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Abstract

Urine has emerged as an attractive biofluid for the noninvasive detection of prostate cancer (PCa). There is a strong
imperative to discover candidate urinary markers for the clinical diagnosis and prognosis of PCa. The rising flood of various
omics profiles presents immense opportunities for the identification of prospective biomarkers. Here we present a simple
and efficient strategy to derive candidate urine markers for prostate tumor by mining cancer genomic profiles from public
databases. Prostate, bladder and kidney are three major tissues from which cellular matters could be released into urine. To
identify urinary markers specific for PCa, upregulated entities that might be shed in exosomes of bladder cancer and kidney
cancer are first excluded. Through the ontology-based filtering and further assessment, a reduced list of 19 entities
encoding urinary proteins was derived as putative PCa markers. Among them, we have found 10 entities closely associated
with the process of tumor cell growth and development by pathway enrichment analysis. Further, using the 10 entities as
seeds, we have constructed a protein-protein interaction (PPI) subnetwork and suggested a few urine markers as preferred
prognostic markers to monitor the invasion and progression of PCa. Our approach is amenable to discover and prioritize
potential markers present in a variety of body fluids for a spectrum of human diseases.
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Introduction

Prostate cancer (PCa) remains to be the most common

malignancy and the second cause of cancer-related death for men

worldwide [1]. Particularly in the western world, the number of men

diagnosed with PCa has increased by 30% over the last 25 years and

is expected to be doubled by the year of 2030 [2]. PCa is generally

curable when the primary lesion is within its benign state but very

difficult to cure or no longer curable once the tumor has spread to

other distant sites. Therefore, the early detection is essential for the

successful clinical treatment of PCa. Currently, the combination of

DRE (digital rectal exam) and the PSA (prostate-specific antigen)

blood test is commonly used in screening test to detect PCa in the

absence of symptoms. Unfortunately, it is well recognized that the

usefulness of PSA suffers from its low specificity and its low positive

predictive value in early PCa detection. For example, it has been

found that the upper cut-off of the PSA reference level at 4.0 ng/ml

fails to detect a large number of PCa and many men with PSA

values ,4.0 ng/ml actually have PCa [3]. Moreover, it has been

demonstrated that PSA can be secreted from other cancerous cells

into the bloodstream as well [4]. Hence, there is a clear need to

identify putative molecular signatures that can facilitate the accurate

and non-invasive clinical PCa detection.

Urine represents an amenable and appealing body fluid for the

early detection of PCa [5]. First, urine can be used to detect the

presence of PCa because secreted prostatic products or exfoliated

cancerous cells are released directly into the genitourinary tract.

Second, urine can be easily collected in large amounts noninva-

sively and repeatedly, rendering it as an attractive material for the

analysis of prostate malignancy. To date, a number of urine

biomarkers such as GSTP-1 (glutathione-S-transferase P1), DD3

(prostate cancer antigen 3, PCA3) and TB-15 (thymosin b15) etc.

have been proposed as potential diagnostic agents for early PCa

detection [6]. Moreover, with the recently developed sophisticated

mass-spectrometry (MS) technology, it becomes possible to detect

certain endogenous metabolites in urine for the early diagnosis of

PCa. For instance, Sreekumar et al. [7] have identified Sarcosine

(N-methylglycine) as a key metabolite in urine that could be

potentially used as a marker for PCa malignancy. Although

promising, there are still few studies assessing urine markers for

PCa detection and there are only a few candidate urine markers

are under consideration for future clinical development. Further,

no single marker is adequate for the accurate detection of PCa

owing to the complexity and heterogeneity of the disease. Hence, it

is clear that a panel of urine markers is required for the successful

diagnosis of PCa.
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The explosion of biological data and information generated

from high-throughput ‘Omics’ technologies such as microarrays

has provided unprecedented opportunities for researchers to

uncover biomarkers and phenotypic pathways of clinical impor-

tance [8]. For instance, Kim et al. have reported the mining of

public gene profiles from CGAP and GEO database to identify

seven putative markers for lung cancer [9]. Analogously, we have

successfully identified lists of blood-borne markers for six common

human cancer types through a combined mining strategy in the

Oncomine microarray database and a pathway knowledgebase.

Using a filter-based approach and comparison analysis, we have

retrieved disease-specific blood-based markers for each of the

tumor types and common markers shared between different

tumors. Notably, a large portion of the retrieved genomic-based

markers have been literature-confirmed to be associated with the

phenotypic pathways of tumor progression and invasiveness. Such

findings would certainly be very useful to delineate potential

targets with regards to the diagnosis, prognosis and pathogenesis of

human solid tumors.

Here we present an integrative mining approach to analyze

public genomic profiles for the discovery of potential urine

markers for PCa detection. Our strategy has been developed in the

way that a vast body of cancer genomic profiles can be analyzed in

the context of other biological data such as gene ontology,

metabolic pathways and gene-gene/protein-protein interaction

(PPI) networks (see Figure 1). To identify disease-specific markers

for PCa, we have retrieved upregulated genes in PCa, bladder

cancer and kidney cancer from public cancer genomic databases.

We were mining for upregulated genes as PCa markers here

mainly because one of the prevailing hypotheses is that the most

promising biomarkers for clinical use will be those upregulated

genes or their protein products. However, we recognize that this

might not be generally true and thereby we don’t rule out the

possibility that downregulated genes could be interesting candidate

markers too. Other researchers could choose to mine downreg-

ulated genes for their specific purpose by applying the similar

strategy as in this work. These upregulated genes were then filtered

through a collection of ontology terms indicating the presence in

urine and Ingenuity Knowledgebase. A comparison analysis was

performed across prostate, bladder and kidney and only those

entities unique to prostate were kept in the list as potential urinary

markers for PCa. This is because entities present in bladder cancer

and kidney cancer may interfere with the detection of PCa shed in

human urinary system. Finally, the putative urine markers for PCa

were analyzed and prioritized within metabolic pathways and

protein-protein interaction networks. Our strategy highlights the

significance of combining a variety of biological data to derive

putative markers present in body fluids with disease specificity to

detect common and lethal types of human cancers.

Materials and Methods

The focus of our analysis approach is to retrieve putative

markers present in urine for the specific detection of PCa.

Therefore, we need to retrieve and filter genes significantly

upregulated in PCa, encoding urinary proteins, to a manageable

gene list. The choice of microarray platform or database, statistical

cut-off criteria, and controlled ontology terms (Gene Ontology

terms) in the mining strategy is variable, depending on the

particular interest and requirement of the user.

Microarray data preparation and analysis
In brief, for each of the three tumor types (PCa, bladder cancer

and renal cancer), MeSH terms (prostate cancer, prostatic cancer;

bladder cancer; kidney cancer, renal cancer) were used to search

and obtain microarray experiments characterizing these disease

conditions from two popular cancer genomic databases, Oncomine

database [10] and ArrayExpress database [11]. Oncomine and

ArrayExpress were chosen because they are two of the largest public

cancer microarray repositories. Particularly, Oncomine has incor-

porated 534 independent microarray datasets, which span 35

cancer types. It unifies a large compendium of other published

cancer microarray data as well including Gene Expression Omnibus

(GEO) and Stanford Microarray Database (SMD). ArrayExpress

stores well-annotated raw and normalized cancer microarray data

from more than 300 studies. The advantage of using Oncomine and

ArrayExpress is that medical researchers could easily perform

differential expression analyses comparing most major types of

cancer with their respective normal or benign tissues. Those

microarray experiments comparing cancer vs. normal including

malignant vs. benign conditions measured in equivalent tissues in

same experiments were retained. We have chosen a relative

stringent FDR (false discovery rate) value cut-off of 0.05 [12] in the

analysis process, and only those overexpressed genes with FDR

value less than 0.05 are kept in the final list. Overexpressed genes in

Oncomine and ArrayExpress were collected by using the same FDR

cut-off value. In addition, a customary fold change threshold 2.0 was

also applied to retain those significantly overexpressed genes in the

list. The redundant genes were resolved from the list. By

comparison analysis across the upregulated genes of three tumor

types using a C# program (see File S1), only those genes

specifically upregulated in PCa were retrieved for further analysis.

Figure 1. Workflow of integrative mining from public cancer
genomic profiles for discovery of putative urinary marker for
the specific detection of PCa. In the comparison pie graphs, ‘‘B’’
represents for bladder, ‘‘K’’ represents for kidney and ‘‘P’’ represents for
prostate.
doi:10.1371/journal.pone.0028552.g001
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Functional annotation enrichment and biomarker
filtering

Functional annotation (Gene Ontology assignment) for the

retrieved overexpressed genes was conducted by using the DAVID

system [13]. Next, a set of controlled GO terms implying the

presence in urinary proteome were chosen according to the GO

clustering analysis of 1273 urinary proteins (see Figure 2)

collected from MAPU urinary proteome database [14]. The GO

clustering analysis was performed within DAVID system and

could be used to measure the GO term appearing frequencies

among the urinary proteins. Specifically, these controlled GO

terms and their appearing frequencies are: Extracelluar region

part: 34.8%; Response to stimulus: 25.5%; Cell adhesion: 13.2%;

Calcium ion binding: 11.3%; Cell communication: 5.5%; Amine

metabolic process: 1.9%. These controlled GO terms are enriched

and overrepresented in the urinary proteome through the study of

GO clustering. Further, the retrieved putative urine markers were

consulted in Sys-BodyFluid database [15], MAPU proteome

database and Ingenuity Knowledgebase [16] to confirm their

presence in urine. Entities that are not present in urine were

removed from the list. These databases represent the three most

comprehensive public body fluid proteomes and contain over

10,000 proteins with detailed annotations. Researchers could

easily download and analyze protein targets present in various

body fluids from these on-line databases.

Pathway enrichment analysis
The derived list of putative urine markers was then subjected to

pathway enrichment analysis by importing them to a few PPI

(protein-protein interaction) databases including Pfam [17],

InterPro [18], Ingenuity Knowledgebase and the KEGG Knowl-

edgebase [19]. These PPI databases were chosen because they are

widely used as reference knowledgebase towards practical

applications with network or pathway-based views of proteins,

diseases and drugs. Moreover, the millions of pathway interactions

storing in these knowledgebase were acquired by curation of

scientific publications covering information on genes or proteins.

The 19 entities were first imported as seeds to identify

overrepresented biological functions and signaling pathways.

Entities with direct physical interactions and co-expression

evidenced by literatures were identified and used to construct

PPI network. Particularly, those entities associated with the tumor

cell growth, development and proliferation were used as seeds to

construct a PPI subnetwork related to the invasion and metastasis

of PCa. Subnetworks were constructed such that the genes

(proteins) were nodes, with edges between genes indicating the

direction and indirect biological interactions between entities.

Literature Review of the Candidate Entities
Further analysis and assessment of the resulting putative

markers was performed retrospectively using GeneCards (www.

genecards.org), a curated database that finds links and cited

articles to genes/proteins. The entities obtained were checked by

carefully reading the associated literature references or original

publications. The accuracy of the findings is assessed using control

entities, selected as candidate molecules by other studies or well-

known and clinically useful targets for PCa.

Results

The integrative mining approach assembling Oncomine,

ArrayExpress and GEO databases has yielded 5 microarray

datasets for bladder, 8 microarray datasets for renal and 15

microarray datasets for prostate (cancer vs. normal including

malignant vs. benign condition) by using specific MeSH terms for

each tissue type. The mining of these datasets by a relative

stringent FDR value cut-off of 0.05 has yielded between 1,112

(renal), 11,191 (bladder) and 13,595 (prostate) overexpressed genes

for the three cancer types. Next, a comparison analysis across the

three tumor types has yielded a list of 3964 uniquely upregulated

genes in PCa, a list of 2364 uniquely upregulated genes in bladder

and a list of 51 uniquely upregulated genes in renal. Sequentially,

the 3964 uniquely upregulated genes in PCa were filtered by the

seven controlled GO terms to yield a list of 19 putative markers

which were further consulted by Sys-BodyFluid database and

MAPU proteome database to assess their presence in urine.

Finally, the list of 19 urinary proteins were subjected to pathway

enrichment analysis within a few most popular PPI databases

including Pfam, InterPro, Ingenuity Knowledgebase and KEGG.

All the 19 entities were found to be connected as a network

together with another 10 entities based on co-expression, shared

protein domains, co-localization and protein physical interaction

relationships [20,21] (see Figure 3). Sharing a protein domain

implies that two entities may have very similar functions, but

doesn’t guarantee that the two entities are connected in the same

pathway; co-expression implies that two entities share similar

expression pattern; co-localization implies that two entities are

expressed in the same tissues or identified in the same cellular

location. Within the network, we have found that RBP4 (retinol

binding protein 4, plasma), CFH (complement factor H), ITIH4

(inter-alpha (globulin) inhibitor H4) and FTL (ferritin, light

polypeptide) are linked due to co-localization; APOD (apolipo-

protein D), RBP4 and CRABP1 (cellular retinoic acid binding

protein 1) are found to share protein domains according to

INTERPRO and PFAM databases. In addition, we have found

that CYP2B6 (cytochrome P450, family 2, subfamily B, polypep-

tide 6) connects with four putative markers because of co-

localization; C6 (complement component 6) connects to RBP4 and

ITIH4 by co-localization; C6 connects to CFH and RECK

(reversion-inducing-cysteine-rich protein with kazal motifs) by

sharing same protein domains; TTR (transthyretin) has physical

interaction with RBP4, CFH and CLU (clusterin) genes;

OSBPL1A (oxysterol binding protein-like 1A) co-localizes with

Figure 2. Pie-chart of GO term appearing frequencies among
the urinary proteins by clustering analysis of 1273 urinary
proteins performed within DAVID system.
doi:10.1371/journal.pone.0028552.g002
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APOD and IGSF8 (immunoglobulin superfamily, member 8);

CD70 (CD70 molecule) connects with the candidate marker

CD27 (CD27 molecule) by co-localization and physical interac-

tion; CD70 shares the same protein domain with C1QTNF3 (C1q

and tumor necrosis factor related protein 3). Furthermore, we

have found these marker proteins are largely associated with a few

metabolic pathways such as N-glycan biosynthesis, acute phase

response signaling and xenobiotic metabolism signaling etc.

Interestingly, we have found that 10 out the 19 urinary markers

are closely associated with tumor cell development, growth and

proliferation pathway (see Figure 4).

Identification of Putative Urine Markers for PCa Detection
As positive controls, we have highlighted below a few very

promising urine marker derived from our study that have also

been evidenced by precedent literatures as urinary targets. The

five ‘positive control’ entities were chosen according to their fold

change values in the order of LGALS3 (lectin, galactoside-binding,

soluble 3), CFB (complement factor B), APOD, RECK and PECAM1

(platelet/endothelial cell adhesion molecule). These entities stand a

good chance of being clinically useful markers as they are most

upregulated and their protein products are likely to be overpro-

duced in cancerous cells. We want to remind the reader that the

study was strived to identify putative urine markers from genomic

profiles thereby it is not sufficient to state that: 1) the encoding

product of the gene is present or truly upregulated at the protein

level; 2) it is really localized at the desired location (excreted into

urine) or normally functioning. Hence, the targets derived from

the genomic profiling studies need to be further validated at the

protein level through various experimental approaches.

Lectin, galactoside-binding, soluble, 3 (LGALS3/GAL3)
One interesting putative urine marker that we have retrieved

from the mining study is LGALS3, which encodes a member of the

galectin family of carbohydrate binding proteins. This protein has

been implicated in numerous cellular functions including cell

proliferation, apoptosis, angiogenesis, tumor progression and

metastasis. In fact, a recent study [22] has suggested that LGALS3

encoding protein, galectin-3, is cleaved during the progression of

PCa and might be associated with the progression and metastasis

of PCa cells; Sardana et al [23] have suggested galectin-3 as one of

the candidate marker proteins shed and secreted by prostate tumor

cells. Remarkably, we have found that LGALS3 has the largest fold

change value of 4.121 in cancerous condition compared to normal

condition (see Table 1) among the 19 entities, rendering it a

highly interesting molecule for the diagnosis and prognosis of PCa.

Complement factor B (CFB)
CFB, encodes complement factor B, a component of the

alternative pathway of complement activation. Factor B circulates

in the blood as a single chain polypeptide. In our study, CFB has

been retrieved as a potential marker upregulated in urine (fold

change, 3.231; rank as No. 2 among 19 entities) for the diagnosis

of PCa. Indeed, there have been various studies confirming the

Figure 3. Identification of gene network consisting of 19 putative urine markers (Cytoscape/Genemania). Nineteen putative marker
genes are represented as red nodes and the other highly relevant genes are in white. Co-expressed genes are linked by blue lines, genes with same
protein domains are linked by green lines, co-localization relationships are described as pink lines, and physical interaction connections are linked by
black lines.
doi:10.1371/journal.pone.0028552.g003
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important role of CFB in PCa. For example, Sardana et al [23]

have identified Complement factor B preproprotein as the third

most abundant protein in the serum sample of PCa patients. This

might implicate the close association of CFB with the pathogenesis

of PCa. Therefore, the usefulness of CFB in the urine detection of

PCa is well worth of further investigation.

Apolipoprotein D (APOD/Apo-D)
APOD, encodes a component of high density glycoprotein which

is closely associated with cholesterol acyltransferase, an enzyme

involved in lipoprotein metabolism. APOD is also involved in the

transport and binding of bilin. In our study, APOD has been

retrieved as a potential marker upregulated in urine (fold change,

2.803; rank as No. 3 among 19 entities) for the diagnosis of PCa.

Indeed, there have been various clinical studies confirming the

presence of APOD in urine and its role in disease detection. For

example, Kentsis et al. have discovered APOD as one of the putative

urine markers for the clinical diagnosis of acute appendicitis [24].

The protein abundance level of APOD in urine and its correlation

with severity of appendicitis are validated by targeted mass

spectrometry. Furthermore, Aspinall et al. has found that elevated

Apo-D level is closely associated with the advancement of PCa [25].

Put together, APOD could be a very promising urine marker for the

clinical detection and prognosis of human PCa.

Reversion-inducing-cysteine-rich protein with kazal
motifs (RECK)

Extracelluar matrix remodeling is a prerequisite in tumor

invasion and often leads to the overexpression of matrix

metalloproteinases (MMPs). RECK is an inhibitor of MMPs by

negatively regulating MMP-2, MMP-9 and MMP14/MT1-MMP

activity [26]. Regarding PCa, the role of RECK has not yet been

clarified. Interestingly, we have retrieved RECK as a potential

marker upregulated in urine of PCa patients (fold change, 2.569;

rank as No. 4 among 19 entities). This might be a reflection of the

interrelationship of RECK with MMP-2 and MMP-9 along the

metastasis process of PCa. Thereby, the potential of RECK in the

diagnosis/prognosis of PCa has emerged from our study.

Platelet endothelial cell adhesion molecule (PECAM1/
CD31)

PECAM1 is mostly found on the surface of platelets, monocytes,

neutrophils, and some types of T-cells. PECAM1 is known for its

key role in removing aged neutrophils from the body [27]. In an

early study, Huss et al. [28] have found that PECAM1 is associated

with the early event of angiogenesis and the initiation and

progression PCa. This is consistent with our study that PECAM1

functions as a hub entity in the network of PCa progression and

metastasis according to its centrality in the network. We have

Figure 4. Identification of ‘focused’ protein-protein interaction (PPI) network that may lead to PCa progression and metastasis.
Gene products are represented as nodes and biological relationships (direct and indirect) are described as lines (protein–protein interactions) and
dashed lines (regulations of bindings, inhibitions, proteolysis, phosphorylation or modifications). The hub entities that are synergistically regulated in
this subnetwork are highlighted as red color including CD27, CLU, LGALS3, APOD, MGAT5, CFB, RBP4, ITIH4, PECAM1 and RECK. Their subcellular
locations are not indicated in the figure.
doi:10.1371/journal.pone.0028552.g004
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identified PECAM1 as a potential upregulated entity in urine of

PCa patients (fold change, 2.404; rank as No. 5 among 19 entities).

Collectively, PECAM1 might be explored as a potential urine

marker for the diagnosis/prognosis of PCa.

Discussion

In the present study, we have proposed an integrative mining

approach for the identification of putative urine markers specific

for PCa detection derived from public genomic profiles. The

uniqueness of our approach is that genes specifically overexpressed

in PCa were first identified by comparison analysis between PCa,

bladder cancer and renal cancer, the three major malignancies in

human urinary system. Only in this way, urine markers that are

likely to be highly discerning for PCa can be identified by

excluding those urinary proteins released in the disease conditions

of bladder tumor and renal tumor. The set of controlled GO terms

enriched in urine proteome was used as ontology filters in our

study to identify genes encoding putative urinary proteins. Indeed,

this ontology-based filtering strategy has been frequently used in

the mining of functional genomic profiles to derive targets with

biological significance. Moreover, to ascertain their presence in

urine, these putative PCa urinary proteins were further consulted

in databases warehousing urinary proteome data. The pathway

enrichment analysis was also adopted in our strategy to investigate

the association of the derived entities with the pathogenesis of

human cancer. We believe that the assembling of functional

genomic data, ontology-based filters, urinary proteome databases

and pathway enrichment analysis could be well suited in the

discovery of candidate biomarkers in biofluids for the detection of

PCa as well as for many other human diseases.

One interesting finding from our study is that a large portion of

the derived entities (9 out of 19 entities, see Table 1) are present

in both urine and blood. This is probably because the quantity of

the urine excretion bears a direct proportion of the blood. These

markers might be secreted to blood from cancerous cells first and

then excreted into urine. Therefore, these entities might be used as

candidate markers for PCa screening detectable in both fluids.

Another interesting finding from the pathway enrichment analysis

is that numerous markers derived from the study are involved in

the body’s innate immune response system. For instance, CFB,

CFH and FTL are found to be associated with the acute-phase

signaling pathway, which consists of a large number of proteins

produced in response to body inflammation. Hence, these urinary

proteins could serve as PCa markers to inform disease progression

or disease management with regards to the host defense response

of the patients, during which the innate immune system is

triggered to attack the tumor cells. Moreover, MGAT5, identified

as a urine marker for PCa detection, was found to be involved in

N-glycan biosynthesis pathway which is crucial in the adhesive or

migratory behavior of cancerous cells. Consequently, MGAT5

could be further investigated as a prognostic marker for PCa

invasion and progression. Intriguingly, we have found a few

entities (CRABP1, FTL, MGAT5 and SELEBP1) as putative urine

markers annotated by GO terms indicating their intracellular

location. This could be accounted by the secretion of intracellular

proteins inside small-membrane vesicles named as exosomes

released into urine from prostate. Furthermore, cancerous cells

undergoing apoptosis are likely to release intracellular matter into

urine.

Another merit of our integrative mining approach is the ability

to identify ‘focused’ protein interaction networks consisting of

derived entities associated with pathogenesis of human cancer. It

has been recognized that genes/proteins with potentials as

diagnostic or therapeutic targets are more likely to function as a

cooperative group or network in human cancer [29]. As an

Table 1. Identified urinary markers for the unique detection of prostate tumor.

Symbol Gene name Location Family Urine Blood Fold-change P value

APOD apolipoprotein D Extracellular space transporter N N 2.803 2.00E-03

C1QTNF3 C1q and tumor necrosis factor related protein 3 Extracellular Space other N 1.100 2.50E-02

CD27 CD27 molecule Plasma Membrane Transmembrane
receptor

N N 1.183 8.19E-04

CFB complement factor B Extracellular Space peptidase N 3.231 4.00E-03

CFH complement factor H Extracellular Space other N N 1.381 1.00E-03

CLU clusterin Extracellular Space other N 1.638 1.50E-02

CRABP1 cellular retinoic acid binding protein 1 Cytoplasm transporter N 1.477 1.20E-02

DDAH2 dimethylarginine dimethylaminohydrolase 2 Cytoplasm enzyme N 1.152 4.80E-02

FTL ferritin, light polypeptide Cytoplasm other N 1.718 3.00E-03

IGSF8 immunoglobulin superfamily, member 8 Plasma Membrane other N N 1.358 6.00E-03

ITIH4 inter-alpha (globulin) inhibitor H4 Extracellular Space other N N 1.215 2.40E-02

LGALS3 lectin, galactoside-binding, soluble, 3 Extracellular Space other N N 4.121 5.90E-04

LYZ lysozyme Extracellular Space enzyme N N 2.093 4.00E-03

MGAT5 hypothetical LOC151162 Cytoplasm enzyme N N 1.112 3.00E-03

PECAM1 platelet/endothelial cell adhesion molecule Plasma Membrane other N N 2.404 1.01E-04

RBP4 retinol binding protein 4, plasma Extracellular Space transporter N 1.872 2.70E-02

RECK reversion-inducing-cysteine-rich protein Plasma Membrane other N 2.569 4.60E-02

SELENBP1 selenium binding protein 1 Cytoplasm other N 1.327 1.20E-02

SLIT2 slit homolog 2 (Drosophila) Extracellular Space other N 1.848 3.60E-02

Black circle represents the presence in the biofluid.
doi:10.1371/journal.pone.0028552.t001
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example, we have identified 10 entities (see Figure 4) implicated

in the process of tumor cell growth, development and proliferation

using pathway enrichment analysis. Using these entities as seeds,

we have constructed a protein-protein interaction subnetwork

which might lead to PCa progression and metastasis. Among the

ten entities, we have found that LGALS3, PECAM1, MGAT5,

RECK and CLU function as ‘hub’ entities with high connectivity (a

large number of interactions with other entities) in the network. To

prioritize the ‘highly influential’ entities in the PCa network, we

have applied the concept of graph theory [30] to calculate the

betweeness centrality and closeness centrality for each entity. The

formulas to calculate the betweeness centrality and closeness

centrality are as below,

For a graph G: = (V, E) with n vertices, the betweenness

centrality CB(v) for vertex v is:

CB(v)~deg(v) ð1Þ

The closeness centrality is defined as the mean geodesic distance

(i.e., the shortest path) between a vertex v and all other vertices

reachable from it,

CC(v)~

P

t[V \v

dG(v,t)

n{1
ð2Þ

By calculating centrality score for each entity in the PCa network

(see Figure 5), we have found that LGALS3, PECAM1 and

MGAT5 appear to be the three most ‘influential’ entities in the

network with the highest centrality scores. They might be used as

prioritized prognostic agents for the detection of PCa invasion and

progression. Therefore, strategies could be formulated in the

process of PCa treatment to monitor the synergic expression of

these entities in urine as strong indicators of therapeutic response

and outcome. Moreover, understanding of such networks with

related genetic changes which promote tumorigenesis will improve

PCa detection and potentially identify novel points of therapeutic

intervention.

We recognize several caveats in our mining strategy. First, we

make the assumption in the approach that the expression level of a

gene is a true reflection of its encoding protein level in the urine.

This assumption doesn’t always hold true as we mentioned earlier

in the paper. Second, the study is limited by the quantity and

quality of microarray datasets for the three tumor types.

Therefore, the specificity of the PCa urine markers in our study

is subject to the availability of the microarray data for each disease.

Nevertheless, we believe that our strategy has captured the most

important features in the mining of cancer genomics profiles for

the discovery of putative markers in body fluids. Further, our

strategy is simple to implement for experimentalist and could be

used to provide interesting candidate markers for the discovery of

clinically useful markers through targeted proteomic analysis.

Conclusion
We have described herein an integrative and experimentalist-

friendly approach to derive potential urine markers for the specific

detection of PCa by assembling of cancer gene expression profiles,

ontology-based filters, urinary proteome databases and pathway

knowledgebase. The application of this strategy has led to the

identification of 19 upregulated entities encoding putative urinary

protein markers for noninvasive PCa detection. To the best of our

knowledge, our study is the first to identify those putative urine

markers specific for PCa by comparison analysis across three

major tissue types within human urinary system. In addition, our

approach offers the advantage of prioritizing candidate markers to

detect the invasion and progression of PCa by constructing

Figure 5. Betweenness centrality score and closeness centrality score for the 10 entities involved in the network of PCa progression
and metastasis. Betweeness centrality score was denoted as BC and closeness centrality score was denoted as CC: LGALS3 (BC, 6.00; CC, 3.56);
PECAM1 (BC, 4.00; CC, 2.56); CD27 (BC, 3.00; CC, 0.04); RECK (BC, 3.00; CC, 0.00); MGAT5 (BC, 4.00; CC, 2.56); CLU (BC, 2.00; CC, 0.24); ITIH4 (BC, 2.00; CC,
0.04); RBP4 (BC, 1.00; CC, 0.12); APOD (BC, 1.00; CC, 0.00); CFB (BC, 1.00; CC, 0.00).
doi:10.1371/journal.pone.0028552.g005
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‘focused’ interaction subnetworks derived from pathway enrich-

ment analysis. Moreover, these retrieved entities could be used to

extract biological insights for dissecting the pathogenesis of human

PCa. In general, this integrative mining approach could be

broadly applied to discover candidate markers present in body

fluids for the diagnosis or prognosis of many other human diseases.

Supporting Information

File S1 C# source code and its GUI program to
compare entities derived from different tissue types
(use CSV files from Microsoft Excel program as inputs).
(RAR)
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