to group genes bound by common TFs. Similar

methods perform time-delay analyses to reveal associations

between expression profiles of TFs and targets [22,23], not

necessarily addressing the identification of modules. In these cases,

physical binding is not enforced and inferring regulations by

aligning expression profiles may lead to a large number of false

positives, as coherent profiles are a characteristic of co-regulation

rather than TF-target association. Kasabov et al. [14] model gene

regulatory networks as discrete-time approximations of differential

equations and expression trajectories using a Kalman filter, and

apply a genetic algorithm to group genes in modules. Discovery is

limited to modules of predefined size, which may present a major

drawback when prior knowledge is unavailable. Wu et al. [16]

integrate expression, ChIP-chip, binding sites and mutant data.

Stress-responsive targets, regulations and TFs are identified

according to numerical criteria and statistical tests based on

expression fold change, evidence of physical binding, and portion

of stress-responsive targets of TF sets. Transcriptional coherence in

a module is not ensured, as expression is only used to predict

regulations. Zhang et al. [19] reverse engineer the modules

through fuzzy c-means clustering of expression and functional

category data. Particle swarm optimization and recurrent neural

network are used to derive relations between modules, although

disregarding the chronological order of events. Alternative

methods identify modules based on expression profile correlation

[17,20,21], potentially combined with functional enrichment

[17,20], but ignore physical binding. Three recent tools, developed

by Segal et al. [8], Novershtern et al. [9], and Kundaje et al. [1]

focus on reconstructing regulatory pathways underlying measured

responses, using physical interactions and expression. They fit

either Bayesian models [8,9] or alternating decision trees [1] to the

data under the assumption that the expression of the targets

correlates or can be predicted from that of their regulators, which

is known not to be true in most cases. Additionally, these

techniques rely heavily on prior knowledge. Exploring well

characterized and isolated data relating to the biological process

under study is likely to provide a competitive advantage in

performance over other approaches, besides circumventing the

typical computational intensiveness and poor scalability of these

methods. Nevertheless, it will also prevent the analysis or hamper

de novo discovery in not so well studied biological processes.

Most of the strategies revised herein rely on clustering

techniques to unravel transcriptional trends, searching for global

patterns. It has been often recognized that clusters are not able to

describe the complex nature of transcriptional response, as genes

tend to behave coherently only in specific time frames and may be

involved in different functional groups over time [1,24]. Local

patterns are particularly relevant when analyzing expression over

time, given that biological processes are expected to occur within

time frames. Notably, biclustering effectively addresses the

discovery of these signals and efficient techniques have been

proposed for the special case of expression data with a temporal

dimension. [17,18,24].

We propose Regulatory Snapshots, a computational framework

to identify regulatory modules from expression time series and

regulatory associations. First, we unravel sets of genes exhibiting

coherent expression profiles using a state of the art temporal

biclustering method, CCC-Biclustering [17]. CCC-Biclustering

takes advantage of reasonable biological assumptions in time series

to convert the otherwise NP-hard biclustering formulation into

a tractable problem [24]. It finds maximal transcriptional patterns

spanning time intervals using string processing techniques based

on suffix trees. Second, we identify relevant TFs targeting the

genes in the transcriptional module at each time point. The

personalized ranking method TFRank [25], originally proposed to

prioritize TFs for a group of genes of interest, is applied to time

series as follows. We diffuse an initial signal corresponding to the

expression levels of the genes in the module at each time point

through the transpose of the regulatory network graph and thus

compute relevance scores for each TF, generating one ranking per

time point. Third, we introduce the concept of regulatory

snapshot to visually highlight the variation of relevant regulations

over time in a module by exposing both the topology discovered

via biclustering and the TF importance unveiled through

prioritization.

Advantages of this framework include ability to: (1) combine

mechanics as documented evidence of regulation defining the

network topology (prior knowledge), and dynamics as transcrip-

tional responses yielded by expression (experimental data); (2)

search for local patterns, known to prevail in transcriptional

response; (3) capture coordinated activity through algorithms

specifically incorporating the temporal dimension; (4) identify

relevant TFs relying on whole-network analysis, where transcrip-

tional behavior is seen as a result of intricate system connectivity,

rather than the direct action of a few players; (5) visually expose

the variation of regulatory interactions relevance over time.

We assess the effectiveness of Regulatory Snapshots to identify

regulatory modules underlying Saccharomyces cerevisiae’s response to

heat shock [26] and human epithelial-to-mesenchymal transition

[27]. In particular, we investigate the ability of our method to

report biologically sound modules, characterized by (1) coherent

transcriptional activity and functional relatedness of its genes,

together with (2) regulations by TFs known to be involved in the

biological processes enriched for the modules and undergone by

the cells.

Methods

In this section we describe Regulatory Snapshots, an integrative

mining approach to identify regulatory modules over time. We

define a regulatory module as a group of genes exhibiting coherent

transcriptional activity in a given time frame and sharing

a common set of regulators. In this context, we propose to

discover and characterize regulatory modules involved in specific

transcriptional responses in two steps (Figure 1). First, a time-

aware biclustering algorithm is applied to the expression matrix to

unravel groups of genes showing coherent temporal expression

patterns (transcriptional modules). Second, a personalized ranking

strategy is used to identify and prioritize the TFs targeting the

transcriptional modules at each time point. Third, transcriptional

modules and regulators are combined to form regulatory modules.

Visual representations, termed regulatory snapshots after the

Regulatory Snapshots - Temporal Regulatory Modules
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method’s name, are finally depicted to expose the variation of

relevant regulations in a module along the consecutive time points.

Prototype software is currently available at: http://kdbio.inesc-id.

pt/software/regulatorysnapshots.

Temporal Transcriptional Module Identification
Coherent transcriptional responses are sought using a bicluster-

ing algorithm, whose aim is to identify a set of biclusters satisfying

particular characteristics of homogeneity [24]. For time series gene

expression data, we adopt the concept of contiguous column

coherent bicluster (CCC-Bicluster) and apply CCC-Biclustering to

discover groups of genes with coherent expression profiles [17].

This algorithm uses a discretized version of the original expression

matrix as follows. Let M ’ be an expression matrix defined by a set

of genes (rows), G~fG1,G2,:::,GDGDg, and a set of time points

(columns), T~fT1,T2,:::,TDT Dg, where M ’ij represents the expres-

sion of gene Gi in time point Tj . Expression levels in M’ are

discretized to a set of symbols, S, representing distinct activation

levels in a new matrix M. Any discretization is eligible. In this

work, we followed the original approach [17,28] to convert matrix

M’ into M, where Mij[S reflects the transition trend between the

expression states of gene Gi in time points Tj and Tjz1,

respectively. Alphabet S~fD,N,Ug is used in this context,

where D, N, and U mean down-trend, no-trend and up-trend (Figure 2).

A CCC-Bicluster, MIJ , is defined as a subset of genes I(G
and a subset of contiguous time points J(T such that Mij~Mlj ,

Vi,l[I and Vj[J, that is, every gene in I shares the same

expression pattern spanning the consecutive time points in J.

A CCC-Bicluster is maximal (Figure 3) if adding rows to I

violates the coherence of the expression pattern (row-maximality)

and adding a symbol to the beginning or end of the expression

pattern induces changes in I (left-/right-maximality). CCC-

Biclusters pertaining a single row are biologically uninteresting

and are thus discarded.

In order to find all maximal CCC-Biclusters, CCC-Biclustering

first performs a simple alphabet transformation to append the

column number to each symbol in the discretized matrix (Figure 2).

Regarding the rows of the transformed matrix as strings,

a generalized suffix tree T [29] is then built in order to match

the common patterns and identify the maximal CCC-Biclusters.

Such identification relies on the following relation between

maximal CCC-Biclusters and nodes in T : every right and row-

maximal CCC-Bicluster with at least two rows corresponds to one

internal node in T and every internal node in T corresponds to

one right and row-maximal CCC-Bicluster with at least two rows.

Right- and row-maximality of the bicluster identified by an

internal node v are guaranteed by generalized suffix tree

construction. Left-maximality of an internal node v is guaranteed

when either v has no incoming suffix links [29] or it has incoming

suffix links only from nodes for which the number of leaves in their

subtree is equal to the number of leaves in the subtree rooted at v.

CCC-Biclustering uses efficient techniques to find these nodes in T
and report all maximal CCC-Biclusters in time linear on the size of

the expression matrix. Figure 3 shows the relation between nodes

in T and maximal CCC-Biclusters using the illustrative example in

Figure 2.

Figure 1. Regulatory Snapshots method. This figure shows an overview of the proposed method, Regulatory Snapshots, to mine regulatory
modules from expression time series and regulatory associations in two steps. First, biclustering is applied to expression time series to find
transcriptionally coherent genes and group them in transcriptional modules (biclusters). A personalized ranking strategy is then used to compute
relevance scores for the transcription factors targeting the genes in the biclusters at each time point. Finally, regulators are sorted by relevance and
a graphical representation, termed regulatory snapshot, is depicted to expose the architecture of the regulatory module.
doi:10.1371/journal.pone.0035977.g001
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Transcription Factor Prioritization
Relevant TFs are identified and prioritized through the

application of personalized ranking to a network of regulatory

associations. Such network can be described as a directed graph

N~(V ,E). The set of vertices, V, is composed of regulators and

target genes, while the set of edges, E, includes the regulatory

associations between elements in V. Let A and D denote the

adjacency and diagonal matrices of N, respectively, where

Auv~w(u,v) is the weight of edge (u,v) between regulator u and

target gene v and Duu~d(u) is the sum of weights of the outgoing

edges of u. Given a set of initial target genes, or seeds, S(V ,

corresponding to the genes in a particular bicluster, we aim at

obtaining a ranking on R(V , where R is the set of transcription

factors regulating the set S of target genes. Personalized PageRank

[30] is the most widely known approach to address the related

problem of expressing web page quality surrounding particular

pages of interest rather than over the entire Web, also known as

local clustering on graphs [31,32]. It involves a preference vector

indicating the relevance of pages of interest, which can be

regarded as the probability distribution of the seeds. The

preference is then diffused through the web graph using a random

walk based on a jumping constant denoting the probability of

returning to the source nodes, called back probability.

We have previously relied on a related technique based on the

heat kernel rank [32] to prioritize transcription factors exerting

control upon a group of genes of interest, TFRank [25]. In this

work, we apply TFRank to the case of time series aiming to

identify the most relevant transcription factors targeting the

transcriptionally coherent genes in a bicluster (transcriptional

module) over time. This is achieved by initializing the preference

vector with the expression levels of the genes in the bicluster at

each particular time point and diffuse them using a random walk

based on the heat kernel rank, recently shown to perform better in

comparison to PageRank [32]. Formally, given a network graph N,

the transition probability matrix W of a typical random walk on N

is defined as W~D{1A. We further define L~I{W , different

from the Laplacian D{A and its normalized form I{D{1
2AD{1

2.

Note that N is a directed graph and L is normalized against the

sum of weights of the outgoing edges. Given a preference vector p0
and a non-negative heat diffusion coefficient t to control the rate of

diffusion and preference for closer or farther regulations, the

ranking vector pt is given by

pt~
X?
k~0

({t)k

k!
p0L

k~p0 e
{tL: ð1Þ

The discrete heat kernel [33] is a symmetric version of e{tL. We

use the discrete approximation [34]

pt~p0 Iz
{t

Z
L

� �Z

, ð2Þ

Figure 2. Transcriptional module identification: discretization and alphabet transformation. Illustrative example of discretization and
alphabet transformation for a time series gene expression matrix: (left) original expression matrix M’; (center) discretized matrix M, obtained by
applying a discretization based on transitions between time points to the original matrix M’ using a three-symbol alphabet fD,N,Ug [28]; and (right)
matrix M after the alphabet transformation that appends the column number to every symbol in the matrix.
doi:10.1371/journal.pone.0035977.g002

Figure 3. Transcriptional module identification: maximal biclusters. This figure shows all transcriptional modules, or maximal CCC-Biclusters
with at least two rows, obtained by applying CCC-Biclustering to the transformed matrix in Figure 2. Maximal CCC-Biclusters are represented: (left) in
the transformed discretized matrix of Figure 2; and (right) in the generalized suffix tree built for the strings in the rows of this matrix.
doi:10.1371/journal.pone.0035977.g003
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where Z is the number of iterations. The preference vector p0
contains the expression values of the target genes in S, as follows:

p0(u)~
e(u) if u[S

0 otherwise,

�
ð3Þ

where e(u) is the expression value of gene u. To be able to reach

the regulators from the targets, the signal is propagated through

the regulatory network by traversing the regulations in reverse

direction, or using the transpose of the network graph N. The

procedure is repeatedly applied to generate one ranking per time

point.

Regulatory Module and Snapshot Representation
Coherent temporal transcriptional responses can be studied

using current software tools [35–37], which enable the

preprocessing of expression data, cluster or bicluster identifica-

tion and post-processing of results, including functional

enrichment analysis. Available applications for expression time

series rely not only on knowledge discovery methods, but also

on informative graphics of data and results. Similarly, we aim at

picturing a regulatory module and its variation over time to

support our exploratory analysis. We thus introduce the concept

of regulatory snapshot to expose the architecture of a regulatory

network while capturing the most relevant regulations targeting

the genes in a regulatory module at a given time point. In this

work, the functionality of the graphical tool devised by Aires et

al. [38] has been extended to picture regulatory snapshots for

temporal biclusters or transcriptional modules. Visually, a regu-

latory snapshot is a double semi-circled graph composed by top

and bottom halfs of different radii, where the former displays

TFs from left to right in decreasing order of a given score, and

the latter contains the corresponding target genes. Regulations

appear in the form of arcs in-between the outside semi-

circumferences. User interaction enables to highlight the

regulations for a particular node or set of nodes, which are

then displayed in different color according to whether they

encode for a ‘‘regulates’’ or ‘‘regulated by’’ association. In this

case, we use the relevance score obtained for each TF by

diffusing the expression values of the genes in a regulatory

module at a given time point using personalized ranking.

Several figures are captured to enhance the variation of the

relevance of a given TF or set of TFs over time, thus the notion

of snapshot. Additionally, we control the complexity of each

figure by imposing an appropriate threshold on the scores of the

regulators.

Results and Discussion

In this section, we investigate the regulatory modules obtained

using Regulatory Snapshots in two case studies. The first study

concerns Saccharomyces cerevisiae’s response to heat shock upon

exposure to 37uC. It focuses primarily on the biological soundness

of the top transcription factors and their relevance over time,

output by Regulatory Snapshots, for biclusters whose value has

been previously confirmed [17]. The second study addresses the de

novo discovery of regulatory modules underlying human epithe-

lial-to-mesenchymal transition, where both discovered transcrip-

tional response and control are investigated for functional

coherence and enrichment. Finally, we compare our method with

a state of the art algorithm for regulatory module discovery,

Physical Module Networks [9].

Yeast Response to Heat Stress
We analyzed time series expression data from yeast cells upon

exposure to heat shock, measured at five time points (0’, 5’, 15’,

30’, and 60’) over a one hour period [26]. The following

preprocessing was applied [17]: removal of genes with missing

values or absent from the Saccharomyces Genome Database

(SGD) [39]; normalization of expression values by gene to zero

mean and unit standard deviation; and discretization expressing

transitions between time points [28]. Regulatory associations from

the YEASTRACT database [40] were used to build a graph

comprising 6911 genes and 42690 interactions. In the following

subsection we describe the application of Regulatory Snapshots to

these data. We also investigate: (1) the positions achieved by TFs

known to participate in the regulation of each module; (2) the

biological relevance of top ranked TFs; (3) the variation of TF

relevance over time and potential influence in the behavior of the

targets; and (4) correlation between expression of TFs and targets.

Yeast heat stress regulatory snapshots. CCC-Biclustering

was applied to the expression data, reporting 167 CCC-Biclusters

with coherent responses (see Methods). For each bicluster,

a pattern p-value was computed under the null hypothesis that

a similar pattern would occur by chance in an expression matrix of

equal size [17]. We filtered biclusters with Bonferroni corrected

pattern p-value above 1 percent level and biclusters overlapping

with a Jaccard similarity larger than 25 percent. Functional

enrichment was assessed through a p-value based on the

hypergeometric distribution. We considered highly significant all

GO terms with a Bonferroni corrected p-value lower than 0.01.

Six of the resulting biclusters, describing transcriptional

upregulation (biclusters 39, 27 and 14) and downregulation

(biclusters 147, 151 and 124) patterns, have been previously

subject to biological analysis [17]. We focused on biclusters 39 and

151 as representatives of their categories (Figure 4), based on four

key criteria: (1) coherence of transcriptional behavior spanning the

largest time intervals, thus interesting from a temporal analysis

standpoint; (2) significance of expression profiles, assessed by the

bicluster pattern p-value; (3) presence of abrupt variations; and (4)

interestingness of expression pattern, including evidence of anti-

correlation between the two biclusters.

TFRank was applied to propagate the normalized expression

levels of the genes in each bicluster through the transpose of the

graph and identify the most relevant TFs at each measured time

point (see Methods). We parameterized the method with 100

iterations and a heat diffusion coefficient value of 0.25 to

moderately favor proximal regulators. Edges were not differenti-

ated using weights based on the supporting evidence of each

regulation, as this information is often biased toward well studied

genes. Since the ranking score is additive, absolute values of

expression were used. To evaluate the implications of not being

able to discern positive from negative expression levels, we

checked the genes in both sets. For every time point except the

first, one of the sets would always include all genes. At 0’, only 2

and 9 genes were respectively positively and negatively regulated

in biclusters 39 and 151. We decided to disregard their

contribution to the ranking at this time point. Additionally, 15

and 11 genes were absent from the regulatory network and were

excluded as well. Regulatory snapshots were generated to

investigate relevant regulations at 0’, 5’, 15’, 30’ and 60’.

Yeast heat stress underlying regulation. Bicluster 39

includes genes whose expression was abruptly upregulated

during the first 5 minutes of exposure to heat, followed by

residual variation between 5’ and 30’ and a large decrease in the

last 30 minutes (Figure 4). Arr1p, Hsf1p, Msn2p, Rpn4p and

Sok2p have been described to regulate the targets of this bicluster

Regulatory Snapshots - Temporal Regulatory Modules
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in an unspecific wide initial response to stress upon heat shock

[17]. They promote an early activation of signaling cascades and

other TFs involved in the transcriptional machinery mediating

stress-specific reactions in subsequent time points. These five TFs

appeared consistently among the top 30 for every time point

(Figure 5). Msn2p was always in the top 15 and Sok2p repeatedly

ranked above position 9, among 171 TFs. The regulatory

snapshots for bicluster 39 show that, individually and together,

Arr1p, Hsf1p, Msn2p, Rpn4p and Sok2p regulate a large

percentage of genes in the bicluster and are regulated by most

of the remaining TFs in the top 30 (Figure 5). This presents

evidence of the intricate regulation promoted by signal

transduction in transcriptional cascades. Most of these five TFs

achieved their best score in the initial time points, supporting the

reasoning that they could be involved in the abrupt expression

increase. Bicluster 151 includes genes considerably downregulated

during the first 5 minutes of exposure to 37uC. Their expression
increased slightly from 5’ to 30’ and then abruptly in the last 30

minutes (Figure 4). Functional enrichment [17] has reported cell

cycle repression in agreement with growth arrest upon sudden

exposure to heat, involving the following TFs: Arr1p, Mbp1p,

Ino4p, Rpn4p and Swi4p. Their relevance remained relatively

stable over time (Figure 5). Nevertheless, all except Swi4p achieved

highest ranks at 15’, when they further ranked tightly together.

Interestingly, the relevance of Mbp1p and Swi4p exhibited

coherent variation over time, supporting known cooperation in

complexes with Swi6p to regulate cell cycle G1-S progression.

Swi4p always ranked in the top 15, while Mbp1p and Ino4p

consistently appeared within the most relevant 20. Arr1p and

Rpn4p were in the first 25, from a total of 163 TFs targeting

bicluster 151. These results confirm the ability of Regulatory

Snapshots to automatically recover previously confirmed

regulators, selected by manual/expert inspection.

Many players with potentially relevant roles were found in the

top 20 (Figure 5). Sfp1p and Yap1p consistently ranked first and

second for both biclusters. Sfp1p is known to control the

expression of ribosome biogenesis genes in response to nutrients

and stress [39] and has been specifically implicated with heat

shock in the literature [41]. Yap1p is involved in tolerance to

oxidative stress, which has been related to heat-induced cell death

in yeast [42,43]. For bicluster 39, several heat-responsive TFs

arose. Hsf1p, a trimeric heat shock transcription factor binding

DNA at variable heat shock elements and activating multiple

genes in response to hyperthermia [39], ranked best at 0’ in

position 14. Msn2p, binding DNA at stress response elements and

inducing the expression of stress-responsive genes [39], ranked best

at 15’ in position 9. Also Rpn4p achieved rank 11 at 15’. Sip4p,

with specific RNA polymerase II transcription factor activity and

regulation of transcription from RNA polymerase II promoter

[39], ranked best at 30’ in position 7. Sip4p is also involved in the

positive regulation of gluconeogenesis and invasive growth in

response to glucose limitation [39], and has been implicated

together with Mig1p in the activation of Hsf1p under glucose

starvation conditions [44]. Crz1p, an activator of stress-responsive

genes [39], ranked best at 15’ in position 17. For bicluster 151,

interesting TFs were also retrieved. Hcm1p, a forkhead transcrip-

tion factor driving S-phase specific expression of genes involved in

chromosome segregation [39], ranked higher at 5’ in position 4.

Yox1p, a homeodomain-containing transcriptional repressor [39],

was considered most relevant at 30’ in position 13. Its ability to

inhibit transcription agrees with the downregulation pattern

described by the target genes. Also annotated with negative

regulation of transcription from RNA polymerase II promoter

[39], Abf1p and Kar4p achieved the best ranks 3 and 11 at time

points 15’ and 0’, respectively. Similarly to Hcm1p and Yox1p,

Kar4p is further involved in the regulation of mitotic cell cycle

[39], in accordance with the highly significant GO terms reported

for bicluster 151 [17].

We finally analyzed the variation of the transcription factor

relevance over time output by Regulatory Snapshots. We focused

on four of the most varying TFs in terms of relevance scores, from

those included within the top 30 and appearing among the 20 best

ranked in at least one of the time points: Mig1p and Rim101p for

bicluster 39, and Hcm1p and Arr1p for bicluster 151 (Figure 6).

Mig1p had its importance increased from 0’ to 5’ and from 30’ to

60’, coinciding with the abrupt up and downregulation of the

target genes in bicluster 39, respectively (Figures 4 and 6). This

agreement is consistent with the documented role of Mig1p as

a transcriptional repressor and its involvement in the negative

regulation of gene-specific transcription from RNA polymerase II

promoter [39]. The increase in the relevance of Mig1p relative to

its absolute expression value was most significant at 0’, suggesting

maximum activity of TF role at this time point (see Supp.

Material). This is plausible both given its repression ability and

considering that most of its target genes were downregulated at the

time (Figure 4). Contrary to Mig1p, Rim101p had its relevance

Figure 4. Expression profiles of yeast heat shock regulatory modules. This figure shows the expression profiles of the genes targeted in the
regulatory modules 39 (left) and 151 (right) obtained for the yeast heat shock expression data and the yeast regulatory network containing
regulations from the YEASTRACT database. Expression levels were normalized by gene to zero mean and unit standard deviation.
doi:10.1371/journal.pone.0035977.g004

Regulatory Snapshots - Temporal Regulatory Modules

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e35977



significantly decreased between 0’ and 5’ and 30’ and 60’. From 5’

to 30’, however, this TF known to be involved in cell wall

construction [39] gained several positions in the relevance scale,

achieving rank 3. Hcm1p, the forkhead transcription factor driving

S-phase specific expression of genes involved in chromosome

segregation [39] in bicluster 151, had its relevance increased

between 0’ and 5’ and between 30’ and 60’, in agreement with the

sudden down and upregulation behavior of the target genes

(Figure 4). Comparative analysis between the ranking scores and

absolute expression values for Hcm1p further revealed consistent

activity as a TF in all time points except at 30’, where it rather

acted as a target (see Supp. Material). Arr1p showed a slight

relevance decrease between 0’ and 5’, achieving its best rank 13 at

15’, which then maintained with residual variation until 60’.

Contrary to many available approaches, Regulatory Snapshots

does not make assumptions of consistency between the expression

of regulators and targets. Regulators may thus be selected even if

their expression was not measured, as in the case of Aft1p. Notably

as well, most regulators at the top of the ranking were not included

in the biclusters and effectively yielded distinct patterns from their

targets, namely Crz1p, Msn2p, Rpn4p, Sfp1p, Yap1p for bicluster

39, and Abf1p, Leu3p, Met4p, Ste12p, Yox1p for bicluster 151.

Human Epithelial-to-mesenchymal Transition
We built a human regulatory network as in [25], using

JASPAR position-specific scoring matrices (PSSMs) and UCSC

Human Genome (hg19) sequences [45]. Matrix identifiers

(UniProt) were mapped to their encoding genes (NCBI Entrez)

and RefSeq sequence accession numbers (NCBI GRCh37, Feb

2009) were converted to Entrez. Matrices and sequences with

unmapped identifiers were filtered. We used the sequences 200bp

upstream and 0bp downstream the transcription start site. We

matched the PSSMs against the sequences using the PoSSuM

software [46] and filtered results below a p-value cutoff of

1|10{4. Edge weights were obtained by rescaling the raw

matching score interval of each PSSM to ½0,1� and selecting the

highest scoring match for every PSSM-sequence pair. This

generated a network with 50386 unique regulations and 18088

genes, from which 65 acted as regulators. In this study, we

analyzed expression time series data obtained for human cells

undergoing TGFb-induced epithelial-to-mesenchymal transition

(EMT) [27]. EMT is a fundamental process originally reported in

embryonic development, which causes epithelial cells to: i) lose

the adhesion structures that typically maintain them tightly

together and largely immobile; ii) undergo cytoskeleton re-

organization; and iii) acquire stemness and mesenchymal-like

properties [47]. EMT has often been reported to resemble

biological events responsible for promoting the migration and

invasiveness of epithelial tumors (around 90% of all cancers [48])

to distant sites and thus leading to the development of metastasis.

In the original experiment, expression levels were measured at 9

points over a 72 hour period (0h, 0.5h, 1h, 2h, 4h, 8h, 16h, 24h,

and 72h) and preprocessed as described by Keshamouni et al.

[27]. We further merged the replicates for each time point,

converted the HGNC gene symbols for each Affymetrix probeset

in the data to official HGNC and from these to Entrez Gene

based on mapping files retrieved from the HGNC FTP

repository, filtered genes with no valid or ambiguous conversion

between both nomenclature sets, merged the expression values

for probes denoting the same gene, and filtered genes absent

from the human regulatory network.

Human EMT transcriptional modules. We obtained

biclusters and calculated the overrepresentation of Gene

Ontology annotations following the same procedure used for the

yeast dataset. Post-processing involved filtering biclusters

containing less than 50 genes or less than 5 time points, and

sorting in descending order of number of highly significant Gene

Ontology terms (Bonferroni corrected p-value v0:01). Among the

first 50 biclusters we observed the emergence of five major groups

of biclusters, yielding different patterns but showing consistent

abrupt expression changes and similar functional properties.

Notably, none of these biclusters encompassed all the time

points in the experiment. This contrasts with the case study in

yeast, in which the temporal window of the experiment was well

Figure 5. Regulatory snapshots of documented regulators in yeast heat shock modules. This figure shows regulatory snapshots obtained
for yeast heat shock stress regulatory modules 39 and 151 over time (0’, 5’, 15’, 30’ and 60’), highlighting the ranks and interactions of regulators
reportedly targeting the genes in these modules. Each snapshot along a row was obtained for a particular time point. Regulators and target genes
are respectively represented in the top and bottom semi-circles, and regulators appear from left to right in decreasing order of ranking score. Orange
and green arcs respectively identify ‘‘regulates’’ and ‘‘regulated by’’ relations for the highlighted regulators in each figure. The figures in the top row
expose the ranks of Arr1p, Hsf1p, Msn2p, Rpn4p and Sok2p for bicluster 39, while the ones in the bottom row highlight the ranks of Arr1p, Ino4p,
Mbp1p, Rpn4p and Swi4p for bicluster 151.
doi:10.1371/journal.pone.0035977.g005
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delimited for the problem, therefore generating a reasonable

number of clusters (spanning all conditions). We focus our analysis

on a representative bicluster for each of the five major EMT

groups (Figure 7). Bicluster 4554 was associated with oxidation-

reduction regulation within the cell cycle. The genes in this

bicluster revealed a relatively stable expression level during the

first 4 hours, followed by an abrupt decrease between 4h and 8h

after injection with TGFb. This is consistent with EMT alterations

in the redox control of the cell cycle leading to increased

invasiveness in tumor progression stages [47]. Genes in bicluster

2485 were linked to telomere organization, ncRNA metabolism

and DNA replication. They exhibited a strong reduction in their

expression levels also between 4h and 8h, denoting a potential

inhibition of telomerase activity consistent with experimental

evidence [49]. Telomerase activity is key to the immortalization

(and proliferation) of tumors and cancer stem cells are known to

exhibit telomerase expression [50]. Nevertheless, there is evidence

that EMT bypasses cellular senescence to some extent via

alternative mechanisms [49], while mesenchymal stem cells tend

to show very low or undetectable telomerase levels [50]. Bicluster

4544 comprised genes implicated in cellular amino acid, lipid, and

aldehyde metabolism. The drastic decrease in the expression level

experimented by these genes between 8h and 16h is in accordance

with the growth inhibition and reprogramming of metabolism,

opposed to an increase in mobility and invasiveness potential,

experimented by the cells undergoing EMT [51]. The effects of

growth arrest were further observed in bicluster 5536, significantly

annotated with cell division and chromosome segregation, whose

genes showed a steady decrease in expression along a 20 hour

period, between 4h and 24h. Genes in bicluster 4499 expressed

coherently during the first 8h of the experiment and were

associated with cellular component movement, locomotion,

localization and cell junction organization, as well as cytoskeletal

protein and calcium ion binding. Both these functional properties

and the abrupt increase in expression exhibited by the genes

between 4h and 8h after EMT induction effectively confirm the

Figure 6. Regulatory snapshots of regulators with large relevance variations in yeast heat shock modules. This figure shows regulatory
snapshots obtained for yeast heat shock stress regulatory modules 39 and 151 over time (0’, 5’, 15’, 30’ and 60’), highlighting the ranks of regulators
exhibiting large relevance variations. In every row, each figure highlights the relevance of a particular regulator placed among the 30 best ranked TFs
for a specific time point. Regulators appear in the top semi-circle from left to right in decreasing order of ranking score, and target genes are shown in
the bottom semi-circle. Orange and green arcs respectively identify ‘‘regulates’’ and ‘‘regulated by’’ relations for the highlighted regulator. From top
to bottom, first and second rows expose the ranks of Mig1p and Rim101p targeting the genes in biclusters 39, while third and fourth rows expose the
ranks of Hcm1p and Arr1p in bicluster 151.
doi:10.1371/journal.pone.0035977.g006
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transition undergone by the cells from epithelial-to-mesenchymal

phenotype.

Human EMT regulatory modules. Similarly to the case

study in yeast, we obtained rankings of regulators for each of the

five EMT-related transcriptional modules (biclusters) at every time

point. In this case, the input for TFRank consisted in the

expression levels measured for genes undergoing TFGb-induced
EMT at the time points in each bicluster and the human network

of regulatory associations. Unfortunately, the human regulatory

network is far from complete, containing a limited number of

transcription factors. This resulted in very similar rankings that

often included regulators known to target a large number of genes

and therefore participate in a broad range of biological processes.

In this context, we decided to focus on the transcription factors

appearing at least once in the top 10, considering the rankings

obtained for all the time points in each bicluster. We then

identified some transcription factors for each bicluster among

those that had showed up less among the top 10 in all the five

biclusters, under the assumption that these would be more specific

for the biclusters where they ranked high. For bicluster 4554, this

procedure highlighted PLAG1 and MZF1, which were attributed

maximum relevance at 8h and 4h, respectively. Both regulators

have been reported as inducers of tumor metastasis via the

regulation of specific genes or pathways implicated in metastatic

forms of cancer [52,53]. Transcription factors E2F1 and IRF1

were selected for bicluster 2485. Interestingly, the expression of

both E2F1 and IRF1 dropped between 4h and 8h, following the

tendency of the genes in the bicluster, although their relevance has

increased in this time frame. The evidence of E2F1 and IRF1

downregulation in this experiment suggests the silencing of their

roles as metastasis suppressors [54,55]. For bicluster 4544, the

above procedure selected FOXA1, FEV and HNF1B. These

transcription factors registered local maxima of importance

before 2h for FOXA1 and FEV, and at 2h for HNF1B, and later

at 8h (FOXA1) or 16h (FEV and HNF1B). While the relevance on

the first interval seems to be influenced by the upregulation of the

genes encoding these transcription factors, the latter is more likely

due to the drastic change exhibited by the target genes in the

bicluster, as variations in relevance and expression were not

consistent at those time points. Notably, FOXA1 is a known

Figure 7. Expression profiles of five enriched human epithelial-to-mesenchymal regulatory modules. This figure shows the expression
profiles of the genes in five of the regulatory modules obtained for the human epithelial-to-mesenchymal expression data and the human regulatory
network containing regulations from the JASPAR database (modules 4554, 4544, 2485, 4499, and 5536), yielding some of the highest numbers of
significantly annotated Gene Ontology terms. Expression levels were normalized by gene to zero mean and unit standard deviation.
doi:10.1371/journal.pone.0035977.g007
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negative regulator of epithelial-to-mesenchymal transition and all

three transcription factors are involved in cell differentiation,

organ morphogenesis and development characteristic of EMT.

Five transcription factors, IRF2, SRY, CREB1, NKX3-1 and NFIL3,

appeared in the top 10 exclusively in rankings obtained for

bicluster 5536. Genes IRF2 and SRY, related to cell proliferation

and cell differentiation, respectively, were considered most

relevant at the first and last time points of the bicluster time

frame (4h/8h and 72h), eventually relating to before and after the

cellular reprogramming during EMT. The remaining regulators,

CREB1, NKX3-1 and NFIL3, exhibited a steady increase in

relevance between 4h and 16h. This variation inversely

proportional to the changes observed in the expression level of

the genes in the transcriptional module, which could explain an

eventual repressor control exerted by the three factors upon these

targets. Functionally, the roles of CREB1, NKX3-1 and NFIL3 in

the regulation of cell cycle, circadian rythm and organism growth,

are consistent with the annotations yielded by the target genes and

with the expression evidence of growth arrest experimented by the

cells during EMT. In bicluster 4499, NHLH1 arose as a relevant

player. This transcription factor possesses documented interactions

with major regulators of EMT, such as TFC3, and with several

genes encoding cysteine-rich proteins containing LIM domains, of

which CSRP3 is probably the most relevant [56]. Participating in

cell growth and somatic differentiation, CSRP3 is also involved in

the regulation of cellular calcium ion concentrations affecting the

cadherins, important mediators of cell-cell adhesion and

cytoskeleton organization [57].

Comparison with State of the Art Tools
Available tools for the identification of regulatory modules can

differ significantly in input data, definition of module, relationships

within and between modules, and output. Systematical compar-

isons are thus either unfeasible, or likely to be performed in such

terms that will favor a particular method in detriment of the

others. In this section, we compare Regulatory Snapshots with

a recent contribution to regulatory network inference, namely

Physical Module Networks (PMN) [9]. PMN applies a learning

procedure similar to that of Module Networks (MN) [8],

alternating between two optimization steps at each iteration: i)

a rearrangement of the network structure explaining the

expression profiles of the genes in each module relative to the

current module partitioning, and ii) an update of the module

assignment relative to the current regulatory network structure.

PMN and MN describe the data based on Bayesian models and

derive an evaluation score from its posterior probability. Greedy

hill-climbing search is then used to identify high scoring assign-

ments or structures.

Simultaneous optimization of transcriptional control and re-

sponse, performed by PMN and MN, seems theoretically

preferable to the strategy of Regulatory Snapshots, which first

groups genes in modules based exclusively on expression and then

identifies regulators through integrated analysis. Nevertheless,

Regulatory Snapshots showed very good performance with

minimal guidance. Its strength lies in its prior search for temporal

expression patterns, which delivers more specific and functionally

coherent modules per se than other available clustering

approaches [17]. First, it effectively finds the best solution, namely

all maximal temporal transcriptional modules. Second, it focuses

on local coherent responses, known to prevail in most interesting

cases of transcriptional response [1,18]. Third, it incorporates time

dependency. Fourth, it allows genes to belong to more than one

module (modules can overlap), and thus participate in distinct

biological tasks with different partners over time. This setting

presents more realistic assumptions towards transcriptional re-

sponse than general purpose clustering techniques, such as those

employed by PMN and MN. Clustering fits global models to

expression data (consistency across all time points), often looking

for disjoint groups, and require a predefined number of clusters.

These restrictions tend to generate artificial partitions of the data

that deviate from their natural organization, and ultimately lead to

clusters lacking enriched functional annotations [1,9]. Similarly, as

the authors further observe, the optimization procedure is highly

dependent on the initial cluster assignment and susceptible to

converge to local maxima [8].

Likewise, the PMN formulation restricts the configuration of the

regulatory pathways underlying a particular transcriptional re-

sponse. Typically a single path is selected per module, consisting of

an indirect regulator linked by a physical interaction pathway to

a direct regulator exerting transcriptional control upon the

consistently expressed genes. One drawback of this scheme is that

it ignores that gene response is more likely the result of a combined

effect of multiple regulatory players and pathways than the isolated

action of a given transcription factor [25]. Also, the role of direct

regulators is prone to be overtaken by transcription factor hubs,

given the criterium to maximize the number of direct targets

within the module. As in Module Networks [8], it is assumed that

the regulator exhibits an expression profile similar to the one of its

targets, a constraint that does not hold in most datasets. Contrary

to separately assessing indirect and direct roles of regulators,

Regulatory Snapshots calculates a measure of relevance which

naturally embeds direct and indirect control exerted upon the

targets and incorporates full network topology (all paths) on a more

systemic and integrated view of gene regulation. It further provides

mechanisms to mitigate the hub effect, through normalization, in

the context of both regulation weights and final ranking score [25].

In essence PMN has been shown to perform well using data

previously isolated relative to a particular biological process [9].

However, any pathway selected from the network in such context

is likely to be pertinent to the problem to some extent. This leads

us to the observation that PMN and Regulatory Snapshots serve

distinct purposes. PMN focuses on reconstructing pathways

between regulators and targets known to be involved in the

biological events under study, depending heavily on established

knowledge. Specifically, it requires input lists of putative indirect

and direct regulators, in addition to protein-protein interactions,

protein-DNA interactions, and expression data. In contrast,

Regulatory Snapshots infers the biological context exclusively

from the expression data and traverses the affected part of the

context-free regulatory network to automatically rank relevant

transcription factors. It is therefore applicable to cases where prior

information is scarce and tailored to unravel novel hypotheses

from high throughput data. Concerning the type of interactions,

PMN considers both protein-protein interactions and regulatory

(protein-DNA) interactions. Including evidence of physical inter-

actions is likely to mitigate issues caused by limited availability of

regulatory information, on which Regulatory Snapshots exclu-

sively relies. On the other hand, the method can no longer

guarantee that the pathway built between indirect and direct

regulators possesses in fact a regulatory nature.

Not surprisingly, both methods lack full characterization of the

dynamic nature of gene regulation. It is known that only a subset

of the regulatory interactions in the network underlying a partic-

ular transcriptional response are in fact involved in the biological

process under study and that the group of active interactions

changes over time, as more specific tasks occurring in the cell start

and finish. Not only this increases the complexity of the problem,

as also little or no large scale experimental information exists on
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dynamics of interactions. PMN regards the network as static and

identifies the part which best describes the behavior of the genes at

all time points. In this regard, PMN analysis outputs a single

network topology, in which the temporal dimension is lost.

Regulatory Snapshots performs an analysis per time point,

generating a list of transcription factors ranked according to

a measure of relevance of those regulators relative to the response

observed at such time point. In this context, we put forward a novel

way to interpret dynamics and highlight the variation of

transcriptional control over time.

On another note, Regulatory Snapshots strategy is fast and

highly scalable, accommodating well for large expression datasets

and interaction networks. The worst case time complexity for

a complete analysis of the data is O(DGDDT DzN DBDDT DDED), where
DGD and DT D denote the numbers of genes and time points in the

expression data, DBD is the number of biclusters (transcriptional

modules) to be further inspected for an underlying regulatory

network, DED is the total number of interactions in the context-free

regulatory network graph, and N is the number of iterations for the

transcription factor ranking procedure (typically, a value in the

order of 10 will be sufficient [25]). The number of biclusters DBD
can be O(DGDDT D) in the worst case. In practice, for real datasets it

tends to be considerably smaller. Additionally, given its modular

nature, Regulatory Snapshots allows the researcher freedom to

filter uninteresting sets prior to the application of the second step.

Several methods to filter and sort the biclusters according to

different criteria have been previously made available and proved

effective [17,37]. Approaches like PMN and MN, or the related

MEDUSA, are computationally intensive. In a recent study,

MEDUSA was reported to take longer than 4 weeks to analyze

a dataset containing 7000 genes using 1000 iterations. A

parallelized version, fastMEDUSA, would be able to process the

data about 40 times faster, using 100 processors, which would still

acount for more than 2/3 of a day [58]. Significant reductions of

the search space can be achieved through preselection of relevant

data based on prior knowledge. However, this will make these

methods unsuitable for automated and unbiased regulatory

module discovery using high throughput data.

Conclusion
We proposed Regulatory Snapshots, an integrative method to

unravel and characterize regulatory modules of genes exhibiting

coherent expression trends and their most relevant regulators over

time. It defines a robust integration strategy for the problem while

addressing the major concerns associated with current regulatory

module identification methods. In particular, it effectively

considers a temporal dimension that has been insufficiently

exploited. Regulatory Snapshots is further able to combine prior

knowledge with experimental data, integrate evidence of both

regulation and function, and embed mechanics and dynamics,

while incorporating time dependency, and consider systemic and

individual features.

In a first step, biclustering is applied to identify coherent

transcriptional responses in expression time series (CCC-Bicluster-

ing) [17]. We use an exhaustive approach which therefore

guarantees to find all maximal subsets of genes exhibiting

consistent expression profiles along subsets of consecutive time

points. Although in some cases a large number of biclusters may be

discovered, several numerical and statistical criteria can be used in

order to filter and sort the resulting gene modules [37]. On the

other hand, a biclustering strategy enables, but does not restrict

itself to, the search for local expression patterns known to prevail

in transcriptional responses. Global patterns are also discovered

when they exist. Similarly to most algorithms for analysis of

expression data, CCC-Biclustering relies on a given number of

classes to express different activation levels, causing results to be

influenced by the use of a discretization method. Nonetheless, it

has been shown that discretization techniques based on transitions

between time points are appropriate for the analysis of expression

levels and can present an advantage to using real-valued data, as

they reduce the complexity of these large data and enable to

discard non-significant differences between the expression levels of

different genes or time points due to natural conditions or

technical measurement details [17,35]. We further support the

choice of three states based on the following observations:

researchers are often interested in describing expression trends

using only two or three distinct activation levels (we used three);

the choice of the discretization threshold is made dependent on the

parameters of the preceding normalization step to ensure profile

comparability.

In a subsequent step, personalized ranking is applied to

determine the most relevant regulators exerting control upon the

genes in a module at each time point (TFRank) [25], whereby an

initial preference signal comprising the expression levels of the

targets is diffused through the transpose of the regulatory network

graph to devise a score for every TF. Dynamic and static

properties of regulatory mechanisms are captured by straightfor-

wardly incorporating transcriptional response and interactions into

the score calculation. The ranking strategy is further able to

perceive relevant regulations within a given biological context

based on a combination of full regulatory connectivity and

individual behavior. Relevance scores embedding indirect associa-

tions such as this one have been shown to be more informative and

robust, outperforming measures based on direct interactions in

a recent study on network-based disease candidate gene

prioritization [59]. Overall, the personalized ranking framework

presents a flexible solution that provides a number of features

allowing for a fine tuning of the scores, including adjustment of

regulations’ weights and initial signal, as well as control over

preference for closer or farther regulations.

We used Regulatory Snapshots to study Saccharomyces cerevisiae’s

response to heat shock and human epithelial-to-mesenchymal

transition. In both case studies, the targets in the regulatory

modules were found to yield coherent transcriptional profiles and

functional properties. Results further confirmed the successful

identification of TFs known to participate in the regulation of the

modules. Additional TFs unraveled by Regulatory Snapshots

underlied annotations consistent either with the biological process

under study or with functional annotations enriched for the set of

target genes. Some snapshots revealed coincident variations in the

relevance of prominent TFs and the expression of their target

genes in regulatory modules. In addition, we observed that the

relevant TFs could be identified even though they did not exhibit

expression coherence with their targets. Regulatory Snapshots thus

proved effective to enable temporal exploration of regulatory

networks and suitable for enhancing their dynamic properties. In

particular, the underlying ranking scores suggested inherent ability

to discern the primary role of a given gene at each time point,

whether TF or target. Ultimately, the fact that results output by

a largely automated approach with minimal guidance could be

confirmed by prior knowledge supports the value of this integrative

contribution to the study of regulatory networks over time through

the identification of regulatory modules using expression time

series and regulatory associations.

Several directions arise for future research. It is known that

consistent expression profiles are not sufficient guarantee of co-

regulation [60]. In fact, different genes regulated by non-

overlapping sets of TFs may exhibit similar expression profiles
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and consequently be grouped into the same regulatory module.

This discrepancy is sometimes revealed through functional

enrichment with GO terms which are apparently not related.

The opposite problem can also be observed, by which different

biclusters that potentially overlap to some extent pertain very

similar annotations and should eventually be grouped into larger

structures (meta-biclusters). An improvement to the current

Regulatory Snapshots strategy could involve the integration of

additional information extracted from Gene Ontology graphs.

Other highly desirable features of a temporal module discovery

algorithm would include ability to infer and incorporate the status

or level of intensity and direction, as well as the type of action

upon a target, of each regulatory interaction, which presents a very

complex task and can therefore be considered as a long term goal

[61].
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