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Abstract

Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with
classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy
subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using
standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-
layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for
data classification. These schemes showed high performances with both training and test sets and many combinations of
features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a
relevant feature in the HRV analysis.
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Introduction

Cardiac diseases are a major cause of mortality in the world.

Studies carried out in 2006 in Colombia establish that heart

diseases produced circa 30875 deceases with an overall increase of

19.6% since 1999. Therefore, there has been great interest in the

development of computational tools for prognosis and diagnosis.

The main aim of these tools is to improve performance of

cardiologists on prognostic and diagnostic tasks, i.e., reducing both

the number of missed diagnoses or prognoses and the time taken

to reach such decisions. Under these conditions, it is expected that

detecting cardiac signs helps to decrease the mentioned decease

rates. At the same time, the introduction of computational systems

offers additional benefits, since the early identification of patients

would help the specialists to deal efficiently with certain cardiac

diseases. Moreover, as traditional risk stratifiers are commonly

used for prognosis, their positive predictive value is not as high as

the clinical practice demands.

Heart rate variability (HRV) has been often related with the

diagnosis and prognosis of certain cardiac diseases and, in fact, is a

standard method for studying the autonomic nervous system

(ANS) in heart control [1]. Several findings on HRV analysis have

demonstrated that geometric, statistical, spectral, multi-resolution

and non-linear approaches are powerful tools for the assessment of

cardiovascular health [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18]. Several patterns observed from HRV dynamics are often

related with myocardial infarction (MI) [18,19], sick sinus

syndrome (SSS) [1], multiple cardiac arrhythmias [1], atrial

fibrillation (AF) [20], congestive heart failure (CHF) [21], complete

heart block (CHB) [2], and ischemic cardiopaty [2], amongst

others. Additionally there are some risk factors that affect HRV

directly or indirectly, such as blood pressure (BP), alcohol, smoking

and drug consumption [2].

Cardiovascular risk in general terms is often related to low or

excessive fluctuations of the NN intervals given by intrinsic and

extrinsic factors [10]. The relation between reduced HRV and

mortality risk was first shown by Wolf et al. in 1977 [22].

Furthermore, during the last 25 years, the significance of HRV in

assessing cardiac health has been recognized and various techniques

have been developed in order to analyze the fluctuations of NN

intervals. Time and frequency domain analyses are often referred to

as classical analysis as they were the very first methods being used

for the HRV processing [23,24,25,26,27,28,29]; these methods are

often inconvenient as they are linear and stationary methods

intending to model a highly non-linear phenomenon. These

methods as well as visual assessment of the raw HRV data are the

most common approaches used in clinical practice.

In 1996, the Task Force of the European Society of Cardiology

and the North American Society of Pacing and Electrophysiology

(ESC/NASPE) published standards on HRV analysis. They

proposed several time and frequency domain parameters and

their clinical uses, based on short-term (5 min) and long-term

(24 h) HRV data [12,21].

Relatively recent findings have shown that frequency domain

methods in HRV are related to hypertension [29]. Subjects with

risk factors such as hypertension, obesity, insulin resistance, among

others, generally show a high sympathetic activity which is often

presented before the clinical manifestation of hypertension. As

spectral methods are useful to assess the changes in sympathovagal

balance, hypertension has been accurately predicted.
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Classical methods of analysis are not absolutely suitable for

analysis of HRV [21,30,31,32]. Consequently, some approaches

have applied multi-resolution methods to HRV analysis. Multi-

resolution methods are related to the wavelet transform multi-level

decomposition; given the non-stationarity of the HRV signals [31],

the discrete wavelet transform (DWT) and wavelet packet

transform calculate the required high and low frequency sub-

bands, enabling more accurate HRV analysis. Moreover, wavelet

entropy measures have been introduced for the implementation of

pattern recognition schemes and seem to provide high perfor-

mances in diagnosing cardiac diseases [21]. However, to our

knowledge, previous work has not considered utilizing wavelet

energy measures analysis for HRV assessment.

Recently, new dynamic methods of HRV quantification have

been used to uncover nonlinear fluctuations in heart rate that

otherwise are not apparent. Several methods have been proposed:

Return map (Poincaré plot) calculation [13,14,15,33,34,35,36,37];

Lyapunov exponents/spectrum [2,38]; 1/f slope [39]; approxi-

mate and sample entropy (ApEn and SmEn, respectively) [20,40];

and detrended fluctuation analysis (DFA) [41]. Moreover, for the

last years these analysis techniques have been useful to understand

the HRV dynamics as the response of a highly non-linear system,

and therefore to produce discriminative enough features to reach

high success rates when several pattern recognition techniques are

implemented [2,20]. Pattern recognition in HRV has been used

for a variety of applications from prognosis to diagnosis of heart

diseases. The most commonly used schemes include: Artificial

neural networks (ANN) frames [20]; support vector machines

(SVMs) [1,20]; and linear statistical classifiers [21]. In general

terms, the performance of these classifiers in prognostic or

diagnostic tasks is relatively high (80% to 95% sensitivity in the

best cases); however, they have been used for the recognition of

several patterns in specific cardiac diseases (e.g., CHF, paroxysmal

AF, MI, cardiac arrhythmias, amongst others) rather than for the

prognosis of cardiovascular risk.

In this work, HRV analysis methods and pattern recognition

schemes (namely, artificial neural networks and support vector

machines) were used to discriminate between healthy control

subjects and cardiovascular risk patients. Extensive experiments

were carried out regarding the overall usefulness of the features

with emphasis on the prognostic values associated to classical and

non-linear analysis methods. We determined the potential

application of such methods to clinical practice in order to

increase the success rates of cardiovascular risk assessment. There

is a strong consideration for breathing frequency as a relevant

feature of the HRV analysis, given the respiratory sinus

arrhythmia (RSA) phenomenon [25], [42,43,44]. Additionally,

we provide a brief explanation on the implementation of advanced

HRV analysis software using the analyses performed in this work

and for automatic cardiovascular risk prognosis.

Materials and Methods

1. Ethics Statement
This study was approved by the Institutional Review Board of

Universidad Autonoma de Occidente (UAO), Cali, Colombia.

Each patient in this study was informed in detail about the

procedure and signed an informed consent which guaranteed the

transparence of the test and the records’ future usage.

2. ECG Database
Two distinct source materials were employed in this study: (a) A

database of risk and non-risk individuals given by Coomeva IPS

(Health Provider Company) experts and (b) the corresponding

electrocardiographic data extracted by us using a medical expert

protocol.

The requirement for patient’s clinical history and positive or

negative cardiovascular risk verification was assessed by Coomeva

experts as this verification concedes extreme importance on the

validity and quality of the subsequent results of this work. The

main purpose of this step was to measure the relationship between

HRV indices and the subjects with risk factors. Diabetes Mellitus,

high blood cholesterol and other lipids, high blood pressure,

metabolic syndrome, overweight, obesity, physical inactivity,

tobacco and drug consumption are common risk factors of

cardiovascular heart diseases (CHD) and heart failure; nearly all of

these risk factors are associated with HRV reduction or excessive

fluctuations [45,46,47,48,49]. All the risk subjects (patients)

showed at least 3 significant risk factors according to the experts’

risk assessment.

In order to get the ECG and respiratory signals, a PowerLab

device -ref. ML865- (ADInstruments) and a piezoelectric band

-ref. MLT1132/D- were used. PowerLab is a data acquisition

system used in a variety of experiments and applications with

humans’ biopotentials. The unit can record more than 200000

samples per second and has individually selectable input

sensibilities. Additionally, it has a bioamplifier (used to record

any biological signal from the human body or other source) and an

internal processor with low and high pass filters. The hardware of

the PowerLab uses the software package Chart and Scope in order

to record and analyze each acquired dataset.

On the other hand, a non-invasive blood pressure (NIBP)

measure was taken into account for the HRV evaluation as it is

considered one of the main risk factors in the cardiovascular

assessment [49]. Such measure was extracted by using a

multiparameter monitor Spacelabs ref. 90309 which allows us to

monitor the following parameters: Electrocardiography, respiration,

temperature, non-invasive blood pressure and pulse oximetry.

Each register (a total of 90 electrocardiographic records) was

recorded following a medical protocol designed by the teamwork

using the frontal-bipolar derivation (D2) of the electrocardiogram.

The duration of each record was 5 minutes, following the

international standards established by the Task Force of the ESC/

NASPE [12]. In addition, the following information was taken

from each patient: Age, gender, weight, height, diagnosed

cardiovascular diseases, risk valuation given previously (without

risk, medium risk or high risk), diagnosed risk factors. All the

subjects of this study were in sinus rhythm during the ECG

recordings, furthermore, the mean breathing frequency for all was

12:1+2:1breaths/min.

2.1. HRV and Respiratory Sinus Arrhythmia Consi-

derations. Respiration has an important influence in HRV.

This phenomenon is known as respiratory sinus arrhythmia (RSA),

which is a rhythmic fluctuation of the heart beat intervals in a

phase relation with the inspiration and the expiration. The

autonomous nervous system (ANS) is the part of the nervous

system which extrinsically controls the vital functions and organs

such as the heart, lungs and glands. ANS is divided into two major

subsystems: The Sympathetic Nervous System and the

Parasympathetic Nervous System. These systems are antagonists

and responsible for the tuning of some physiologic mechanisms.

Intrinsic as well as extrinsic factors may affect such balance and

sometimes provoke different nervous activity patterns (sympathetic

or parasympathetic), which are often the cause of functional

irregularities; those patterns are given by hyper/hypoactivity of

such subsystems.

When the respiration is being monitored in a controlled

environment, the R-R intervals tend to be shorter during the
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inspiration and larger during the expiration. Various theories have

been exposed about this phenomenon, according to many

experiments on animals [43]. The RSA comes from the control

given by the oscillations in the firing rates of the medullar neural

networks (central pattern generators, CPGs); the medullar neural

network shows periodic oscillations even when the afferent inputs

are interrupted. When those oscillations are carried out by afferent

stimuli from the receptors in the lungs and the thoracic wall, there

is a cardiac rhythm oscillation known as RSA.

Obtaining the respiratory frequency has been used to evaluate

the magnitude of the RSA, defined as the sum of the power

spectral density estimations on the respiratory band. The

variations induced by the respiratory rate introduce a significant

change on the measurement of HRV; however, if the respiratory

frequency is a constant (i.e., 12 breaths/min) and the tidal volume

is relatively constant for the maximum capacity, the error in the

measurement caused by respiratory irregularities is eliminated and

allows a better stability and an effective comparison of the RSA

magnitude between patients [50]. In this study, the above criteria

were used to measure HRV in the patients. Consequently, both

the recorded ECG signals in resting conditions and specific

conditions of the environment were taken into account for the vital

signs stabilization.

3. ECG Data Pre-processing
3.1. R-Peak Extraction. The R peaks were extracted using

the Pan-Tompkins algorithm and the wavelet transform by

keeping the detail coefficients from 21 to 24 using the Haar

wavelet [51].

In order to know the effectiveness of the wavelet decomposition

levels, the performance of the algorithm was measured using the

detail coefficients from the first decomposition level to the fourth

decomposition level using on 6120 heart beats recorded with the

implemented medical protocol. The results of this evaluation

procedure are summarized in Table 1.

According to Table 1, the most appropriate wavelet decompo-

sition level to extract the R-peak is 24, with a sampling frequency

of 200 kHz for the ECG signal and using the Haar wavelet.

However, the diverse resolution levels on the R-peak extraction

procedure may affect the temporal resolution of the signal; thereby

a comparison of the estimation of the R-R series was made using

the resolutions taken into consideration for this work. We found

that, despite the detected false positives, there are no significant

spatial and frequency changes on the signal given by the

decimation process; thereby, there are no significant variations

on the spectral indexes estimation.

3.2. Outlier Removal Procedure. Past publications have

shown that eliminating the ectopic HRV data is often better than

interpolating them or doing any other cumbersome procedure

[52]. Grubbs Test extended by Rosner method was used in this

work [53,54]. Assuming a normal distribution, Grubbs’ outlier test

can be used to remove one outlier. Nevertheless, if we decide to

remove this outlier, we might be tempted to run Grubbs’ test again

to see if there is a second outlier in the data; however, the rejection

criteria changes. Rosner has extended Grubbs’ method to detect

several outliers in one dataset. Rosner’s several outliers detection

method seems to be compatible with HRV signals in general ways

[54].

For a specified limit k of the number of outliers, the procedure is

calculated by using reduced samples of length n, n{1, :::,
n{kz1, respectively. For each sample (n{i):

Ri~
max xj{x

�� ��� �
s

, for i~0,1,2 ::: k: ð1Þ

where x is the mean and s is the standard deviation of the

sample n{ið Þ and j is the position of one given value of the

sample. In this way, the critical values of the test are determined by

specifying a and by calculating b and l bð Þ in order to calculate the

t-student statistical test [53].

4. HRV Classical Measures
4.1. Statistical or Time-domain Measures. In this

approach, a set of 7 well-known statistical indexes were

calculated: First, the mean and the standard deviation (SDNN)

of the NN intervals of each 5 min record; second, the square root

of the mean of the sum of the square of differences between

adjacent NN intervals (RMSSD); third, the so-called pNN50 was

computed as the NN50 count value divided by the total of all NN

intervals, where NN50 is the count of adjacent intervals differing

by more than 50 ms in the entire HRV record; fourth, the

interquartile margin of the NN intervals (MIRR) was also

calculated, i.e., the first quartile subtracted from the third

quartile of the NN series; in addition, the median of the

absolute differences of the NN intervals (MDARR) and the

standard deviation of the differences between adjacent NN

intervals (SDSD) were calculated.

4.2. Spectral or Frequency-domain Measures. Spectral

or frequency-domain measures are based on the power spectral

density (PSD) analysis of the R-R series. In this kind of analysis

some processing techniques, such as interpolation and detrending,

are necessary. The spectral measures have the advantage of

relating the power of variation in different frequency bands to

different physiological modulating effects [2,24]. Extensive

experiments have shown that parametric methods (AR spectrum)

tend to produce better results than classical nonparametric

methods (Welch’s periodogram) when the data length of the

signal is relatively short, as is the case with HRV data [20]. For this

reason, we applied parametric PSD estimation. Three main

spectral measures are distinguished from the spectrum of the R-R

series: The power of the very low frequency band (VLF band, 0–

0.04 Hz), the power of the low frequency band (LF band, 0.04–

0.15 Hz) and the power of the high frequency band (HF band,

0.15–0.4 Hz). These frequency components and their normalized

values (NLF and NHF) were calculated using a standard

integration procedure (area under the curve) of the spectrum

regions. In addition, the ratio of LF to HF was calculated as it

indicates the balance of ANS.

For parametric spectral methods, the data can be modeled as

the output of a discrete and causal filter whose input is white

noise.

Table 1. Performance of the R-peak detection algorithm at
various wavelet decomposition levels (sampling frequency of
200 kHz) using the Haar wavelet.

Decomposition
Level FP FN

Sensitivity
(Se - %)

Accuracy
(Ac - %)

1 240 270 96.06 91.98

2 220 0 96.53 96.53

3 50 0 99.19 99.19

4 0 0 100.00 100.00

doi:10.1371/journal.pone.0017060.t001
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The spectral power of an AR process is given by:

P̂PAR fð Þ~ 1

fs

ep

1z
Pp

k~1

âap kð Þexp
{2pjkf

fs

� �����
����
, ð2Þ

where a(k) are the recursive coefficients calculated by covariance

method [2]. An important factor in the implementation of the AR

method is the selection of the order [28]. The order p = 16 for the

AR model was taken into account for this study [26,54,55].

5. Wavelet Packet Measures
According to the literature consulted [21], there is a three step

procedure to calculate the wavelet measures: First, calculate the

wavelet packet coefficients; second, calculate the wavelet energy;

and third, calculate the wavelet entropy.

The wavelet packet analysis in HRV is used to separate the

signal into multiple scales. This method allows us to analyze both

frequency and spatial domains and removes polynomial non-

stationarities of the signal [11]. Due to this property, wavelet

analysis is much more suitable for analyzing HRV signals than

statistical and spectral methods. In this work, the wavelet packet

analysis was implemented by using the DB4 function as mother

wavelet [21]. The decomposition was performed at a level of 5

[21,56,57].

Once the wavelet coefficients are known, it is possible to

calculate the energy for each coefficient:

Ej~ Cj

� �2
: ð3Þ

Then, the total energy can be calculated as the mean value of

the energy for each coefficient.

On the other hand, the wavelet entropy can be calculated as the

probability distribution of the coefficients or the wavelet energy

into normalized values:

pj~
Ej

Etotal

: ð4Þ

In this way, using the definition of entropy given by Shannon,

the entropy can be calculated as follows:

WS~{
X

j

pj log2(pj): ð5Þ

In [21], the wavelet entropy is calculated as a unique multi-

resolution measure. However, in this work, both the energy and

entropy measures are taken into account due to their high

cardiovascular risk prognostic value.

A problem with wavelet packets implementation is coping with

redundant information coming from the wavelet transform

computation for the approximation and detail coefficients [54].

In order to avoid the redundant information due to wavelet packet

decomposition, a standard Principal Component Analysis (PCA)

was computed. PCA chooses a dimensionality reduction by linear

projection that maximizes the scattering of all projected samples.

The resultant feature space is the projection of the original data set

over the covariance matrix eigenvectors, which constitutes the

weights of each feature on the input space according to how much

of the model’s variability is explained by them. The most

important entropy and energy features (in terms of variability)

were selected.

6. Non-Linear Measures
HRV has been often evaluated using non-linear methods

[6,20,58]. These methods seem to be very relevant in feature

extraction of the HRV series; on the other hand, HRV dynamics is

highly non-linear and, actually, HRV series is the response of a

chaotic system, i.e., a system with high sensitivity on the initial

conditions [59,60,61].

6.1. Poincaré Map-Based Features. The most popular

non-linear technique to assess the HRV is the so-called Poincaré

map (also called return map or Lorenz map). The Poincaré map

corresponds to the reconstruction of the attractor of the system

based on the HRV experimental series [60]. This map can be

constructed by plotting each RR interval against the next interval.

This plot is very useful in summarizing beat-to-beat information

on heart behavior. The Poncaré plot is a simple visual

interpretation technique and it has proved to be a very powerful

predictor of disease and cardiac dysfunction [21].

In order to extract features of the Poincaré map, two methods

were applied in this work: The ellipse fitting technique and the

histogram technique [17].

A group of axes with orientation onto the identity line or

principal diagonal is the main feature of the ellipse fitting

technique. The axes of the plot are related to a new group of

axes with a rotation of p=4 [17].

On the new reference system axes, the dispersion of the points

through the x1 axis is measured by its standard deviation, denoted

SD1. On the other hand, the magnitude of the points through the

identity line shows the level of long term variability, denoted SD2,

i.e., the standard deviation over the x2 axis.

On the other hand, the ellipse approximation is satisfactory in

many cases; however, the shortening that occurs on short R-R

intervals is not taken into account by this technique [35]. The

histogram approximation has been used to evaluate the distribu-

tion of the data into several time ranges. There are three types of

histograms: The width histogram, the NN interval histogram and

the length histogram [17].

As the visual interpretation of the histogram can be useful to

extract information about the heart, it is necessary to parameterize

it. The computation of the width of the three histograms is a very

strong feature for the prognosis of cardiovascular risk, as it gives

the absolute statistical ranges of the NN intervals and its

projections. These features are useful for assessing short term

HRV, long term HRV and the distribution of NN intervals itself.

These histogram widths were taken into account in this study.

6.2. Complexity Analysis. There are several approxi-

mations for estimating regularities of different kinds of signals.

The most widely used complexity measures for short and noisy

data series are approximate entropy (ApEn) and sample entropy

(SmEn). These features assign a non-negative number to temporal

series in order to quantify the regularity of its fluctuations. Given

this fact, complexity measures have been highly useful for the

analysis of HRV signals [20].

To calculate ApEn and SmEn from temporal series it is

necessary to choose two parameters: A length m and a window size

r. ApEn measures the logarithmic similarity amongst neighboring

input patterns (those with a separation radius less than r) for m

contiguous observations. On the other hand, SmEn is an unbiased

estimator introduced to avoid the self-couplings and to quantify

the regularity of highly irregular temporal series. SmEn is equal to

HRV for the Prognosis of Cardiovascular Risk
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the negative of the natural logarithm of a conditional probability.

It is the probability that sequences close to each other for m

consecutive data points will also be close to each other when one

more point is added to each sequence [20].

For both, ApEn and SmEn calculation, it is recommended to

take r~ks, where s is the standard deviation of the data series

and k runs over 0.1 to 0.2 [62] (for details regarding the calculation

of complexity analysis measures see Appendix S1).

7. Statistical Significance Tests and Feature Selection
Up to this moment, several statistical methods have been related

to feature selection for training and testing classifiers and for

improving their overall performance. As most of computational

methods in pattern recognition require a feature selection step, the

nature of such procedure depends largely on the structure of the

data. As a result, many computational approaches use parametric

statistics, e.g., the so-called multivariate analysis of variance

(MANOVA), which often reports adequate results for such

purposes. However, we cannot assume that all the data has

resemblance to a standard normal distribution at high statistical

significance. Therefore, we implemented two methods in order to

test the normality of the data: First, we conducted the Pearson’s

chi-square test; and second, the one-sample KS-test. According to

our results, the data (for all the features taken into account), has a

remarkably different distribution when compared to the normal

distribution (with pv10{9). As both methods reported quite

similar results, we concluded that non-parametric (distribution-

free) statistical methods needed to be implemented at this stage.

These methods, unlike parametric statistics, make no assumptions

about the probability distributions of the variables being assessed.

Figure 1 depicts the empirical cumulative distribution plot for a

given feature (note the significant difference to the standard

normal distribution).

Statistical significance of these results was tested using a

standard two-sample KS-test. A level pv0:05 was considered a

statistically significant difference [63]. On the other hand, in order

to use the best features on the classification stage, a level

pv0:0001 was considered statistically relevant enough as KS

test-based selection criteria.

8. Classification
Multilayer Perceptrons (MLP), Radial Basis Function (RBF)

networks and several Support Vector Machines (SVM) were

evaluated for the classification stage of this work. All classification

schemes were trained to capture the difference between cardio-

vascular risk subjects and healthy ones.

8.1. Multi-layer Perceptron (MLP) Neural Network.

Multilayer Perceptrons (MLP) are frequently implemented for

classification tasks, given their generalization capabilities. In this

work, a standard three-layer network has been proposed.

Let m (x
m
i ) be an input pattern, the output of a single artificial

neuron of the hidden layer is given by the following equation:

Y
m
j ~fj sm

j

� �
~fj

XN

i~1

w
m
ji � x

m
i zhj

 !
, ð6Þ

where w
m
ji is the synaptic weight i of the neuron, hj is the bias and fj

is the activation function. In the current model we have two non-

linear transfer functions corresponding to the hidden and the

output layers, given by the following equations, respectively.

fj xð Þ~ exp xð Þ{exp {xð Þ
exp xð Þzexp {xð Þ : ð7Þ

Figure 1. Cumulative distribution plots comparison between a given feature considered in this work and the standard normal
distribution.
doi:10.1371/journal.pone.0017060.g001
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fk(x)~
1

1zexp {xð Þ : ð8Þ

This architecture guarantees that the network’s output will run

over 0 and 1 (given the sigmoid output function).

We used the Levenberg-Marquardt backpropagation algorithm

to train the MLP neural network, as it is the most popular and

successful learning method for training MLPs. The algorithm

employs iterative mean squared error minimization using least

squares curve fitting [64].

The network consisted of three layers (the sensory input layer,

the hidden layer and the output layer), with 5, 200 and 1 neurons,

respectively.

8.2. Radial Basis Function (RBF) Neural Network. RBF

network is a well-known classifier which combines supervised and

unsupervised learning. A standard three-layer RBF network was

implemented in this work. The hidden layer of the network is

responsible for producing a non-linear expansion of the input

space to a hidden space where the classes are linearly separable by

unsupervised learning [64]. The most popular unsupervised

learning rule for the hidden layer is the so-called k-means.

In this procedure, we establish a number of neurons (k), whose

synaptic weights wji are randomly distributed on the input space

and then a similarity measure is calculated, i.e., the Euclidean

distance.

When this procedure is applied to the whole layer, the weight

update rule is then calculated from:

ŵw(tz1)~
1

Ni

XNi

i~1

x̂xi, ð9Þ

where Ni is the number of input vectors associated to each

Gaussian node of the hidden layer. This procedure is computed

until the stabilization of the synapses is reached (the weights do not

change from a training cycle to another).

The Gaussian scale parameters for each hidden neuron can be

determined by the approximated magnitude of the influence

radius of each neuron on the input space in relation to other

neurons near to the j neuron.

This network consisted of three layers (the sensory input layer,

the hidden layer and the output layer), with 5, 3 and 1 neurons,

respectively.

8.3. Support Vector Machines (SVMs). In the most

cumbersome case, the patters are not linearly separable. The

main objective of the SVM schemes is to map the input data from

the N-dimensional space to the M-dimensional space (M.N),

where the classes are supposed to be linearly separable and can be

classified by the calculation of a standard separating hyperplane

[64,65] (see Appendix S2 for details on the implementation of

SVM).

In our work, polynomial and radial basis function (RBF) as well

as linear SVM were used to classify the input data.

8.4. Normalization, Validation and Performance

Measures. In order to train the classifiers and perform the

KS-tests, all samples were normalized using the MinMax

normalization [21].

There are several ways to compute the performance of a

recognition system. The pattern recognition schemes were

evaluated using two different procedures: The calculation of

several performance measures such as sensitivity (Se), specificity

(Sp), positive predictive value (Pp), negative predictive value (Np)

and accuracy (Ac), all in the interval [0.00,100.00]. On the other

hand, Receiver Operating Characteristic (ROC) curve was used in

order to measure the accuracy of ANNs. The ROC curve is the

plot of the true positive rate (Se) versus the false positive rate (1 –

Sp) for different testing points in a diagnostic test. An ROC curve

illustrates various aspects: First, it shows the tradeoff between the

sensitivity and the specificity in the evaluation of a model; and

second, it is a measure of the accuracy of the algorithm given by

the area under the curve, i.e., the algorithm’s probability of giving

correct classifications when a new input pattern is presented [29].

9. Computational Implementation
For each subject statistical, spectral, multi-resolution and non-

linear features were calculated using MatlabTM 7.6.0. The flow

diagram of the whole system is depicted in Figure 2.

The application works with 5-min electrocardiographic (ECG)

signals; thereby, a preprocessing step is involved in the procedure,

i.e., the R-peak extraction and NN intervals calculation.

Therefore, there is an ectopic beat removing algorithm, i.e.,

Grubbs Test extended by Rosner outlier detector. The next stage

contains the feature extraction, i.e., statistical, spectral, multi-

resolution and non-linear features calculation. For spectral features

calculation, the 4 Hz cubic interpolation and the smoothness

priors l~1000 as detrending method are performed in the whole

HRV dataset. The wavelet packet-based features are extracted

using DB4 mother wavelet and the decomposition is done to a

level m~5 [21]. Ellipse fitting and histogram features are

extracted from the first-order Poincaré plot. SmEn and ApEn

complexity measures are extracted using r~0:1s and m~1 : 4.

All the features mentioned above can be displayed by the user.

Feature selection is performed via KS-tests and the top-5 features

are used to distinguish normal subjects (N) from cardiovascular risk

ones (R). The classification scheme is responsible for giving the

final prognosis result.

The respiratory rate mean and standard deviation feature can

be used to corroborate that respiratory rate is relatively constant

over the whole ECG record and that is approximately equal to 12

breaths/min. If this condition is not fulfilled, the results would be

invalid.

Results

1. Statistical, Spectral, Multi-resolution and Non-linear
Analysis of Extracted HRV Data

All the feature analysis results obtained in this work were

reported using standard box diagrams, given their suitability for

this statistical analysis and since their interpretation can be

performed in a remarkably easy way, regardless of the fact that

variables could present a great deviation from the normal

distribution. The tops and bottoms of each box are the 25th and

75th percentiles of the samples, respectively. The line in the middle

of each box is the sample median; this illustrates the skewness of

the samples. The dashed lines extending below and above each

box are drawn from the ends of the interquartile ranges to the

furthest observation within the dashed line length. Crosses are the

outliers of the samples; they represent atypical data sufficiently

distant from the limits of the box. Note that their elimination is not

justified, provided that the objective of box diagrams is to give a

complete knowledge of the shape of the data distribution.

Statistical, spectral, multi-resolution and non-linear features

were calculated from the recorded HRV database. The statistical

analysis for the classical measures is shown in Figure 3.
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The KS-test showed that all statistical features (mean, standard

deviation, RMSSD, pNN50, MIRR, MDARR and SDSD) are

statistically significant (pv0:05) for the comparison of normal (N)

and cardiovascular risk (R) subjects. The most statistically

significant features were the standard deviation, RMSSD, MIRR

and SDSD (with pv0:001); the remaining features reported

significances close to the alpha value.

In addition, LF power, LF/HF ratio, NLF power and NHF

power showed statistically significant differences (pv0:05) be-

tween normal and cardiovascular risk subjects; however, VLF and

HF powers do not discriminate between these two groups

(pw0:05).

Standard PCA was applied to the multi-resolution measures in

order to obtain the most relevant features in terms of variance.

The total of selected groups of wavelet coefficients was 26 out of 62

(the total of wavelet packet coefficients from a decomposition level

of 5). These 26 groups of coefficients, according to the PCA, retain

approximately 98% of the variance of the model; however, the

Figure 2. Flow diagram of the computational implementation of the computational tool reported in this work.
doi:10.1371/journal.pone.0017060.g002
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features projections given by this transformation were not used to

train the classifiers due to the decreasing statistical significance of

the projected features. The main results of PCA for the two

principal components are illustrated in Figure 4. The second

principal component projection showed statistical significance in

both energy and entropy wavelet features; these two features retain

approximately 50% of the variance of the model. In this analysis,

even the third component showed statistical significance; however,

the rest of the projected data were not significantly different or

discriminative between normal and cardiovascular risk subjects.

A total of 27 wavelet packet-based features were selected.

Statistical significance levels of the entropy measures showed that

15 wavelet entropy components were statistically significant

with0:00001vpv0:05 (1 from the first decomposition level, 2

from the second one, 1 from the third one, 3 form the fourth one

and 8 from the last one). On the other hand, the significance levels

for energy features showed that 12 wavelet energy components

were statistically significant with0:003vpv0:05 (1 from the first

decomposition level, 1 from the second one, 2 from the third one,

3 form the fourth one and 5 from the last one). The remaining

entropy and energy components were not taken into account

because they did not discriminate between the two groups (normal

and cardiovascular risk subjects) with statistical significance.

Non-linear analysis KS-test results are illustrated in Figure 5. The

results of the non-linear analysis showed that SD1 and SD2 ellipse

fitting features are statistically significant (pv0:01, in the best case);

SD1 being the less significant one. Additionally, there is statistical

difference in histogram technique parameters, i.e., the widths of the

NN intervals, the width and the length histograms of the HRV

records, among normal and cardiovascular risk subjects. According

to the statistical analysis, statistical significance increases with the

NN intervals histogram width (pv0:00001) and the length

histogram width (pv0:00001). For the case of the width of the

width histogram the statistical difference is relatively high (pv0:01).

Figure 3. Box diagrams. (a) Statistical measures and, (b) Spectral measures from 5-min HRV records from normal (N) and risk (R) subjects in
normalized values (y axis).
doi:10.1371/journal.pone.0017060.g003

Figure 4. PCA transform of multi-resolution features of the 5-min HRV records from Normal (black diamond) and cardiovascular
risk (red square) subjects. (a) entropy features and, (b) energy features.
doi:10.1371/journal.pone.0017060.g004
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ApEn and SmEn significance test results are contained in

Figure 6. ApEn shows increased statistical significance (pv10{7)

for m~1 : 4. On the other hand, SmEn shows statistical

significance (pv0:001) only for m~1 : 3, for m~4 there is no

statistical significance for the comparison of normal (N) and

cardiovascular risk (R) subjects. Table 2 contains the p values of

ApEn and SmEn at various m values; the m value varies from 1 to

4. The subsequent values did not allow obtaining statistically

significant ApEn and SmEn values due to the relatively short

duration of the HRV records (5-min per HRV record) [20].

The total number of features extracted from spatial and

frequency domains, multi-resolution and non-linear algorithms is

equal to 52 (7 statistical, 6 spectral, 27 multi-resolution and 12

non-linear features). The total number of optimal features

extracted by KS-tests is equal to 5 due to the statistically

significant discrimination presented by them (the next section will

illustrate this fact clearly). The resulting feature set combined 3

non-linear and 2 multi-resolution features. These features were

used to train and test the ANN and SVM classifiers. Additional

experiments were conducted in order to compare the performance

of the four principal PCA feature projections to those chosen by

KS-tests.

2. Artificial Intelligence Schemes Classification for the
Prognosis of Cardiovascular Risk

2.1. KS test-based Feature Selection Results. In order to

evaluate each artificial intelligence (AI) scheme, the cross

validation method was used. This method allows generating the

indexes for the validation of the N observations by choosing

randomly the training and test observations. Each AI scheme was

trained using approximately 66% of the observations (60 HRV

records, 30 from normal subjects and 30 from cardiovascular risk

subjects) and tested using the remaining 33% of them (30 HRV

records, 15 from normal subjects and 15 from cardiovascular risk

Figure 5. Box diagrams of Poincaré map-based features. (a) SD1 and SD2 ellipse fitting features and, (b) NN histogram (NN), width histogram
(WNN) and length histogram (LNN) features of the 5-min HRV records from normal (N) and risk (R) subjects in normalized values (y axis).
doi:10.1371/journal.pone.0017060.g005

Figure 6. Box diagrams of complexity measures. (a) ApEn and, (b) SmEn (r~0:1s and m~1{4) of the 5-min HRV records from normal (N) and
risk (R) subjects in normalized values (y axis).
doi:10.1371/journal.pone.0017060.g006
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patients). This division gave an optimal performance (high

generalization levels) for the ANNs as well as for SVMs.

Experiments were performed using 5 (3 from non-linear domain

and 2 from multi-resolution domain), 10 (4 from non-linear

domain, 3 from multi-resolution domain and 3 from statistical

domain) and 15 features (5 from non-linear domain, 6 from multi-

resolution domain and 4 from statistical domain) selected by KS-

test. The results of MLP and RBF neural networks as well as of

SVM classifications of HRV records from normal (N) and

cardiovascular risk (R) subjects are illustrated in Table 3. The

ROC curves for both neural network schemes are depicted in

Figure 7; the areas under the curve are 0.9822, 0.8889 and 0.9024

for MLP; and 0.8800, 0.8667 and 0.8400 for RBFNN, for 5, 10

and 15 features, respectively. The linear SVM C value was fixed to

1 by default. The SVM with polynomial and RBF kernels’ C and c
parameters produced the best classification performances. All C=

and c were determined into a heuristic way.

According to Table 3, the higher performance was reached by

MLP using the top-5 features selected by KS-test. It is important to

note that the performance of the classifiers was similar in all cases;

therefore, many combinations of features are suitable for the

prognosis of cardiovascular risk as it is proposed in our work. For

the 5 optimal features, linear SVM selected 36 support vectors;

Table 2. Statistical significance for complexity measures at
different m values.

m p-value (ApEn) p-value (SmEn)

1 1.87E–08 2.38E–07

2 1.21E–09 1.60E–04

3 4.87E–09 2.52E–06

4 6.83E–08 0.6101

doi:10.1371/journal.pone.0017060.t002

Table 3. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel
(C~1; c~3) classifications using the top 5, top 10 and top 15 features selected via KS-test of the HRV records from normal (N) and
cardiovascular risk (R) subjects.

#Features Classifier Se (%) Sp (%) Np (%) Pp (%) Ac (%)

5 MLP* Training set 100.00 100.00 100.00 100.00 100.00

Test set 93.33 100.00 93.75 100.00 96.67

RBFNN* Training set 96.67 100.00 96.67 100.00 98.33

Test set 85.71 93.33 87.50 92.31 89.66

SVM (Linear) Training set 71.88 75.00 70.00 76.67 73.33

Test set 72.73 72.73 72.73 72.73 72.73

SVM (Polynomial kernel) Training set 100.00 100.00 100.00 100.00 100.00

Test set 84.09 70.45 81.58 74.00 80.00

SVM (RBF kernel) Training set 100.00 100.00 100.00 100.00 100.00

Test set 74.24 78.79 75.36 77.78 76.52

10 MLP* Training set 100.00 100.00 100.00 100.00 100.00

Test set 86.67 80.00 85.71 81.25 83.33

RBFNN Training set 96.67 90.00 96.43 90.63 93.33

Test set 60.00 100.00 71.43 100.00 80.00

SVM (Linear) Training set 100.00 100.00 100.00 100.00 100.00

Test set 86.36 77.27 85.00 79.17 81.82

SVM (Polynomial kernel) Training set 100.00 100.00 100.00 100.00 100.00

Test set 86.36 75.00 84.62 77.55 80.68

SVM (RBF kernel)* Training set 100.00 100.00 100.00 100.00 100.00

Test set 96.97 81.82 96.43 84.21 89.39

15 MLP* Training set 100.00 100.00 100.00 100.00 100.00

Test set 73.33 100.00 78.95 100.00 86.67

RBFNN Training set 83.33 83.33 83.33 83.33 83.33

Test set 60.00 100.00 72.43 100.00 80.00

SVM (Linear) Training set 100.00 100.00 100.00 100.00 100.00

Test set 77.27 77.27 77.27 77.27 77.27

SVM (Polynomial kernel) Training set 100.00 100.00 100.00 100.00 100.00

Test set 90.91 70.45 88.57 75.47 80.68

SVM (RBF kernel)* Training set 100.00 100.00 100.00 100.00 100.00

Test set 93.94 77.27 92.73 80.52 85.61

*Classifiers that presented the higher performances on each experiment.
doi:10.1371/journal.pone.0017060.t003
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polynomial kernel SVM selected 28 support vectors; and RBF

kernel SVM selected 43 support vectors from the same training

dataset.

In addition, as part of the experiments, we evaluated the effect

of using all the features from all the analysis methods shown in this

paper. The results showed that for SVM classifiers, the three

schemes evaluated (linear, polynomial kernel and RBF kernel

SVM) reached higher performances than ANN ones. The main

results of these experiments are registered in Table 4. The results

of ANN classification were not included due to the poorness of the

classification performances, this is a common effect given by the

overfitting produced by the high dimensionality of the input space.

2.2. Do Multi-resolution and Non-linear Features

Perform Better than Conventional Statistical and Spectral

Features? A topic of remarkable discussion has been whether

non-linear and multi-resolution features on HRV analysis perform

better than the conventional and clinical-applied statistical and

spectral analysis methods [2,27,28,29,30,31]. On the basis of

determining the real usefulness of the non-linear and multi-

resolution features in terms of the prognostic value (Se, Sp, Pp, Np

and Ac), extensive experiments were carried out in this work.

The proposed classifiers were trained using statistical and

spectral features (classical analysis features) and using the multi-

resolution and non-linear features (novel features) separately,

especially in order to know the overall suitability of each group of

features with respect to the HRV analysis. The main results of our

experiments are depicted in Table 5. The ANN and SVM schemes

were implemented under the same setup as described in the

previous section. When statistical and spectral features were used

to classify the data, the number of support vectors chosen by linear

SVM, polynomial kernel SVM and RBF kernel SVM was 36, 24

and 46, respectively. On the other hand, when multi-resolution

and non-linear features were used, linear SVM, polynomial kernel

SVM and RBF kernel SVM selected 30, 24 and 46 support

vectors, respectively.

Table 5 illustrates at least two important findings from the

experiments carried out for this part of the research: First, non-

linear and multi-resolution features have remarkably higher

prognostic value than the features referred to as classical analysis

(this fact was also confirmed by the statistical significance of the

features already reported in this work); and second, the results

indicate indirectly the overall usefulness of certain combinations of

statistical and spectral measures and their expected effectiveness in

clinical applications (it is important to note that even when these

classical features are not very suitable to HRV analysis, the non-

linear nature of the classifiers is the main catalyst to reach

moderately good performances).

Due to the non-linearity and non-stationarity of the HRV

signal, many authors prefer using non-linear and multi-resolution

features rather than statistical or spectral ones in order to train

classifiers [20,21]. Nonetheless, it is important to note that as the

complexity of the features increases, also its medical interpretation

becomes obscure and cumbersome. Furthermore, especially multi-

resolution decomposition produces an important loss on the

potential interpretation of features and signals, regardless of the

remarkable increase of the statistical significance of the features

reported using such analyses.

2.3. PCA-based Feature Selection Results. In addition to

the results reported above, several classification experiments

regarding PCA features’ projections were performed in our

work. They were carried out using the cross validation method

Figure 7. ROC curves. (a) For MLP neural networks, (b) RBF neural networks obtained from the classification of the HRV test records using 5, 10 and
15 top features selected by KS-test; the areas under the curves are equal to 0.9822, 08889 and 0.9024 for MLP and 0.8800, 0.8667 and 0.8400 for
RBFNN, respectively.
doi:10.1371/journal.pone.0017060.g007

Table 4. Results of linear SVM (C~1), SVM with polynomial
kernel (C~1; c~4) and SVM with RBF kernel (C~1; c~3)
classifications using the total of features of the HRV records
from normal (N) and cardiovascular risk (R) subjects.

Kernel Se (%) Sp (%) Np (%) Pp (%) Ac (%)

Linear Training set 100.00 100.00 100.00 100.00 100.00

Test set 86.36 90.91 86.96 90.48 88.64

Polynomial Training set 100.00 100.00 100.00 100.00 100.00

Test set 79.55 86.36 85.37 80.85 82.95

RBF Training set 100.00 100.00 100.00 100.00 100.00

Test set 77.27 87.88 86.44 79.45 82.58

doi:10.1371/journal.pone.0017060.t004
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under the same setup reported above. These experiments were

made on the basis of two main goals: First, in order to investigate

whether the significance levels of the projected features remained

similar to the original ones; and second, to classify the data using

the 3, 4, 5 and 10 principal features’ projections from such PCA

analysis, as the variance retained by the 3, 4, 5 and 10 first

components for both groups –normal healthy subjects and

cardiovascular risk patients– was equal to 77.65%, 83.33%,

86.96% and 94.45%, respectively. Furthermore, the 99% of the

variance of the model was retained by the first 21 components.

According to the KS-test results, from the five first PCA

projections, three of them remained to be statistically significant

(pv0:03), and in one case, the seventh PCA projection also

showed high statistical significance (pv0:04); the rest of the

components were not statistically significant for the comparison of

normal (N) and cardiovascular risk (R) subjects.

The results of the ANN and SVM schemes classification of HRV

records from normal (N) and cardiovascular risk (R) subjects are

depicted in Table 6. With respect to the classification results using

the projected features, linear SVM selected 46, 32, 27 and 23

support vectors from the whole training dataset; polynomial kernel

SVM chose 28, 22, 21 and 21 support vectors; and RBF kernel

SVM picked up 46 support vectors in all cases. Table 6 clearly

illustrates important improvements for the performance of SVM-

based classifiers. On the other hand, MLP and RBFNN schemes

presented highly limited performances over the entire track of

experiments regarding the implementation of PCA. However, the

greatest performance reported by our work was achieved by MLP

when the KS test-based feature selection was performed.

The main aim of using these four different numbers of PCA

projections was to compare the performance reached by the

classifiers and to identify whether the data structure was suitable

for the proposed classifiers architecture. Indeed, there exists more

than one group of features that reported high success rates at

classifying the HRV records. Amongst all the classifiers, the

maximum overall performance was reached by the polynomial

kernel SVM with overall sensitivity, specificity and accuracy of

90.91%, 93.18% and 92.05%, respectively.

Discussion

Heart rate variability has been related to numerous cardiac

diseases. According to the literature, the short variations on

statistical features of the NN intervals are related to: Complete

heart block (CHB), left bundle branch block (LBBB) and ischemic

cardiopaty. On the other hand, the long variations on statistical

features of the NN intervals are related to: Premature ventricular

contractions (PVCs), sinus syndrome (SSS) and atrial fibrillation

(AF). There are several modifications on AR spectrums that can be

noticed by the calculation of the power in frequency bands. Short

variations of HRV segments usually lead to high VLF and LF

bands power. Conversely, long variations of HRV segments,

usually leads to higher HF band power. As cardiovascular risk is

highly related to variations on statistical and spectral components,

one of the major disadvantages of these methods is the linearity

and consequently, their poor suitability for highly non-stationary

HRV dynamics and, certainly, the NN intervals fluctuation by

nervous mechanisms. The Fourier transform techniques (frequen-

cy domain methods such as Welch periodogram or AR spectrum

as well) resolve the time domain signal into complex exponential

functions, along with information about their phase shift measured

with respect to a specific reference instant. Here the frequency

components extend from {? to ? in the time scale. That is,

even finite length signals are expressed as the sum of frequency

components of infinite duration. Besides, the phase angle, being a

modular measure, fails to provide the exact location of an ‘event’

along the time scale. This is a major limitation of the Fourier

transform approach [2]. Thereby, considering the cardiovascular

system as nonlinear in nature, can lead to a better understanding

of its dynamics.

The patterns in HRV are directly related to the Poincaré map

patterns in visual assessment. In the case of short fluctuations,

HRV segments are not much dispersed and torpedo shapes [62]

are predominant in many cases. In the case of long fluctuations,

HRV segments appear to be very dispersed forming complex-like

and fan-like return map shapes. All these Poincaré plot patterns

are directly related with cardiovascular risk [66].

One of the main contributions of this work is the prognosis of

cardiovascular risk in a general way, not only for specific cardiac

diseases or the prediction of specific cardiac episodes like other

publications have shown [1,8,13,14,16,18,19,20,21,29,55,61].

Moreover, it has been confirmed that multi-resolution and non-

linear analysis are much more suitable for the assessment and

prognosis of cardiovascular risk than statistical and spectral

classical analysis. KS significance tests also confirmed that those

features lead to higher statistical significance levels (pv0:001 for

Table 5. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel
(C~1; c~3) classifications using classical and non-linear/multi-resolution features of the HRV records from normal (N) and
cardiovascular risk (R) subjects.

Features Classifier Se (%) Sp (%) Np (%) Pp (%) Ac (%)

Statistical + Spectral MLP 66.67 60.00 64.29 62.50 63.33

RBFNN 26.67 93.33 56.00 80.00 60.00

SVM (Linear) 72.73 86.36 76.00 84.21 79.55

SVM (Polynomial kernel) 68.18 70.45 68.89 69.77 69.32

SVM (RBF kernel) 68.18 74.24 70.00 72.58 71.21

Non-linear + Multi-resolution MLP 80.00 100.00 83.33 100.00 90.00

RBFNN 73.33 100.00 78.95 100.00 86.67

SVM (Linear) 95.45 77.27 94.44 80.77 86.36

SVM (Polynomial kernel) 88.64 81.82 87.80 82.98 85.23

SVM (RBF kernel) 90.91 83.33 90.16 84.51 87.12

doi:10.1371/journal.pone.0017060.t005
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the case of ApEn and SmEn features). We developed a method

that combines statistical, spectral, multi-resolution and non-linear

features as well as ANN and SVM schemes for the prognosis of

cardiovascular risk. Exactly 90 HRV records were analyzed, 60 of

them were used to train and 30 to test each classification scheme.

From the classification schemes, MLP provided the best

classification rates for the prognosis of cardiovascular risk, with

an area under the ROC curve equal to 0.9800. On the other

hand, schemes such as the RBF network and SVMs showed

relatively high classification performances too. Another remark-

able finding is the improvement of the classification rates of SVM

using all the extracted features (not only the features selected by

KS significance tests) and PCA, which can be attributable to the

computation of the decision surface and the apparent SVM bias

towards the positive and negative cases. Furthermore, as expected,

ANN schemes often presented overfitting using all those features.

The comparison between the performances of all the implemented

classifiers was limited to sensitivity, specificity, positive predictive

value, negative predictive value and accuracy as a consequence of

ROC curves limitations, i.e., usually its contributions become

cumbersome when a comparison between different classifiers is

needed. Besides, their transformation to objective values is usually

limited to the calculation of the area under the curve [67].

According to findings reported in the literature [5], breath rate

modifies the fluctuation of the NN intervals in a HRV sample

record, i.e., there is an evident modification of the HRV when the

analyzed subject is breathing at different frequencies (e.g., 6

breaths/min or 12 breaths/min) provided that the rhythmic

fluctuations can be larger or shorter given the regulation

mechanisms and the RSA dynamics as an effect of the activity

of neural oscillators. As a direct consequence, the experimental

results from the comparison between records at different breathing

rates would be invalid. Thus, another contribution of this work is

the consideration of the breathing rate as an additional variable for

the assessment of HRV; this feature was included in every record

taken for the HRV database reported in this work.

Besides the strong considerations of the breathing rate and the

breathing signal, our computational implementation allows

working with the ECG and HRV signals for medical analysis.

There are new possibilities of analysis that commercial and

conventional HRV analysis software [55] have not yet considered;

additionally, there is the possibility of performing an automatic

prognosis using a trained ANN scheme embedded in the program.

The main objective of this module is to give support to the

specialist criteria on the HRV assessment. This computational

application needs strong validation and medical feedback, which

will be a topic for future research.

According to the results of this study, we strongly suggest

working with multi-resolution and non-linear analysis in order to

achieve more reliable cardiovascular risk prognosis, especially for

classification schemes such as ANNs and SVMs. It is evident that a

nonlinear deterministic approach is more appropriate to describe

more complex phenomena, indicating that apparently erratic

behavior can be generated even by a simple deterministic system

with nonlinear structure. In general terms, the fluctuations of

heartbeats during normal sinus rhythm could be partially

attributed to deterministic chaos, and a decrease in this type of

nonlinear variability could be observed in different cardiovascular

Table 6. MLP, RBF neural networks and linear SVM (C~1), SVM with polynomial kernel (C~1; c~4) and SVM with RBF kernel
(C~1; c~3) classifications using the projections of the features from PCA analysis of the HRV records from normal (N) and
cardiovascular risk (R) subjects.

Number of PCA
Projections Classifier Se (%) Sp (%) Np (%) Pp (%) Ac (%)

3 MLP 60.00 73.33 64.71 69.23 66.67

RBFNN 40.00 93.33 60.87 85.71 66.67

SVM (Linear) 77.27 63.64 73.68 68.00 70.45

SVM (Polynomial kernel) 84.09 70.45 81.58 74.00 77.27

SVM (RBF kernel) 89.39 65.15 86.00 71.95 77.27

4 MLP 80.00 80.00 80.00 80.00 80.00

RBFNN 46.67 86.67 61.90 77.78 66.67

SVM (Linear) 90.91 90.91 90.91 90.91 90.91

SVM (Polynomial kernel) 90.91 93.18 91.11 93.02 92.05

SVM (RBF kernel) 93.94 89.39 93.65 89.86 91.67

5 MLP 66.67 100.00 75.00 100.00 83.33

RBFNN* N/A N/A N/A N/A N/A

SVM (Linear) 86.36 95.45 87.50 95.00 90.91

SVM (Polynomial kernel) 81.82 95.45 84.00 94.74 88.64

SVM (RBF kernel) 81.82 95.45 84.00 94.74 88.64

10 MLP 80.00 73.33 78.57 75.00 76.67

RBFNN* N/A N/A N/A N/A N/A

SVM (Linear) 81.82 81.82 81.82 81.82 81.82

SVM (Polynomial kernel) 81.82 95.45 84.00 94.74 88.64

SVM (RBF kernel) 81.82 95.45 84.00 94.74 88.64

*The results for this classifier were not reported due to their poorness.
doi:10.1371/journal.pone.0017060.t006
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diseases [58]. Further investigation is needed for the incorporation

of chaotic dynamics and fractals to the analysis of HRV for the

prognosis of cardiovascular risk proposed in this study.

Conclusions
This work has been focused on 4 major aspects: (1) The HRV

database conformation integrating the breathing signal; (2)

integrating the breathing frequency to the analysis of HRV

records; (3) the analysis of statistical, spectral, multi-resolution and

non-linear features linked with classification schemes for the

prognosis of cardiovascular risk as well as the confirmation of the

properties of these features as they are reported in the literature;

(4) a brief illustration of the software implementation of advanced

HRV analysis integrating an automatic prognosis tool using a

standard 5 min ECG record.

This work has developed a method for the cardiovascular risk

prognosis using statistical, spectral, multi-resolution and non-linear

features extracted from HRV data. The database used in this work

was recorded using a proper medical protocol and contains a total

of 90 HRV and breathing signal records from normal and

cardiovascular risk subjects. The suitability of each HRV analysis

feature has been shown by using KS-tests and neural and support

vector classifiers. Short-term HRV features are highly useful for

the prognosis of cardiovascular risk; nonetheless, long-term

features can be useful for increasing the positive predictive value

of the proposed classifiers.

In addition, it has become obvious that the performance

reported by the different feature selection strategies depends

largely on the pattern recognition scheme implemented to classify

the data. For the short-term HRV features analyzed in this work,

there were two main observed effects: First, the ANN schemes

were more suitable for the KS test-based feature selection as well

as for feature spaces of low dimension; and second, SVM schemes

were more suitable for the PCA-based feature selection as well as

to high dimensional feature spaces. Nonetheless, as the PCA

projected features improved by far the performance of SVM

classifiers, their statistical significance showed influential decrease

that affected negatively the performance of the ANN classifiers.

Breathing signal and breathing frequency were employed in this

work for the analysis of HRV, given the findings about RSA

phenomena on the modification of the fluctuations of NN intervals

at different breathing frequencies [5]. All the HRV measurements

in this work were done approximately at 12 breaths/min for every

single subject in the database; this was guaranteed by the

procedures established in the medical protocol that we designed

to carry out this research; moreover, the acquired breathing

signals confirmed it.

Finally, HRV signal –as both a traditional and non-linear signal

in nature– has been an important predictor of cardiovascular risk.

Furthermore, this work represents an important step in compre-

hensively understanding such dynamics, and more importantly, on

the prognosis of cardiovascular risk as a stated goal established by

Chattipakorn et al. (2007) and a plethora of researchers and

clinicians: ‘‘It is necessary to understand the mechanisms of HRV

components and improve their sensitivity and specificity as a

prognostic marker’’ [68]. Furthermore, the combination of the

methods reported in this work and other ECG and physiological

parameters is expected to lead to a solution for the prognosis of

cardiovascular mortality at reasonable cost-effectiveness.
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