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Abstract

Many animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or
drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the
effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are
frequently observed and captured at mineral licks. We measured the nitrogen isotope ratio in wing tissue of omnivorous
short-tailed fruit bats, Carollia perspicillata, and in an obligate fruit-eating bat, Artibeus obscurus, captured at mineral licks
and at control sites in the rainforest. Carollia perspicillata with a plant-dominated diet were more often captured at mineral
licks than individuals with an insect-dominated diet, although insects were more mineral depleted than fruits. In contrast,
nitrogen isotope ratios of A. obscurus did not differ between individuals captured at mineral lick versus control sites. We
conclude that pregnant and lactating fruit-eating bats do not visit mineral licks principally for minerals, but instead to buffer
the effects of secondary plant compounds that they ingest in large quantities during periods of high energy demand. These
findings have potential implications for the role of mineral licks for mammals in general, including humans.

Citation: Voigt CC, Capps KA, Dechmann DKN, Michener RH, Kunz TH (2008) Nutrition or Detoxification: Why Bats Visit Mineral Licks of the Amazonian
Rainforest. PLoS ONE 3(4): e2011. doi:10.1371/journal.pone.0002011

Editor: Robert Brooks, The University of New South Wales, Australia

Received January 18, 2008; Accepted March 6, 2008; Published April 23, 2008

Copyright: � 2008 Voigt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Leibniz Institute for Zoo and Wildlife Research (Berlin, Germany) and Department of Biology at Boston University (Boston, USA). Both institutions played
no role in any stage of the project.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: voigt@izw-berlin.de

Introduction

Geophagy or the consumption of soil and clay by animals is

geographically widespread and known from a variety of vertebrate

and invertebrate taxa including humans (summarized in [1]).

Several explanations for geophagy have been postulated, including

cytoprotection of the intestinal tract and preventing indigestion

[2,3], ingestion of antibiotics [4] or as an aid in mechanical

digestion [5]. However, the two most important albeit possibly

non-exclusive hypotheses for the consumption of fine clay involve

supplementing diet with limited nutrients or buffering the effects of

secondary plant compounds [6–14].

Many arid and tropical environments are poor in mineral

contents, in part due to leaching [15]. Thus, it has often been

assumed that geophagy by animals at so called salt or mineral licks

serves to supplement diets with essential nutrients such as sodium,

calcium or iron [2,5,8,16], which may indeed explain this behavior

for some species. However, species with a partial or entire diet of

plant material face other challenges. Many fruits, young leaves,

and other plant parts consumed by animals contain toxic,

teratogenic or carcinogenic plant secondary metabolites (PSM),

suggesting that frugivorous and folivorous animals may consume

clay or clay-saturated water to buffer the effects of PSM [6,11].

Bats are a special case in this context: pregnant and lactating

females are under severe mineral stress [17–21], largely because

their diets are generally low in mineral content, especially calcium

[17,22–24]. However, unlike offspring of most terrestrial mam-

mals, which start consuming a partial solid diet while still suckling,

juvenile bats only begin to consume a partial solid diet while still

suckling, and juvenile bats only begin to consume solid food after

they begin to fly and forage independently. Juvenile bats fledge

only when they have almost reached adult size [25]. Thus,

reproductive females often must mobilize mineral reservoirs in

their skeleton as a buffer, depleting them during times of high

demand and replacing them afterwards [18,19]. For this reason, it

has been suggested that some bats visit mineral licks to replace

depleted mineral reserves [27–29].

In the Neotropics, mineral licks, also called collpas or saladeros,

are small, open muddy areas that often contain running water.

These licks are frequently visited by birds and mammals, including

bats [27–29]. Frugivorous pregnant and lactating bats often visit

mineral licks to take up mineral-saturated clay or water [28,29];

therefore, reproductive female bats are assumed to compensate for

low dietary mineral intake. Additionally, insects typically are more

mineral depleted than fruits [23,30]. Thus, we expected to capture

more insectivorous than frugivorous bats at mineral licks.

However, we found the opposite [29].

Consistent with these results is the hypothesis that frugivorous

bats consume water at mineral licks to buffer the effects of PSM in

their diet, as has been hypothesized for other animals (e.g. birds;

[6]; elephants; [7]; humans; [14]; macaques; [11]). Due to their

high food throughput, reproductive female bats, their embryos and
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later suckling pups might be particularly susceptible to the effects

of toxic plant compounds. The diversity in diet among the

neotropical bat family Phyllostomidae offered us an excellent

opportunity to investigate the role of geophagy in mammals.

Omnivorous phyllostomid bats, such as Carollia perspicillata, feed

both on insects and fruits (e.g. [31]), each of which could provide

sources of minerals (insects [19,20,22,23] and fruit [30]). Carollia

perspicillata offers an excellent model for testing two hypotheses–

geophagy for nutritional value vs. detoxification of ingested

compounds–since individual C. perspicillata differ in the percentage

of insects and fruit ingested. We hypothesized that if C. perspicillata

visited mineral licks for the mineral enrichment of their diet,

individuals feeding on a mineral poor, insect-based diet–as indicated

by the relative enrichment with 15N in their body tissue–should be

captured at mineral licks and conspecifics feeding on a more fruit-

based diet should be more frequently captured at non-mineral lick

(control) sites. If bats visit mineral licks primarily to consume valuable

nutrients, we expected to find the opposite pattern in C. perspicillata.

We also predicted that the obligate fruit-eating Artibeus obscurus [32]

should have similar enrichments in 15N at both mineral licks and

control sites. In addition, we expected to find high levels of minerals

in mineral lick soils. To test this hypothesis, we compared the

mineral content of clay that we collected from mineral licks with data

from fruits and insects from the literature.

Materials and Methods

We studied bats at the Tiputini Biodiversity Station in Ecuador

(TBS, 0u38.319 S, 76u8.929 W) between 14 March and 13 April

2007. Habitat and climate are described in Voigt et al. [29] and

Rex et al. [33]. We captured bats at six mineral licks and

simultaneously at six arbitrarily selected control sites in the forest

using ground-level mist-nets set up at a minimum distance of 50 m

from the mineral licks (length 6 to 9 m; 70 dernier/2 ply, 36 mm

mesh, 5 shelves, R. Vohwinkel, Velbert, Germany) between 1800

and 2100 hours. Bats were identified and reproductive status

assessed as described in Voigt et al. [29]. All animals were released

at the site of capture after collecting two small biopsies (3 mm

diameter) from the wing membrane of each bat with a sterile

biopsy punch (Stiefel, Germany). We never captured bats at

control sites that we had previously captured at the mineral licks,

and vice versa. Tissue samples were dried and stored in small

plastic vials until analysis in the laboratory. Stable isotope analyses

using these samples were performed at the Boston University

Stable Isotope Laboratory following Voigt et al. [29]. Nitrogen

isotope ratios of all captured species (d15N) were reported in the

same publication. Here we only report data for comparisons

among individuals of the omnivorous Carollia perspicillata and the

obligate fruit-eating Artibeus obscurus.

We collected clay and water from the same six mineral licks

where bats were captured, following [34]. Mineral analyses were

performed at the Cornell University Nutrient Analysis Laboratory

[34]. Mineral enrichments are expressed as ppm (mg per kg) dry

mass. We calculated Fisher’s exact test to evaluate intraspecific

differences in sex ratios between bats captured at salt licks and

control sites. We tested for differences in enrichment with d15N of

C. perspicillata and A. obscurus captured at both types of sites with a

two-tailed Mann-Whitney U-test. All work was conducted with the

approval of Boston University’s Animal Care and Use Committee.

Results

We captured 15 Carollia perspicillata (12 males/5 females) and 13

Artibeus obscurus (9 males/5 females). Numbers of females and males

did not differ significantly between mineral licks or control sites

(Fisher’s exact test, P.0.05). The d15N in wing tissue from C.

perspicillata captured at mineral licks was significantly lower than in

wing tissue of conspecifics captured at control sites (Mann-

Whitney U-test: U’ = 9.5, n1 = 9, n2 = 8, P = 0.0062; Figure 1). In

contrast, the average d15N of A. obscurus was not significantly

different between bats captured at mineral licks and control sites

(U’ = 24, n1 = 8, n2 = 6, P = 0.53).

Clay at Tiputini mineral licks was enriched in five minerals (iron,

calcium, magnesium, sodium and potassium) relative to fruits and

insects (Figure 2). These minerals are all essential for mammalian

homeostasis and reproduction. Fruits and insects were similarly

enriched in sodium, potassium and magnesium, whereas calcium

and iron were more enriched in fruits than in insects. Enrichment in

iron varied by a factor of 107, calcium and magnesium by a factor of

106, and sodium and potassium by a factor of 105.

Discussion

The reasons why mammals visit mineral licks remains

controversial, and could potentially vary geographically, depend-

ing on the properties of clay, as well as on the overall diet of

animals. Ungulates from temperate regions, for example, show

sex-specific seasonal variation in visits to licks, which appear to be

associated with meeting sodium requirements during female

reproduction and antler development in males [35–37]. High

concentrations of sodium and other nutrients may also attract

mammals to some mineral licks in tropical regions [7,16,this

study]. However, not all mineral licks have higher nutrient

concentrations and thus the ability to buffer the effects of PSM,

which may be harmful if consumed in large quantities, is an

alternative hypothesis for geophagy in the tropics. Our investiga-

Figure 1. Insect content in diet is positively correlated with
mineral depletion in body tissue. Nitrogen isotope ratios (d15N; %) of
the omnivorous Carollia perspicillata (A) and frugivorous Artibeus obscurus
(B) captured at mineral licks (ML) and control sites (Control) at the Tiputini
Biodiversity Station. Carollia perspicillata at mineral licks were significantly
depleted in 15N relative to conspecifics at control sites. There was no
significant difference between A. obscurus from mineral licks and control
sites. Carollia perspicillata captured at control sites foraged more on
insects than C. perspicillata captured at mineral licks or than A. obscurus
captured at either sites. Borders of the box represent the 25 and 75
percentile, T marks the 5 and 95% percentile, solid lines within the boxes
are mean values and dotted lines median values.
doi:10.1371/journal.pone.0002011.g001
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tion of visitation of mineral licks by two sympatric bat species with

different diets, one omnivorous, one an obligate frugivore, enable

us to assess the role of mineral licks for nutrition vs. detoxification

in this large diverse mammalian order.

Two recent studies indicated that pregnant and lactating

females of frugivorous bat species are frequently captured at

mineral licks in the Amazonian rainforest [28,29]. In both studies,

it was argued that bats supplement their diet with minerals by

regularly visiting licks [27,29], because the skeleton of pregnant

and lactating females is often depleted in calcium, which may limit

reproduction [17,18,21,38]. In small mammals, mineral require-

ments for growth and reproduction are 0.00002 ppm dry matter

(DM) for iron in a calorically adequate diet, ca. 0.006 ppm DM for

calcium, 0.0007 ppm DM for magnesium, 0.001 ppm DM for

sodium, 0.0046 ppm DM for potassium (National Research

Council 1978 cited in [23]). Thus, assuming a similar absorption

efficiency of minerals ingested in clay, fruit or insects, all mineral

requirements could be met by the three potential nutritional

sources (Figure 2). Only the calcium content of insects is lower

than the minimum requirements for small mammals (see also [19].

Indeed water sources with higher calcium contents are visited

more frequently by reproductively active insectivorous female bats

in arid regions [39], supporting this hypothesis. In this study, we

demonstrate that the omnivorous C. perspicillata captured at control

sites had higher d15N than at mineral licks. Differences in 15N

enrichment was approximately equal to one trophic level [40,41],

indicating that C. perspicillata encountered at mineral licks

consumed mainly fruits, whereas those at control sites relied more

on insects. Generally, most bats captured at mineral licks in the

Amazonian lowlands are frugivorous [28,29]. This stands in

contrast to the prediction that bats with a more mineral-poor diet,

namely insects, would visit mineral licks to supplement diet with

nutrients such as sodium or calcium, which are scarce in rainforest

environments [42].

During reproduction, female bats not only must supply their

offspring with calcium and other nutrients, but they also must

meet higher energy requirements [43–47]. Thus, female frugivo-

rous species may ingest larger quantities of food containing PSM

than non-reproductive individuals. Most bat-dispersed fruit

probably contains PSM, and reproducing females may need to

protect themselves and their fetus or suckling juveniles from toxic,

carcinogenic, or teratogenic substances present in fruits and leaves.

The buffering capacity of the clay in mineral licks clay has been

demonstrated to be the most likely explanation for geophagy in

birds [5,6], primates [8,11], elephants and other large mammals

[7,16]. However, the fact that salt licks in the Amazonian

rainforest are almost exclusively visited by frugivorous species

and by fruit-specialists among omnivorous species, even though

their diet is more mineral-rich than that of the many animal-

ivorous species, suggests that detoxification may be the most

parsimonious explanation for bat geophagy, even though mineral

supplementation may be an additional benefit of visits to mineral

licks. In previous studies, no general conclusion could be drawn

about the role of geophagy in the nutritional ecology of animals,

including regular visits to mineral licks. Soils that comprise mineral

licks vary greatly in properties such as grain size, nutrient contents,

pH and, as well as the number and diversity of visiting species.

The properties of mineral licks can only be directly compared if

samples are collected and analyzed with a consistent method [48].

Other postulated reasons (cytoprotection, preventing indigestion,

parasite and disease control, mechanical digestion aid, nutrifica-

tion or detoxification) may play a role depending on location and

the taxa that visit these sites. The importance of mineral licks for

the well-being and reproductive success of bats and other

mammals, and quite possibly also for the species richness of the

landscape, is clearly great, but which species exploit mineral licks

will depend on the local environment, as well as the nutritional

needs and reproductive status of specific animal taxa that are

present.
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