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Abstract

Background: Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior
described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present
evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal
correlated random walk (BCRW).

Methodology/Principal Findings: Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic
substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially
distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having
its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed
using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood
estimation).

Conclusions/Significance: Because of the presence of non-uniform turn angle distribution of move step-lengths within a
flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating
modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a
simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations
based on the BCRW model.
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Introduction

Cell migration is an important process for a wide range of

domains from bacteria to mammals. For prokaryotes (e.g.,

bacteria), migration is important to locate food sources [1].

Similar goals may apply to unicellular eukaryotes (e.g., Dictyoste-

lium). In contrast, in ‘‘higher’’ multi-cellular eukaryotes (e.g.,

mammals) cell migration is involved in physiological processes as

well as pathogenic conditions such as cancer metastasis [2].

Mammalian cell migration is generally thought of as having a

‘‘purpose’’ (such as embryogenesis [3] and immune response [4])

other than locating nutrients and it is believed that these cells

follow orders from a higher ‘‘programming center’’. When these

orders are misinterpreted or disregarded, cancer may occur. This

paper, instead, is informed by a different premise: namely, that

individual cell migration in random motility conditions can be

interpreted as a problem of how to efficiently perform a search to

locate randomly distributed ‘‘target items’’ (such as nutrients and

growth factors) which could only be detected in limited vicinity.

This is analogous to animal foraging problem where animals come

to adopt an optimal search strategy to locate food.

Random walk theories have been used to model animal

displacements to explain optimal foraging, predator-prey relation-

ships, etc. For long-times, animal movements can be modeled as

uncorrelated random walks with normal diffusion (mean-squared

displacement (MSD), v ~rr(t){~rr(0)ð Þ2w scaling as ta where, a~1)

[5,6], where ~rr(t) is the position of the animal at time t and the

average (,.) is over all the members of the population.

Anomalous diffusion arises when a=1, with av1 corresponding

to sub-diffusive motion, aw1 to super-diffusive motion and

‘ballistic motion’ for the case of a~2. The directional persistence

in animal movements has been modeled using correlated random

walks or Lévy motion [7]. Correlated random walks have an

exponentially decreasing distribution of move step-lengths (dis-

tance traveled in one sampling time) [8] and the shape of the turn

angle distribution between these move step-lengths controls the

directional memory. Lévy motion (Lévy walks or Lévy flights

[9,10,11] where Lévy walk has a finite mean-squared displacement

while a Lévy flight does not) comprises of random walks wherein

long flights or steps are separated by shorter jumps. These walks

are described by the power-law probability distribution function

for the flight or step-length l, given by P(l)&l{m, 1vmv3 where
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m is the ‘Lévy index’. The MSD in Lévy motion always scales as ta

where aw1 while a correlated random walk eventually loses super-

diffusivity reaching normal diffusion once the correlation is lost.

Lévy motion converges to Brownian motion for m§3.

Lévy motion has been frequently used to model animal

displacements in ecology. It has been shown that the efficiency

of animal searches incorporating Lévy motion is higher than those

using correlated random walks [7] since the chance of returning to

the same place with Lévy flights or Lévy walks is less [12],

optimizing the predator-prey encounter [13]. Simulations also

revealed that for animal foragers feeding on randomly distributed

target sites an inverse square power-law distribution of flight

lengths in Lévy motion is an optimal solution [12]. Subsequently,

experimental studies also reported that organisms ranging from

birds [14] to mammals [8] adopt Lévy motions with m&2. Lévy

behavior has been reported in diverse species from marine

predators [8], spider monkeys [15], micro-zooplankton [16], soil

amoebas [17], freshwater Hydra cells [18] and humans [19];

initially, albatrosses were thought to exhibit Lévy behavior [14].

Recently, however, the biological existence of Lévy motion has

been questioned and it has been suggested that not all the reported

experimental studies follow Lévy behavior [20,21,22,23]. Of

particular note is the recent work showing albatross motion is

inconsistent with LW behavior [22]. It has been shown that

combination random walks such as composite Brownian walks

may have a higher search efficiency than Lévy motion and

composite, two-search–mode walks (referred to as intermittent

search models [24]) can generate patterns that look similar to Lévy

motion [20,24]. However, the intermittent Lévy based models

(with Lévy distributed relocation times) outperform the intermit-

tent exponentially distributed ones [25].

It has been suggested in literature that the survival distributions

(cumulative frequency of lengths greater than a given length) can

correctly identify true Lévy behavior [20,23,26]. Also, methods

where weights of two competing models (Lévy versus exponential)

are calculated (maximum likelihood estimates along with Akaike

weight calculations [21,22] could be useful to identify the true

model to describe the observed search patterns.

The persistent random walk model (PRW) [27] (a form of

correlated random walk) has often been used to model mammalian

cell migration. The PRW model equation involves fitting the

experimental mean-squared displacement of cell population with

speed and persistence time as two parameters, of which speed is

known. We are not aware of any reported attempt to decipher the

search pattern of individual mammary epithelial cells in low-cell

density conditions in the absence of any biasing cues. Does the

random motility of eukaryotic, mammary epithelial cells follow

Lévy statistics or not? A priori, it might be expected that in the

confined in vitro conditions the cells may not display the Lévy scale

free patterns. Recent studies have indicated that the search

strategy of Dictyostelium (eukaryotic cell) in the absence of external

cues is a persistent cell motion [28,29]. Van Haastert and

coworkers also reported that starved amoeboid cells exhibit

correlated random walk food search strategy by extending their

run lengths [30]. Our bimodal analysis [31] segregated the motion

of mammary epithelial cells into directional or re-orientation

phases based on successive angle changes in the nucleus tracks of

cells analogous to the segregation of amoeboid tracks into runs

(based on splitting pseudopods) and turns (based on de novo

pseudopods) in the recent work by Van Haastert and coworkers

[29,30,32]. We report here that the epithelial cell migration paths

on 2-D plastic substrates in the absence of any chemo-attractant

gradients follow general features of a bimodal correlated random

walk model (BCRW). We use the experimental results obtained

from application of bimodal analysis (from our previous work,

[31]) to model and simulate the random migration search strategy

of individual epithelial cells. The data used in this work was

obtained by plating cells overnight on tissue culture substrates.

Cells were tracked the next day allowing them sufficient time to

produce their own extra-cellular matrix on 2-D substrates. The in

vitro 2-D environments enabled us to collect frequently sampled

data (every 30 seconds). This 2-D in vitro motion can be expected

to be somewhat different from the one in the 3-D in vivo conditions

(because of the overlaid extra-cellular matrix the frequency of re-

orientations can be altered). Nonetheless, characterizing the 2-D

motion at high time-resolution can serve as the basis of modeling

cellular motion in natural environments.

The BCRW could be thought of as a modified correlated

random walk comprising of two alternating modes or ‘‘flights’’

with varying degree of correlations. This is analogous to an

intermittent search model having a fast phase oblivious to the

presence of any target and a slow responsive search phase to locate

the target as described in [24]. In the BCRW model, we refer to

flight as the portion of cell path (made of consecutive step lengths

taken during successive time steps) comprising either the

directional or re-orientation phase (as flagged by our bimodal

analysis technique) distinguishing it from a step length taken

during a unit time, which in our case was 0.5 minutes. We adopt

this terminology from the work by Bartumeus and coworkers [7].

This is not to be confused with the ‘‘Levy flight’’ usage. A

directional flight length is the summation of all the consecutive

move step-lengths during the directional phase and similarly, a re-

orientation flight length is the summation of a series of all the

move step-lengths during the re-orientation phase. We define net

flight length as the displacement during the given flight.

Some of the salient characteristics of the proposed BCRW are: i)

flights follow an exponential distribution; ii) move step-lengths

comprising the flight are correlated through turn angles randomly

drawn from a distribution such as a Gaussian distribution and iii)

move step-lengths within the flight are randomly drawn from a

exponential distribution.

Results and Discussion

Recently, we segregated epithelial cell migration tracks into

alternating directional and re-orientation modes using our bimodal

analysis method [31]. Some example trajectories with the

directional and re-orientation flights flagged are depicted in

Fig. 1 (top: neuT [31] and bottom: pBabe cell type). The direction

changes between consecutive directional flights in epithelial cell

random migration was found to be non-instantaneous and the cell

was found to spend considerable time in the re-orientation phase.

The fundamental idea of a BCRW is applicable for epithelial cell

migration, as we have two types of alternating flights (directional

and re-orientation flights) with a Gaussian distribution for the turn

angles within each flight type and an additional one between two

neighboring directional flights. We analyzed the random migra-

tion data of MCF-10A pBabe, neuN and neuT human mammary

epithelial cells with respect to the distribution of flight lengths (both

total distances (referred to as ‘flight’) and net displacement

(referred to as a ‘net flight’)), within the above-described general

framework of a BCRW to test its applicability to mammalian cell

migration.

We had earlier reported that the mean d=t ratios (ratio of

displacement to distance for a given flight) in directional phases are

higher than those of re-orientation phases [31]. Specifically, we

find that the mean displacements (net flight length) during the

directional phases (dd ) are higher than those during re-orientation

Bimodal Correlated Random Walk
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phases (dr) (Table 1) while the mean total distance covered in

directional phase (td ) is not statistically different from that during

re-orientation phase (tr) (Table S1). The trends in the net

displacements are also implicated in the box plot of the

displacements during the different flights for the three cell types

(pBabe (n = 15), neuN (n = 15), neuT (n = 12)) (Fig. 2).

In order to test the presence of any Lévy statistics in the flight

lengths, we used three different methods (logarithmic binning with

normalization, survival frequency plots and maximum likelihood

estimation) to analyze the distribution of flights. The first method

uses the cumulative distribution/rank frequency plots (flight

lengths greater than a given threshold) also referred to as survival

distribution [20,26]. We use the information that the survival

distribution would be a straight line on a log-linear scale

(probability versus flight length) for an exponential distribution

while a true power-law distributed data would be revealed as a

straight line on a log-log scale. Likewise, we tested the survival

distributions of directional and re-orientation flight distances

(referred to as ‘flight length’) and displacements (referred to as ‘net

flight length’) for the three cell types. Intriguingly, we found that

the flight length survival distributions (both directional and re-

orientation) (Fig. 3a, left panel) for all cell types on a log-linear scale

fitted well with a straight line (statistics, Table 2). Similarly, the net

flight lengths (Fig. 3b, right panel) also exhibited similar trends

(statistics, Table 2). Hence, an exponential model describes the

flight lengths/net flight lengths of individual human mammary

epithelial cells in random motility conditions.

The slope, l of the straight-line fits (Table 2) on the log-linear

survival distributions represents the inverse of the mean flight

length. A higher l would indicate a smaller mean flight length.

The l value was found to be higher for the re-orientation net flight

compared to the directional net flight consistent with the results in

Table 1, giving confidence in the straight-line fits.

We also used logarithmic binning with normalization method

(LBN [23]) to analyze 1140 flights (directional and re-orientation,

identified using bimodal analysis [31]) from a total of 42 cells of 3

cell types. The LBN method minimizes errors in identifying Lévy

flight behavior, as simple non-normalized frequency linear binning

can give erroneous results wrongly identifying Brownian random

walks as Lévy [20,23]. As expected from the results from survival

distributions, we do not see the signature power-law linear

relationship on log-log scale for both flights (Fig. 4) and net flights

(Fig. S1). An exponential distribution fitted to the l (obtained from

survival distributions in Figs. 3a and b), is indicated by the bold,

black curve in Figs. 4 and S1. One can see that the experimental

data (filled circles) clearly fit the exponential distribution much

better than a Lévy model. We also used maximum likelihood

estimates and Akaike weights [21,22] to determine which of the

two models (exponential or power law) fit our experimental data

(see Text S1; Table S2). The exponential model was favored

having higher Akaike weights.

The BCRW model for the epithelial cells differs from a simple

correlated random walk such as the often-used PRW model for

mammalian cell migration. The BCRW model has different

correlations (turn angle distributions) for the directional and re-

orientation flights each illustrated in Fig. 5. We performed a

simulation based on the proposed BCRW to predict the diffusive

Figure 1. Flagging directional and re-orientation flights using
bimodal analysis [31]. An experimental 2-hour neuT (top) and pBabe
(bottom) cell trajectory with the directional and re-orientation flights
flagged using bimodal analysis. The cell track starts at origin (0,0) with
the start of a directional flight indicated by an open circle and the start
of re-orientation denoted by a filled triangle. A directional flight length
is the summation of all the consecutive move step-lengths during the
directional phase and similarly, a re-orientation flight length is the
summation of a series of all the move step-lengths during the re-
orientation phase. The net flight length (directional/re-orientation)
refers to the net displacement from start to end during the flight.
doi:10.1371/journal.pone.0009636.g001

Table 1. Average net distances covered in directional and re-
orientation phases.

Cell type

pBabe neuN neuT

dd
1,3

(micron) 3.0961.08 3.361.33 3.9261.9

dr
2,3

(micron) 2.7961.22 2.4360.97 2.8560.77

p-values (n4) 0.026 (214) 0.001 (187) 0.0326 (169)

Statistical significance to compare between the net distances traveled in the
directional (dd ) and re-orientation (dr) phases using the nonparametric, two-
sample Kolmogorov-Smirnov test in MATLAB (kstest2.m). A p-value ,0.05
indicates significant difference. A similar analysis was repeated for total
distances traveled during the directional flights (td ) and re-orientation flights
(tr) and is shown in Table S1.
1Mean net distance traveled during directional phase.
2Mean net distance traveled during re-orientation phase.
3Mean value reported is the mean of mean values for each cell (pBabe (n = 15),
neuN (n = 15), neuT (n = 12)) while error bars are standard deviation in the
means.

4Sample size for the two groups, which is the number of directional or re-
orientation phases.

doi:10.1371/journal.pone.0009636.t001
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properties of such a random walk and compare with the

experimental cellular tracks and also with a simple correlated

random walk using the PRW model-fit of the experimental data.

The results from the simulation in terms of MSD trends are

illustrated in Fig. 6. We used mean-squared displacement to line

up the two random walk models in order to compare cell-

population level predictions of these models using single cell

measurements. The mean-squared displacement trends intrinsi-

cally include predictions of angle distributions and also the

distance traversed during relocation/re-orientation phase in the

form of time taken to crossover from ballistic to diffusive regime

(i.e, the persistence time).

The flight lengths/net flight lengths of individual human

mammary epithelial cells in random motility assays deprived of

any directional bias were found to follow exponential statistics

(Figs. 3 ad 4). This is in contrast to the recent report of foraging

behavior of large animals such as sharks as a whole organism [8]

which exhibit Lévy behavior. Our result is, however, consistent

with the search strategy in Dictyostelium that was reported to be

lacking any Lévy statistics [28,30] and with the revised results on

motion of albatrosses [22]. Our result is also similar to the motion

of motile flagellated prokaryotic bacterial cells that have Poisson

distributed runtimes [33]; given the essentially constant speed with

which the bacterial cells move, the run length distribution of

bacteria can also be expected to be exponentially distributed.

The PRW model equation (see methods) is based on a velocity-

jump process with instantaneous relaxation period [34] which

would be true for bacterial migration. Instead, in the BCRW, the

re-orientation phase acts as a relaxation period with finite time and

has a correlation much smaller than that present in the directional

phase (Fig. 5). The re-orientation phase is not completely diffusive

and the angle changes during this phase are non-uniform. A cell is

not stationary during the re-orientation phase and the total

distance traveled during this phase is similar to that traveled

during directional phase (Table S1). But the net displacement

(Table 1) is higher in the directional phase compared to the re-

Figure 2. Net flight length during the directional and re-orientation phases for the three cell types. Box plots of the mean net flight
lengths during the directional (dd ) and re-orientation (dr) phases for the three cell types (pBabe (n = 15), neuN (n = 15), neuT (n = 12)). The distance
traversed in directional flights is more than during re-orientation flights (statistical analysis in Table 1).
doi:10.1371/journal.pone.0009636.g002
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orientation phase giving rise to higher directionality ratio in this

phase [31].

By comparison to the PRW model, the BCRW model can pin-

point the factor controlling the directional persistence, either the

mean flight lengths (1=lmean) or correlations in the turn angle

distribution [7]. The migratory differences in the cell types may

exist in differences in the correlations within the different flight

types and between the directional flights. The neuT cell type was

found to be more persistent than pBabe [31]. The angle change

distributions within the directional and re-orientation flights (Fig. 5)

for the three cell types confirm a high degree of correlation within

directional flights. As the three cell types have similar value of the

exponent l, for both the flight types and similar within-flight turn

angle distribution; it is the turn angle distribution between the

directional flights that seems to control the persistence behavior in

a cell type (Fig. 7a in reference [31]).

The 2-hour experimental MSD plot of these cells has a slope

greater than 1 indicating prolonged super-diffusive motion (Fig. 12

in reference [31]). A fit of the experimental MSD with a PRW

model gives a persistence time of around 10 minutes by creating

an early transition to diffusive regime (Fig. 6). This further

indicates that the migration strategy adopted by the cells has

Figure 3. Survival frequency (log-linear) plots for the three cell types in different modes. 3a (left panel), the flight length survival
frequency plots, filled circles (directional mode) and open circles (re-orientation mode). 3b (right panel), the net flight length survival frequency plots,
filled circles (directional mode) and open circles (re-orientation mode). The straight-line behavior on the log-linear plots (survival frequency on log
scale versus the lengths (flight/net flight) on linear scale) is indicative of exponential distribution of the lengths. The slopes ({l for exponential
distribution) along with statistical analysis are shown in Table 2.
doi:10.1371/journal.pone.0009636.g003
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super-diffusive properties that cannot be attributed to a simple

correlated random walk. We find through simulations parameter-

ized by our experiments (neuN cell type), that the BCRW model

has super-diffusive properties around experimental time-scale but

converges to normal diffusive regime in the long-time limit. A

simulated composite correlated random walk incorporating

directional and re-orientation phases through the BCRW

framework recreates the experimental MSD trend where super-

diffusive behavior is maintained over the observed experimental

time-scale. We compared the squared relative difference error (see

statistical methods) from the PRW model-fit and our BCRW

model fit (see inset Fig. 6). The BCRW model does a better job in

fitting the experimental MSD in the transition regime (10 to

60 minutes) compared to the PRW.

In summary, in this paper we have shown for the first time that

the search strategy of mammary epithelial cells (from multi-cellular

organisms, humans) in random migration conditions is an

intermittent search process (ballistic motile regions (directional)

followed by less-persistent search periods (re-orientation)) de-

scribed by the BCRW model with exponentially distributed flight

lengths. The BCRW model provides a new conceptual framework

for improved modeling of epithelial cell migration, and was found

to fit the experimental data better compared to a simple correlated

random walk modeled using the PRW model. This model could

predict the observed prolonged super-diffusivity in experimental

trajectories, and will form the basis for more realistic simulations of

mammalian cell motility with no prior assumptions regarding the

diffusive properties of these cells.

Materials and Methods

Bimodal Analysis [31] to Identify Directional and
Re-Orientation Flights

We use the results of the bimodal analysis [31] method

developed by us to analyze the random migration data of three

cell types derived from the MCF-10A human mammary epithelial

cells, expressing the pBabe vector alone (pBabe), or the normal

(neuN) or transforming (neuT) versions of the rat Her 2/Neu

oncogene. The migration of cells was followed under random

motility conditions without the presence of any externally added

chemo-attractant gradients, using time-lapse video-microscopy.

The details of the cell culture routine used, cell motility

experiments performed and the bimodal analysis technique are

elaborated elsewhere [31]. Briefly, the cells were followed for at

least two hours in all the experiments and at least five sets of

experiments were performed. We use the bimodal analysis results

of data collected with a resolution of 406 (1 pixel = 0.163 mm) and

a video-microscopy sampling interval of 0.5 minutes. All the three

cell types were plated overnight at a low density of approximately

5000 cells per cm2 of growth area on tissue-culture plastic. Only

cells that were motile for more than two cell diameters (.30mm),

did not adhere to other cells or did not divide or moved out of

frame were considered for tracking procedure. The number of

cells that were finally filtered for application of bimodal analysis

were for pBabe: n~15, neuN: n~15 and neuT: n~12.

The bimodal analysis [31] segregates the cellular trajectories of

individual mammalian cells, specifically MCF-10A cells (human

mammary epithelial cells), into two alternating modes (directional

and re-orientation phases) based on a framework similar in spirit to

that used in the analysis of bacterial motility [33,35]. The first step

in segregating the directional and re-orientation modes required

the determination of the instantaneous direction change, w, for

every time point, t of data, i.e., every 0.5 minutes. The values of

w(t) were then compared to an empirically defined cut-off angle,

wcut, with time points with values of w(t)vwcut qualifying as

directional mode while those with values of w(t)§wcut comprising

a re-orientation mode. The start of the directional mode was

flagged at any time point i if at least three successive time points

have w(t)vwcut, while the beginning of a re-orientation mode was

flagged at any time point j if two successive time points have

w(t)§wcut. The value for wcut was set to 45u. The angle change

distributions for each mode were computed using the w values

corresponding to each mode to get an idea of correlation within

each mode. An example neuT trajectory with the directional and

re-orientation flights is depicted in Fig. 1 (top panel). A directional

flight length is the summation of all the consecutive move step-

lengths during the directional phase and similarly, a re-orientation

flight length is the summation of a series of all the move step-

lengths during the re-orientation phase [7]. We define net flight

length as the displacement during the given flight.

Survival Frequency Distributions
The survival frequency of flight lengths is defined as the

cumulative frequency of flight lengths greater than any given

threshold. For an exponential distribution P(x)~Ae{lx, x [ ½a,b�;
the cumulative distribution function (cdf ) (between the bounds

a,b) for flight lengths less than any x is given by,

1{cdf ~(A=l)e{lx. Taking logarithm on both sides, we get,

ln (1{cdf )~ ln (A=l){lx ð1Þ

Equation (1) is of the form y~mxzc, and hence a plot of 1{cdf

Table 2. Fitting parameters from survival frequency distributions.

Flights Net flights

Cell type (mode) Slope (2l) r2 p value n Slope (2l) r2 p value n

pBabe (Directional) 20.327 0.993 3.37e-13 214 20.372 0.978 8.13e-09 214

pBabe (Re-orientation) 20.221 0.980 5.53e-16 214 20.387 0.996 1.67e-12 214

neuN (Directional) 20.255 0.984 3.70e-12 187 20.293 0.979 1.17e-10 187

neuN (Re-orientation) 20.187 0.989 3.49e-17 187 20.437 0.991 1.75e-09 187

neuT (Directional) 20.249 0.996 1.29e-17 169 20.239 0.990 1.03e-16 169

neuT (Re-orientation) 20.208 0.997 3.35e-19 169 20.372 0.956 3.83e-08 169

Statistical analysis for estimating the fitting parameter for exponential distribution (l) from the survival frequency distributions (regstats.m in MATLAB) with r2

(correlation coefficient) and p-value associated with the slope using t-test indicated.
doi:10.1371/journal.pone.0009636.t002
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versus x on log-linear scale yields a straight line for an exponential

distribution. The slope c~{l, is the inverse of the average value

of x. A bin size of 1mm was used to bin the flights.

Logarithmic Binning of Flights
The presence of Lévy behavior was investigated using the

logarithmic binning with normalization method (LBN method)

described in the Sims et. al. paper [23]. Logarithmic binning

involves increasing the bin sizes in a geometric sequence so that

the size of the kth bin is 2k where k was varied from

22,21,0,1,2,3,… The normalized frequency was calculated as

the ratio of observed frequency to the product of bin width (for a

given bin) and number of data points.

Statistical Analysis
All statistical analysis was done in MATLAB software package

(MathWorks, Natick, MA). The Lilliefors test (lillietest.m) revealed

that the data were non-paramteric. A two-sample Kolmogorov-

Smirnov test (kstest2.m in MATLAB) was used to determine

statistical significance between the mean net displacements in the

directional (dd ) and re-orientation (dr) phases for a given cell type.

A p-value ,0.05 indicates significant difference. Statistical analysis

for estimating the fitting parameter for exponential distribution (l)

from the survival frequency distributions along with associated r2

(correlation coefficient) was performed using regstats.m in

MATLAB, which also gives the p-values associated with the

slopes using t-test. The mean value reported in Tables 1 and S1 for

Figure 4. Log-log frequency plots using the logarithmic binning with normalization method along with a fitted exponential
function. The logarithmically binned flight length distributions on log-log scale for the three cell types. The directional flight lengths are shown in
the left panel while re-orientation flight lengths are on the right. An exponential distribution fitted to the l (obtained from corresponding survival
distribution) is shown in bold curve in black. The fitted exponential distribution is in good agreement with the experimental data points.
doi:10.1371/journal.pone.0009636.g004
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a given cell type is the mean of mean value for each cell (pBabe

(n = 15), neuN (n = 15), neuT (n = 12)) in the population while

error bars are standard deviations in the means.

The PRW model-fit of the experimental data was performed by

fitting the experimental MSD using the following equation:

d2(t)~2nm t{P(1{e{t=P)
� �

, where d2(t) is the MSD, P is the

persistence time and m the random motility coefficient, for a system

with n dimensions. The squared relative difference error (RDE) for

a given model i is defined as, (RDE(t))i
2~½(MSDexp(t){

MSDi(t))=(MSDexp(t))�2, where model i~PRW ,BCRWand

MSDexp(t) is the experimental MSD at a given time t.

BCRW model
The BCRW could be thought of as a modified correlated

random walk comprising of two alternating modes with varying

degree of correlations. This is analogous to an intermittent search

strategy having a fast phase oblivious of the presence of any target

and a slow responsive, search phase to locate the target [24]. Some

of the salient characteristics of this proposed BCRW are: i) flights

follow an exponential distribution; ii) move step-lengths compris-

ing the flight are correlated through turn angles randomly drawn

from a distribution such as a Gaussian distribution and iii) move

step-lengths within the flight are randomly drawn from an

exponential distribution.

BCRW Simulations
The PRW model fit gives a persistence time of around

10 minutes indicating early loss of super-diffusivity unlike the

experimental mean-squared displacement. Hence, we performed

simulations of the epithelial cell migration based on the proposed

BCRW framework to investigate the nature of diffusive properties

of such a system in a long time limit. In our simulations for

the BCRW exhibited by epithelial cells, exponential flights

were generated by sampling an exponential distribution

P(l)~e {l=lð Þ=l where l is flight length and l is the mean flight

length. In order to generate the flight lengths from the

exponential distribution, the inversion method was used, i.e.,

flight length was generated from the exponential distribution by

inserting a uniform random number, 0ƒrƒ1, into the inverse of

the cumulative distribution of the exponential function,

l~{l ln rð Þ. In the BCRW, the l in the directional (l1) and

reorientation (l2) phases can be different. Moreover, because the

flight length is of finite size, the maximum flight length, lmax, can

be defined according to the particular cell type and the

occurrence of an undesirably long flight length can be avoided.

We also had a minimum cut-off for the flight length, l1 min and

l2 min, for directional and re-orientation flight, respectively.

The step-lengths in a flight are not straight-line move step-lengths

but are correlated through a series of turning angles from a

distribution such as the Gaussian distribution P hð Þ~exp
{ h{h0ð Þ2

.
2s2

� �.
s
ffiffiffiffiffiffi
2p
p

where h is the turning angle (i.e., deviation

from the previous direction), h0 the mean turning angle (in our

BCRW simulation h0~0), and s the standard deviation of the

distribution. Standard deviation, s, in the Gaussian distribution

function determines directionality or persistence of step movement,

i.e., smaller s makes the Gaussian distribution narrow and the path

more persistent. In the BCRW, two standard deviation values, s1 and

s2, were used in directional and re-orientation flights, respectively. In

addition, a correlation between two neighboring directional phases is

described by using the Gaussian distribution of turning angles

between two directional flights with a standard deviation, s3.

The step-lengths, x, within the flights are randomly drawn from

an exponential distribution P(x)~e {x=lð Þ=l where l is the mean

move step-length in flights. In order to generate the move step-

lengths from the exponential distribution, the inversion method

was used as before. To test the validity of the BCRW model,

experimental mean-squared displacement of the cells is compared

with that obtained from the simulation. We find that all the

individual step lengths as well as flight lengths in the cellular tracks

are exponentially distributed and we use this information to

perform a simulation based on proposed BCRW framework.

The turn angles between the individual steps in each flight type

is associated with certain degree of persistence or ‘r’ parameter

associated with a wrapped Cauchy distribution [7]. The turn angle

distribution within the directional flights is narrow compared to

Figure 5. Probability distributions of the turn angles within the
directional and re-orientation flights. Top, pBabe, middle, neuN
and bottom, neuT cells. The solid line shows the turn angle distribution
during directional flights while the broken lines during re-orientation
flight. The directional flights display higher persistence compared to the
re-orientation flights that have a more flatter turn angle distribution.
doi:10.1371/journal.pone.0009636.g005
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the spread out re-orientation flight angle distributions (Fig. 5). This

implies a higher value of r (more persistence) associated with

directional flights. We find that a Gaussian distribution provided a

better fit to the angle distributions compared to a wrapped Cauchy

distribution. A Gaussian distribution has been used earlier to fit

the turning angles [36,37]. We related the standard deviation of

the Gaussian distribution to degree of persistence, a higher value

indicating lesser persistence. The neuT cell type was found to be

more persistent as the turn angle distribution between the

directional flights has the least standard deviation compared to

pBabes and neuNs. The standard deviation of turn angle

distribution in a directional flight is smaller than that of a

re-orientation flight. This was incorporated in the BCRW

simulations.

Simulation Parameters
In order to obtain mean-squared displacement of cells from a

BCRW simulation, we generated 100 independent trajectories

during 2500 minutes, which is not feasible in an experimental

situation, however this gives an important insight into the

characteristics of cell motility. Parameter values used in the

BCRW simulation of neuN cell type are as follows: l1~4:39mm,

l2~4:58mm, lmax~16mm, l1 min~2mm, l2 min~0:5mm s1~0:08,

s2~2:75, s3~0:5 and l~0:53mm.

Supporting Information

Text S1 Supporting information text file.

Found at: doi:10.1371/journal.pone.0009636.s001 (0.04 MB

DOC)

Table S1

Found at: doi:10.1371/journal.pone.0009636.s002 (0.03 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0009636.s003 (0.03 MB

DOC)

Figure S1 Log-log frequency plots using the logarithmic binning

with normalization method along with a fitted exponential

function. The logarithmically binned net flight length distributions

on log-log scale for the three cell types. Directional net flights

lengths are shown in the left panel while re-orientation net flight

lengths are on the right. An exponential distribution fitted to the l
(obtained from corresponding survival distribution) is shown in

Figure 6. Super-diffusive behavior in mean-squared displacement trends. Simulated mean-squared displacement versus time from a
simulation based on BCRW model (blue) compared to the experimental neuN data (red). The bimodal correlation contributes to prolonged super-
diffusivity (high persistence) observed in epithelial cells under consideration (neuN cell type). The ‘‘*’’ indicates transition to the diffusive regime in
the BCRW model. A fit of the experimental data using a PRW model (green) has been overlaid. Inset: Comparison of BCRW and PRW model predictions
with the experimental mean-squared displacement. The squared relative difference error (difference normalized using the experimental mean-
squared displacement at a given time) for predictions from BCRW and PRW model. The BCRW model predictions are in good agreement with the
experiments.
doi:10.1371/journal.pone.0009636.g006
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bold curve in black. The fitted exponential distribution is in good

agreement with the experimental data points.

Found at: doi:10.1371/journal.pone.0009636.s004 (9.41 MB TIF)
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