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Abstract

Background: Many studies have reported significant associations between exposure to PM2.5 and hospital admissions, but
all have focused on the effects of short-term exposure. In addition all these studies have relied on a limited number of PM2.5

monitors in their study regions, which introduces exposure error, and excludes rural and suburban populations from
locations in which monitors are not available, reducing generalizability and potentially creating selection bias.

Methods: Using our novel prediction models for exposure combining land use regression with physical measurements
(satellite aerosol optical depth) we investigated both the long and short term effects of PM2.5 exposures on hospital
admissions across New-England for all residents aged 65 and older. We performed separate Poisson regression analysis for
each admission type: all respiratory, cardiovascular disease (CVD), stroke and diabetes. Daily admission counts in each zip
code were regressed against long and short-term PM2.5 exposure, temperature, socio-economic data and a spline of time to
control for seasonal trends in baseline risk.

Results: We observed associations between both short-term and long-term exposure to PM2.5 and hospitalization for all of
the outcomes examined. In example, for respiratory diseases, for every10-mg/m3 increase in short-term PM2.5 exposure there
is a 0.70 percent increase in admissions (CI = 0.35 to 0.52) while concurrently for every10-mg/m3 increase in long-term PM2.5

exposure there is a 4.22 percent increase in admissions (CI = 1.06 to 4.75).

Conclusions: As with mortality studies, chronic exposure to particles is associated with substantially larger increases in
hospital admissions than acute exposure and both can be detected simultaneously using our exposure models.
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Introduction

Short-term variations in air pollution have been associated with

hospital admissions for various causes in cities all over the world

[1,2,3,4,5,6]. These associations include admissions for respiratory

disease [7,8,9], ischemic heart disease-IHD [10,11], cardiovascu-

lar disease-CVD [7,12], myocardial infarction-MI [13,14],

congestive heart failure-CHF [15,16], pneumonia [17,18], and

diabetes [19,20].

For PM2.5 in particular Dominici and colleagues [21] reported

associations with hospitalizations for multiple diseases, using single

day average PM2.5. Zanobetti and colleagues [22] estimated the

association between two-day mean PM2.5 and emergency hospital

admissions for CVD,MI,CHF, respiratory disease, and diabetes in

26 US communities, and reported larger effect sizes than those

reported in Dominici et al. [21]. There are currently, to the best of

our knowledge, no published studies on the effects of long-term

(chronic) particulate matter (PM) exposure and hospital admis-

sions. There are however some studies that provide general

evidence for long-term associations of air pollution with hospital

admissions, although not specifically focusing on PM2.5

[23,24,25,26]. For example, Oudin and colleagues [25] investi-

gated whether the effects of major risk factors for ischemic stroke

were modified by long-term exposure to air pollution in Scania,

southern Sweden. They found that in low level air pollution areas,

the risk for ischemic stroke associated with diabetes seemed to

increase with long-term exposure to air pollution. Hruba and

colleuges [24] studied the effects of long-term exposure to air

pollution on respiratory symptoms and respiratory hospitalization

in a cross-sectional study of children. They showed found a

significant increase in hospital admissions for asthma, bronchitis or

pneumonia associated with increasing air pollution. Andersen and

colleagues [26] studied the association between chronic exposure

to traffic-related air pollution (NO2) and incidence of diabetes.

They found that chronic exposure to NO2 may contribute to the

development of diabetes, especially in individuals with a healthy

lifestyle, nonsmokers, and physically active individuals.

All previous studies have been limited by the lack of high

resolution daily exposure data. Many early studies had only 1 in

3 day measurements, and locations without nearby monitors could

not be analyzed at all. In addition all previous studies focused on
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short-term PM exposure and not long term (chronic) exposure or

both.

We have recently presented a new method of assessing

temporally-and spatially-resolved PM2.5 exposures for epidemio-

logical studies which is an extension of existing land use models

[27,28]. In this paper, we use our model predictions to study the

association between PM2.5 exposure and hospital admissions

among elderly (aged 65 and older from Medicare data) across New

England, and to investigate the effects of both short term (acute)

and long-term (chronic) exposure on these outcomes for the first

time concurrently. In addition our study investigates the entire

population of a region, rather than selected locations near

monitoring sites as commonly done in previous studies.

Methods

Study domain
The presented study’s spatial domain included the New-

England region comprising the states of Connecticut, Maine,

Massachusetts, New Hampshire, Rhode Island and Vermont,

(Figure 1). The total area of New England is 186,460 km2. The

total population in New-England as of 2010 is 14,444,865. The

average size of population in New-England zip codes for the

general population is 8130 and 1105 for people 65 and over. The

median population is 3535 for the general population and 430 for

people 65 and over [29].

Data
Exposure data. Land use regression (LUR) models provide

good estimates of spatially resolved long term exposures, but are

poor at capturing short term exposures. Due to its large spatial

coverage and reliable repeated measurements, satellite remote

sensing, provides another important tool for monitoring aerosols,

particularly for areas and exposure scenarios where surface PM2.5

monitors are not available [30,31,32,33]. Using satellite derived

aerosol optical depth (AOD) measurements allowed us to predict

daily PM2.5 concentration levels across New England for 2000–

2008 at a 10610 km spatial resolution [34]. This published model

has been slightly updated to include nested regions in the yearly

models and weights to account for non-random missingness in

AOD.

In brief, we used day-specific calibrations of AOD data, using

ground PM2.5 measurements from 78 monitoring sites in the EPA

(Environmental Protection Agency) and IMPROVE (Interagency

Monitoring of Protected Visual Environments) monitoring net-

work to avoid prediction error due to changes in planetary

boundary layer etc. previously noted by Paciorek et al. [28]. We

also incorporated land use regression and meteorological variables

(temperature, wind Speed, visibility, elevation, distance to major

roads, percent of open space, point emissions and area emissions).

To estimate PM2.5 concentrations in each grid cell on each day we

start by calibrating the AOD-PM2.5 relationship for each day using

grid cells with both monitors and AOD values using mixed models

with random slopes for day and nested regions. To validate our

first model, the dataset was repeatedly randomly divided into 90%

and 10% splits. Predictions for the held-out 10% of the data were

made from the model fit of the remaining 90% of the data. This

‘‘out of sample’’ process was repeated ten times and cross-

validated (CV) R2 values were computed. The first stage

calibrations resulted in high out-of-sample R2 (mean out-of-sample

R2 = 0.85). Later, we used a second model to address days when

AOD measures are not available (due to cloud coverage, snow etc...).

We thus fit a model with a smooth function of latitude and

longitude and a random intercept for each cell (similar to universal

kriging) that takes advantage of the association of grid cells AOD

values with PM2.5 monitoring located elsewhere, and the

association with available AOD values in neighboring grid cells.

Even for location-day combinations without AOD data our model

performance was still excellent (mean out-of-sample R2 = 0.81).

Importantly, these R2 are for daily observations, rather than

monthly or yearly, values. By averaging our estimated daily

exposures at each location we generated long term exposures. This

enabled us to study both the short term and long term effects of

ambient particles, respectively.

PM2.5 exposure data were generated by our prediction models.

The New-England exposure dataset contains daily PM2.5 concen-

trations at a 10610 km spatial resolution across New-England for

the whole study period (Figure 1). This data was matched to

zipcodes using ArcGIS and SAS based on spatial location and

date.

Hospital Admittance data. Individual hospital admittance

records were obtained from the US Medicare program and covers

hospitalization for all residents aged 65 and older, for all available

years (2000–2006). There were around 3000 hospitals under the

study area. We defined cases as those with an emergency

admission and a primary discharge diagnosis of all respiratory

(ICD 9 460–519), CVD (ICD 9 390–429), stroke (ICD 9 430–436)

and diabetes (both primary and secondary admission cause) (ICD

9 250).

We choose broader areas of admissions, since one would expect

broader areas of admission to produce less noisy estimates for two

reasons. First, the counts are higher and therefore there is more

power to examine CVD admissions than IHD admissions.

Secondly, studies of misdiagnosis in hospital administrative records

show that the broader the categories, the less misclassification

there is, which would also eliminate noise and produce more stable

results. For diabetes, which is a chronic condition, we looked at the

rate of admission of subjects for any primary cause with diabetes as

a secondary cause, as well as the small number of admissions with

diabetes listed as the primary cause of admission. This allows us to

examine whether long term exposure to particles is associated with

higher rates of hospitalization of diabetics, as well as whether

diabetics have higher rates of acute hospitalizations on high air

pollution days.

These records included information such as age, sex, date of

admission, race/ethnicity, and zipcode of residence. From this

data, we constructed daily counts for each admission cause for

each zip code. This allows us to examine the effects of both day-to-

day contrasts within residential area, as well as long term contrasts

across locations.

Covariates. Temperature data were obtained through the

National Climatic Data Center (NCDC) [35]. Only continuous

operating stations with daily data running from 2000–2006 were

used. Zipcodes were matched to the closest weather station for

meteorological variables. All Socioeconomic variables were obtained

through the U.S. Census Bureau Census from the 2000 social,

economic and housing characteristics datasets [36]. Socio-economic

variables used included the following zipcode level information:

Percent of minorities, age, education (people with no high school

education) and median income.

Statistical Methods
The admission counts by zip code were matched with our

exposure estimates for each 10610 km grid cell it fell into. While

short-term effects of air pollution are traditionally studied using

Poisson log-linear models and long-term effects are estimated using

the Cox proportional hazard model, we make use of the

equivalence between Poisson regression and the piecewise constant

Effects of PM on Hospital Admissions in New-England
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proportional hazard model noted by Laird and Oliver [37]. This

approach allows us to model the time to a hospital admission as a

function of both long term and short term exposure simultaneous-

ly. Most time series studies have reported stronger associations

with mean PM2.5 taken over the current and previous day as

compared to same day exposure [38]; therefore for the short-term

exposure we used the mean of PM2.5 on the day of admission and

day before admission in all models. Long-term exposure was

calculated as the mean exposure in each zip-code across the whole

study period (7 years). Short term exposure was defined as the

difference between the two day average and the long-term

average. To check the linearity of main effects investigated we

fit a piecewise linear model estimating the effect of PM for levels

below and above the median of short and long term PM2.5. We did

not find a significantly different effect between the two slopes

above and below the median which suggests a linear relationship

of these variables.

The basic model takes advantage of the fact that a hierarchical

mixed Poisson regression can capture both acute and chronic

effects. Specifically, we assume that the admission rate lit in the

ith cell on the tth day can be modeled as follows:

log (lit)~lizb1DPMitzl(t)ztemporal covariates

where

li~dzcPMi:zspatial covariateszei

where li is the long term admission rate in grid cell i, DPMit is the

deviation of the PM2.5 concentration in cell i from its long term

average on day t, l(t) is a smooth function of time, temporal

Figure 1: Map of the study area showing the residential location of admission cases juxtaposed over a sample PM2.5 10610 km
pollution grid for 01/07/2001.
doi:10.1371/journal.pone.0034664.g001
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covariates are temperature and day of the week, PMi. is the long

term average PM concentration in cell i, spatial covariates are

socioeconomic factors defined at the zipcode level, and ei is the

remaining unexplained difference in admission rate between cell i

and other cells, which is treated as a mean zero normal random

effect with variance estimated from the data. This model combines

the usual Poisson time series analysis with a Poisson representation

of a piecewise-constant proportional hazards model. The resulting

model specifies that each time interval defining the constant

hazards has a separate intercept, and an offset representing

person-time at risk. Since the entire population is being analyzed,

and specific admissions cases by type are rare events, the person-

time at risk varies slowly and smoothly across time. In the limit as

the time interval gets small, the time-period specific intercept also

approaches a smooth function of time, and hence both can be

replaced with the smooth function of time, l(t).

The specific covariates we used were temperature with the same

moving average as PM2.5, age, percent minorities, median income

and percent of people with no high school education. l(t) was

estimated with a natural cubic spline with 35 degrees of freedom

(5 df per year).

To investigate the robustness of our results various sensitivity

analysis were run on the all respiratory admission as a sample

group. We analyzed other averaging periods (lag1,lag2 vs lag0)

and the addition of the land use and temporal variables (percent

of, percent of house owners living in owned house, Percent of

occupied housing units with more than one person per room and

median home value, absolute humidity).

We also wanted to compare the results from our novel

prediction models with an analysis of this data base using a

traditional time series approach. We ran the analysis for the

Boston area (Suffolk, Norfolk and Middlesex counties) using daily

admission counts for all respiratory admissions, PM2.5 from a

central PM monitor (Countway monitor at Harvard school of

public health) and temperature data from Logan airport as

commonly done in time series analysis.

Table 1. Descriptive statistics stratified by long term exposure: Hospital admissions by type of admission across New-England for
the years 2000–2006.

Characteristic All Respiratory CVD Stroke Diabetes

No. (%) No. (%) No. (%) No. (%)

Low pollution

Sex

Male 89241 (44.63) 131234(45.52) 24066(41.71) 77553(43.59)

Female 11073 (55.37) 157039(54.48) 33638(58.29) 100382(56.41)

Race

White 192257 (94.41) 277404(96.23) 55112(95.51) 165174(92.83)

Black 3321 (1.66) 4885(1.69) 1186(2.06) 6339(3.56)

other 4395 (2.20) 5984(2.08) 1406(2.44) 6422(3.61)

Age 79.55 79.24 80.30 77.24

High pollution

Sex

Male 101629(44.52) 148566(44.55) 27516(40.66) 93918(42.56)

Female 126658 (55.48) 184948(55.45) 40162(59.34) 126743(57.44)

Race

White 213519 (93.53) 312202(93.61) 62741(92.71) 194360(88.08)

Black 7672 (3.36) 11920(3.57) 2920(4.31) 15682(7.11)

other 7096 (3.11) 9392( 2.82) 2017(2.98) 10619(4.81)

Age 79.64 79.31 80.27 77.26

doi:10.1371/journal.pone.0034664.t001

Table 2. Descriptive statistics for short term PM2.5 exposure, long term PM2.5 exposure and temperature in New-England for 2000–
2006.

Covariate Mean Min Max Median SD Range IQR Q1 Q3
Days of data
available

Lag0 PM2.5 (acute
PM)

9.60 0.01 72.59 8.55 4.90 72.59 5.32 6.35 11.67 2557

1 year PM2.5

(Chronic PM)
9.65 3.54 17.79 9.65 0.81 14.25 0.98 9.16 10.14 2557

Temperature 46.52 223.80 90.10 47.90 18.73 113.90 29.30 33.00 62.30 2557

Note: Q1 and Q3 are quartiles.
doi:10.1371/journal.pone.0034664.t002
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Results

Descriptive statistics stratified by long term pollution (high and

low split by the mean) are presented in Table 1. The majority of

people included in our analyses which were admitted to hospital

were white (84.92%–96.23% across all admission causes) while the

average age was 76.65–80.30 years.

Table 2 contains a summary of the predicted exposures for both

the acute exposure (0 day lag) and the chronic exposure (365 day

moving average) across all grid cells in the analysis.

Table 3 presents the estimated percent increase in hospital

admissions for a 10 mg/m3 increase for both short term and long

term PM2.5 by cause of admission and associated 95% confidence

intervals. For all respiratory, for every 10-mg/m3 increase in short

term PM2.5 exposure there is a 0.70 percent increase in admissions

(95% CI = 0.35 to 0.52) while concurrently for every 10-mg/m3

increase in long term PM2.5 exposure there is a 4.22 percent

increase in admission (95% CI = 1.06 to 4.75). For CVD, for

every10-mg/m3 increase in short term PM2.5 exposure there is a

1.03 percent increase in admission rate (95% CI = 0.69 to 0.45)

while concurrently for every10-mg/m3 increase in long term PM2.5

exposure there is a 3.12 percent increase in admission (95%

CI = 0.30 to 4.29). For strokes, for every 10-mg/m3 increase in

short term PM2.5 exposure there is a 0.24 percent increase in

admissions (95% CI = 20.13 to 0.56) while concurrently for

every10-mg/m3 increase in long term PM2.5 exposure there is a

3.49 percent increase in admissions (95% CI = 0.09 to 5.18).

Finally for diabetes, for every10-mg/m3 increase in short term

PM2.5 exposure there is a 0.96 percent increase in admissions

(95% CI = 0.62 to 0.51) while concurrently for every10-mg/m3

increase in long term PM2.5 exposure there is a 6.33 percent

increase in admissions (CI = 3.22 to 4.59).

The results from the sensitivity analysis are presented in table 4.

In general the results of the sensitivity analysis were consistent with

the primary analysis for the added spatial variables and added

temporal variable as well as for the different lags (excluding the

acute PM2.5 exposure in lag02).

The results from the classic times series analysis were similar to

the main model (1.51 vs 0.72 percent change) albeit with higher

standard error (0.002 vs 0.001) and much larger CI (0.42–1.65 Vs.

0.35–0.52).

The crude and final estimates as well as the estimates for the

model covariates are presented in appendix S1 and S2.

Discussion

In this paper we report, for the first time, that long term

exposure to PM2.5 is associated with increased hospital admissions

of the elderly (aged 65 and older) for all respiratory, CVD, stroke,

and diabetes. As with mortality studies, this long term impact is

higher than the acute effects. Importantly, we continue to see

acute effects independent of the chronic effects. In addition, this

analysis covers all zip codes in New England, not just subset

zipcodes locations near PM2.5 monitors. This represents an

important extension of previous Medicare analyses, since we

now have estimates that include suburban, small town, and rural

populations. Finally, the use of a spatiotemporal model reduces

exposure misclassification that exists in, for example time series

studies that use a single exposure metric for daily exposure in an

entire metropolitan area. Such error is a mixture of classical

exposure error, which likely biases the effect estimates downward,

and Berkson error, which increases the confidence interval [39].

The results from our novel method presented much tighter

confidence intervals compared to the classic time series analysis,

indicating that our method could potentially reduce measurement

error. Another advantage our method adds is the ability to include

population that lives far from monitor compared to the traditional

methods

One of the key components of this study is that we showed that

by using our prediction models (which produce daily PM2.5

predictions) we are able to simultaneously examine short term and

long term association with hospital admissions and to do it for the

entire population of New England, avoiding issues of selection or

non-representative samples, and accounting for small area

measures of potential confounders.

The putative biological mechanisms linking both short term and

long term exposure to air pollution and CVD involve direct effects

of pollutants on the cardiovascular system, blood, and lung

receptors, and/or indirect effects mediated through pulmonary

oxidative stress and inflammatory responses [40]. The biological

mechanisms linking both short term and long term exposure to air

pollution and respiratory diseases include reduced lung function,

pulmonary inflammation and oxidative stress [41]. Further, an

intervention trial of air filtration for elderly adults reduced

particles levels and reported improved endothelial function [42].

Similarly, a trial comparing blood pressure when subjects were

walking in Beijing with our without a particle filter reported blood

pressure was lower when wearing the filter208.

These studies are also supported by toxicologic indicators of

mechanism. For example, a recent study of mice genetically prone

to atherosclerosis and on a high fat western diet exposed to

concentrated particles from the outside air showed that the particle

exposure lead to more atherosclerotic plaque, and increased

macrophages and tissue factor in the plaques, which reduce plaque

stability and increase the risk of a heart attack [43]. Another study,

using a different mouse model of atherosclerosis, documented that

particle exposure increased oxidation of LDL, increased the

thickness of the arterial wall, and promoted plaque growth and

instability [44]. A number of studies have directly linked particle

Table 3. Estimated percent increase in hospital admissions for a 10 mg/m3 increase for both short term and long term PM2.5 by
cause of admission.

PM2.5 exposure type All Respiratory CVD Stroke Diabetes

Percent increase a Percent increase a Percent increase a Percent increase a

Short term PM2.5

exposure
0.70 (0.35–0.52) 1.03 (0.69–0.45) 0.24(20.13–0.56) 0.96(0.62– 0.51)

Long term PM2.5

exposure
4.22(1.06–4.75) 3.12(0.30–4.29) 3.49 (0.09–5.18) 6.33(3.22– 4.59)

Note: aValues are percent.
doi:10.1371/journal.pone.0034664.t003
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exposure with ischemia. Wellenius exposed dogs to either filtered

air or concentrated air particles, followed by a temporary

occlusion of the coronary artery. The animals exposed to particles

experienced greater ischemia than those exposed to filtered air

[45,46].

Several studies suggested an enhanced susceptibility of people

with diabetes to exposure to air pollution partly due to

inflammatory mechanisms [19,20,47]. In addition there are

reports associating air pollution with incidence of diabetes [48].

Our estimated associations between short term exposure to

PM2.5 and hospital admissions revealed results qualitatively similar

to those studies previously published analyzing short term PM2.5

and hospital admissions [10,21,49]. To the best of our knowledge

there are no studies on exposure to long term PM2.5 and hospital

admissions. However our long term exposure results for CVD are

in agreement with those reported by Miller et al. [50], who studied

postmenopausal women without previous CVD in 36 U.S.

metropolitan areas from 1994 to 1998. They estimated that each

10 mg/m3increase in PM2.5 was associated with a 24% increase in

the risk of a cardiovascular event (hazard ratio, 1.24; 95%

CI = 1.09 to 1.41). Those events would almost certainly have

resulted in hospitalizations.

These findings also clarify a previous apparent inconsistency.

Cohort studies of the association of PM2.5 and deaths from CVD

or stroke have reported much larger effect sizes than the time

series studies of PM2.5 and admissions from those causes

[51,52,53,54]. This seems implausible since many of those events

result in hospitalizations. However, these chronic mortality

estimates are also much larger than the time series estimates of

the acute effects of recent PM2.5 exposure on deaths from those

causes. The usual explanation is that chronic exposure produces

greater effects because it leads to cumulative damage, such as

atherosclerosis etc. [55,56,57,58,59]. Those arguments would be

equally applicable to the effects of long term exposure on chronic

rates of admissions for these causes. In this paper we show that

such larger effects in fact are seen.

A major limitation of this study is our limited ability to control

for individual level potential confounders, such as socio-economic

factors, diet, exercise, etc. We have used area-based measures of

socio-economic factors. To test the potential for confounding, we

used data from the Normative Aging Study [60,61], a population

based study of an aging cohort, resident in Maine, Massachusetts,

New Hampshire and Rhode Island As a general population of

subjects eligible for Medicare, we think this is a reasonable test of

the potential for confounding. We assigned the same 365 day

average exposure to those participants from our model, and

examined the association with packyears, with physical activity

(METS), and with dietary fish intake. In no case was there a

significant association.

Another limitation of the present study is the relatively coarse

spatial resolution of 10610 km. However, as satellite remote

sensing evolves and progresses, higher spatial resolution data

(363 km and 161 km) should become available which will further

reduce exposure error. Such finer resolution should enable us to

assess more precise estimated daily individual exposure as they

relate to different location such as residence, work place etc.

In conclusion, we have demonstrated how our prediction

models perform well in assessing short term and long term human

exposures. Our findings indicate that hospital admission were

associated with both short term and long term exposure to PM2.5.

These findings present new opportunities to study the effects of

both the long and short term exposure and human health.

Supporting Information
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