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Abstract

G protein-coupled receptors (GPCRs) are attractive targets for pharmaceutical research. With the recent determination of
several GPCR X-ray structures, the applicability of structure-based computational methods for ligand identification, such as
docking, has increased. Yet, as only about 1% of GPCRs have a known structure, receptor homology modeling remains
necessary. In order to investigate the usability of homology models and the inherent selectivity of a particular model in
relation to close homologs, we constructed multiple homology models for the A1 adenosine receptor (A1AR) and docked
,2.2 M lead-like compounds. High-ranking molecules were tested on the A1AR as well as the close homologs A2AAR and
A3AR. While the screen yielded numerous potent and novel ligands (hit rate 21% and highest affinity of 400 nM), it delivered
few selective compounds. Moreover, most compounds appeared in the top ranks of only one model. These findings have
implications for future screens.
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Introduction

G protein-coupled receptors (GPCRs) are one of the pharma-

ceutically most important protein families, and the targets of

around one third of present day drugs [1]. They mediate the

transmission of signals from the exterior to the interior of a cell by

binding signaling agents and, via conformational changes, eliciting

intracellular responses. GPCRs consist of seven membrane-

crossing helices. The binding pockets of the native small molecule

ligands, i.e. orthosteric binding sites, are situated in the middle of

the helical bundle in the Class A GPCR structures that have been

determined so far [2]. Despite the recent advances in GPCR X-ray

structure determination [3] and the substantial numbers of novel

ligands identified for some GPCRs [4,5], there are still many

(potential) GPCR targets for which no structure or ligands are

known. In order to apply protein structure-based methods of

ligand identification, in particular docking, to receptors that lack

an experimentally determined structure, homology modeling is a

promising avenue. Constructing homology models is facilitated by

the fact that the transmembrane (TM) region of Class A GPCRs is

relatively well conserved [6]. The accuracy of homology models is

limited, however, by the uncertainty of modeling the extra- and

intracellular loops, which greatly vary in length and amino acid

composition, even between otherwise closely related GPCRs [7].

In this study, we tested the utility of homology models for

docking and selecting compounds with reasonable affinity for the

investigated receptor subtype. We intentionally restricted the

amount of existing ligand data used to refine the binding site

during model building to mimic a situation where few ligands are

known (as would be the case for previously little investigated

‘‘novel’’ targets). In fact, except for the very first steps of model

building and optimization, only the affinity data obtained in this

study was used to improve the homology models. Three sequential

cycles of model refinement, docking, and ligand testing were

applied, using the data acquired in previous rounds to guide the

receptor model optimization in the following rounds. In parallel,

we also probed the tendency of the screen to identify novel ligands

of other subtypes within the same receptor family, i.e. the

selectivity of a homology model-based screen against a single

GPCR subtype. These findings were compared with the distribu-

tion of selectivity ratios of known ligands for the same subtypes.

The adenosine receptors (ARs), which consist of the four

subtypes A1, A2A, A2B, and A3, have been chosen as a suitable test

case for the application of virtual screening to a closely related

subtype of a known GPCR structure. There are both antagonist-

bound and agonist-bound X-ray structures known for the A2AAR

subtype, with various ligands co-crystallized for each case. Thus,

the region for orthosteric AR ligand binding has been well

characterized. The first antagonist-bound structure to be deter-

mined was co-crystallized with the high affinity ligand 4-[2-[7-

amino-2-(2-furyl)-1,2,4-triazolo[1,5-a] [1,3,5]triazin-5-yl-ami-

no]ethylphenol (1, ZM241385, Fig. 4) [8,9]. An unexpected
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orientation of the ligand perpendicular to the plane of the

membrane bilayer was observed. Extracellular loops, as well as

helical TM domains, are involved in coordinating the ligand. In

silico virtual screening for A2AAR antagonists has already been

demonstrated to be successful based on the inactive conformation

of the A2AAR, as determined by crystallography [10,49].

Among the different subtypes, the A1AR is also an attractive

pharmaceutical target. Its antagonists have been explored as

kidney-protective agents, compounds for treating cardiac failure,

cognitive enhancers, and antiasthmatic agents [11,12]. Structur-

ally diverse antagonists, such as the pyrazolopyridine derivative 2
and the 7-deazaadenine derivative 3, were previously identified,

and some of these compounds were under consideration for

clinical use [13,14]. The prototypical AR antagonists, i.e. the 1,3-

dialkylxanthines, have provided numerous high affinity antagonists

with selectivity for the A1AR. One such antagonist, rolofylline 4,

an alkylxanthine derivative of nanomolar affinity, was previously

in clinical trials for cardiac failure [15].

The human A1AR subtype was investigated in this study

because it shares a high level of sequence identity (40%) with the

A2AAR. It should thus be possible to model the A1AR by

homology with high confidence. While this homology model was

the only three-dimensional structure of a protein employed in the

screening, all compounds were also tested in receptor binding

assays against two other AR subtypes in order to investigate the

intrinsic selectivity of the model.

Methods

Homology Modeling
The 3D structure of the A1AR was generated with the software

MODELLER [16,17] using the X-ray structure of the A2AAR

(PDB 3EML; the only structure available at the time) [8] as a

template. The overall sequence identity between the two proteins

is 40%, with an additional 21% similar residues. Since the A2AAR

structure was solved with the antagonist 1, water molecules, and

stearic acid, these heteroatoms were included during A1AR model

building to obtain a model conformation closer to the A2AAR X-

ray structure.

Due to the stochastic conformational sampling used for

homology modeling, an ensemble of 100 models was constructed

using the same alignment. The most accurate model from this

ensemble of models was selected according to the DOPE (Discrete

Optimized Protein Energy) atomic distance-dependent statistical

potential function [18], which is included in MODELLER.

However, because DOPE had only been trained and tested on

Figure 1. The four A1AR models used in this study. Helices are labeled with Roman numerals. For clarity, individual residues mentioned in the
text, depicted as thick sticks, are only labeled in panel A. Additional residues that were optimized are in thin sticks, including Lys1684.99, Glu170,
Lys173, and Met177. Helices I and II have been removed for clarity. The X-ray crystallographic structure of the A2AAR, the template (PDB 3EML), is
shown in black.
doi:10.1371/journal.pone.0049910.g001
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globular proteins, its usefulness for assessing models of membrane

proteins such as GPCRs was unclear. Thus, globular regions were

extracted from the modeled A1AR structures by selecting residues

in a 6 Å sphere around C7, C11, and C12 of 1. This extraction

resulted in 100 approximately globular protein fragments. These

fragments were scored with DOPE and DOPE_HR (DOPE high

resolution) and the top five scoring models were inspected visually.

Criteria in this visual inspection were the absence of obvious steric

clashes with 1, the absence of kinks in the helices, an orientation of

the sidechain of Asn2546.55 away from the main chain, and

preservation of the disulfide bonds between Cys803.25-Cys169 and

Cys2606.61-Cys2637.28 (superscripts denote Ballesteros-Weinstein

numbers [19]). The model that was chosen among the top five

according to these criteria was denoted as model O.

Table 1. In vitro affinity in binding to three subtypes of hARs of diverse heterocyclic derivatives identified through their high ranks
in the in silico screen (structures are shown in Chart 2).

Compound ID A1
a A2A

a A3
a

Model Closest ChEMBLb

% Inhibition* or Ki (nM) % Inhibition* or Ki (nM) % Inhibition* or Ki (nM)

7 1769% 3310±270 4363% A 0.53

8 3460±420 1166% 3564% A 0.64

9 262% 2360±260 4860±330 A 0.47

10 969% 3761% 9060±1100 A 0.57

11 1369% 3563% 13,700±2200 A 0.56

12 2869% 3655±870 2780±920 A 0.72

13 10610% 10,900±2200 3480±1100 A 0.60

14 19610% 6540±1090 4961% A 0.25

15 2064% 563% 9330±1800 A 0.30

16 1362% 3660.2% 13,400±1900 A 0.46

17 400±60 740±390 4867% B 0.49

18 3430±1030 2130±720 1760±210 B 0.41

19 3340±560 6660±860 2363% B 0.41

20 45%** 3560±510 1520±360 B 0.71

21 980±90 1340±310 205±30 B 0.39

22 36%** 9300±700 4266% B 0.32

23 1220±340 3780±830 70±20 B 0.50

24 3369% 6140±1690 40±6 D 0.42

25 2930±480 1450±170 550±70 D 0.30

26 3940±390 1370±470 3850±590 D 0.27

aBinding in membranes of CHO (A1 and A3ARs) or HEK293 (A2AAR) cells stably expressing a hAR subtype. Total and nonspecific binding at the A1AR determined using
[3H]DPCPX in the absence and presence of 10 mM CGS15943 (N-[9-chloro-2-(2-furanyl) [1,2,4]triazolo[1,5-c]quinazolin-5-amine), respectively.
bECFP4 Tanimoto similarity for the most structurally similar known AR ligand (Table S3).
*percent inhibition at 10 mM compound concentration.
**n = 1.
doi:10.1371/journal.pone.0049910.t001

Figure 2. Calculated binding mode of compound 8, the ligand
hit with the highest selectivity towards A1AR. The protein is
model A. Orange dotted lines denote hydrogen bonds formed with
Asn2546.55. Helices are labeled with roman numerals.
doi:10.1371/journal.pone.0049910.g002

Table 2. Performance of the four homology models against
the three AR subtypes.

A1 A2A A3

MODEL A/Ta % A/T % A/T % Round

A 1/15 7% 5/15 33% 7/15 47% 1

B 5/12 42% 7/12 58% 4/12 33% 2

C 0/6 0% 0/6 0% 0/6 0% 3

D 2/6 33% 3/6 50% 3/6 50% 3

Sb 8/39 21% 15/39 38% 14/39 36%

anumber of actives (A) over number of molecules tested (T).
bsum: overall hit rate for all tested ligands.
doi:10.1371/journal.pone.0049910.t002
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Model Refinement
As shown previously, adapting the orthosteric sites of GPCR

homology models to known ligands improves pose fidelity and hit

rates [20]. Thus, for optimization of model O, binding site residues

within a 6 Å radius around the equivalent position of 1 (the ligand

in 3EML) were iteratively refined with CHARMM [21] and

MODELLER. The residues selected for optimization were also

compared to mutagenesis studies of the A1AR in recognition of

agonists and antagonists [22,23]. Residues that caused major

changes in binding affinity (up to 100-fold decrease) after alanine

substitution were checked against the selection of residues within 6

Å of the ligand. In all cases, the residues that contributed to a loss

of binding affinity after alanine substitution were included in the

selection.

For the part of the refinement using CHARMM, the

CHARMm22 force field (Accelrys, Inc.) was used, and harmonic

restraints with a force constant of 50 kcal/mol?Å2 and a minimum

at 2.4 Å were assigned to the hydrogen bonds formed between the

respective ligand and Asn2546.55, the key recognition residue in

the A1AR binding pocket. A known ligand of the A1AR (4-[(3-

benzyl-5-phenyl-triazolo[4,5-e]pyrimidin-7-yl)amino]cyclohexan-

1-ol; 5, [24]) was placed manually in the binding site (to ensure

correct orientation, i.e. maintenance of the two hydrogen bonds

with Asn2546.55) and force-field minimized while keeping the

adjacent residues fixed. The optimized ligand pose was then

included in the following re-modeling step with MODELLER.

This procedure of force-field minimizing the ligand and remod-

eling with MODELLER was repeated until the atomic positions of

the active site residues and the ligand converged. To check for bias

introduced by the optimization with the reference triazolo-

pyrimidine derivative 5, a second AR antagonist (1-(8-butyl-2-

furan-2-yl-8H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-c]pyrimidin-5-

yl)-3-(4-nitro-phenyl)-urea, 6 [25]) was manually placed in the

binding site, again making making sure that the hydrogen bonds

with Asn2546.55 are formed, and minimized with PLOP [26,27].

Residues whose interaction with the ligand had unfavorable force

field energy values (Ala662.61, Ile692.64, Phe171, Leu2506.51, and

Ile2747.39) were sidechain-optimized followed by minimization

together with the ligand. Both ligands had been part of a set of

3276 A1AR binders extracted from the WOMBAT database [28].

They were selected for the refinement process because they docked

in poses interacting with Asn2546.55 and ranked highly when

docked to model O. The final refined structure, termed model A,

was used in the first docking round (see below and Fig. 1A).

Using the ligand data acquired in round one, the orthosteric

binding site of the A1AR was optimized a second time. In this

round of refinement (resulting in model B; Fig. 1B), residues were

chosen based on their deviation from the corresponding residues

in the A2AAR structure. In particular, extracellular loop 3 (ECL3;

residues Phe2596.60 to Cys2637.28) and adjacent residues in helix 7

(up to Ser2677.32) were rebuilt to maintain the salt bridge between

His2647.29 and Glu172. Moreover, the ‘‘toggle switch’’ Trp2476.48

and the adjacent His2516.52, which showed large deviations of up

to 140u in their x1 angles, were manually flipped and then

minimized. No restraints were applied during loop rebuilding, but

all loop conformations that did not place the Ca and Cc atoms of

His2647.29 within 0.8 Å of the equivalent positions of these atoms

in the A2AAR structure 3EML were discarded. The sidechain

orientations for all other residues were sampled and minimized

together with 8 (Figure 5), the ligand that was used in this

refinement. All optimizations in this and the third round were

done with PLOP and the pose of 8 was the one obtained from

docking.

Refinements in the third round again used the most selective

ligand identified in the previous rounds (8) and optimized the

sidechains of the same residues as before. Multiple structures were

generated, clustered by sidechain conformations and assessed by

calculating their ability to rank the ligands over the decoys of

rounds one and two (assessed via the value of the area under the

curve [logAUC] of receiver-operator characteristic [logROC]

plots). For each sidechain conformation cluster, the best structure

according to the logAUC criterion was kept and used in docking

(models C and D; Fig. 1C and 1D, respectively).

Docking
All calculations were carried out using DOCK3.5.54 [29–32]

and the approximately 2.2 M molecules of ZINC’s lead-like subset

[33]. The molecules in this subset are between 250 and 350 g/mol

in molecular weight, have less than 7 rotatable bonds, and have an

xlogP between 2.5 and 3.5.

The docking spheres used as anchor points in the binding site to

position the database molecules in the orthosteric pocket were

calculated based on the heavy-atom positions of carazolol and 1
when superimposing the backbone atoms of the b2-adrenergic

receptor (PDB code 2RH1) and A2AAR, respectively, with the

A1AR model. Where necessary, spheres were moved manually to

obtain a more homogenous distribution. During docking, every

molecule was fitted onto spheres chosen by the algorithm based on

the similarity of the distances between the spheres and corre-

sponding heavy atoms in the molecules. Each molecule pose was

minimized for 25 steps with the simplex method. Finally, the

binding affinity was estimated by adding the electrostatic and van

der Waals interaction energies and correcting for solvation

penalty. These energy terms were obtained from precalculated

values stored on cubic grids. To emphasize the highly conserved

interaction of adenosine with Asn2546.55, partial charges on the

polar side chain atoms were amplified by 0.4 units in such a way

that the overall charge of the residue remained neutral. After

docking, the top 500 poses were inspected visually to filter out

Figure 3. Comparing the selectivity of ligands from this work
with ChEMBL data. Selectivity statistics for experimentally measured
affinities of molecules from the ChEMBL database (outer shell) and our
screen (inner donut). Selectivity ratios have been binned into log-sized
bins, ranging from more than 1000-fold selectivity in either direction to
1.
doi:10.1371/journal.pone.0049910.g003
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molecules with unsatisfied hydrogen bond donors or acceptors,

incorrect protonation states, unlikely binding modes due to

incorrect parametrization, or highly strained conformations. The

selected molecules were acquired from their respective vendors as

listed in the ZINC database.

Selectivity Ratios of known AR Ligands
All ligands annotated with an activity value against at least one

of the investigated AR subtypes were downloaded from version 12

of the ChEMBL database [34]. The data was made uniform by

keeping only affinities measured as Ki. Ki-values described as

‘‘greater than’’ a threshold (ranging from 1028 M to 1022 M,

depending on the study the data originated from) were treated as

‘‘inactive’’. For molecules with more than one independently

measured Ki value, the average was calculated. Cases with at least

one ‘‘active’’ and one ‘‘inactive’’, i.e. inconsistent, classification

with respect to a particular receptor were discarded. The

selectivity ratio was calculated by dividing the respective Ki values

of one ligand against two different receptor subtypes, and binned

according to their ratio. The Ki-value of an inactive molecule was

arbitrarily set to 1 M, except for cases where a molecule was

inactive against both investigated subtypes, and was thus not

considered further in the analysis. The choice of the numerical

value for inactive compounds had no influence on the conclusions

drawn, as we only compared data that had been obtained with the

same settings.

Figure 4. Chart 1. Reference compounds (known selective A1AR antagonists) mentioned in the text. Ki values are as follows, with targets other than
human A1AR in parentheses: 1: Ki 0.8 nM [8]; 2: Ki 18 nM; 3: Ki 1 nM; 4: Ki 1 nM [11]; 5: Ki 3 nM (bovine A1AR [20]); 6: Ki 584 nM [21].
doi:10.1371/journal.pone.0049910.g004

In Silico Screening for A1AR Antagonists
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Figure 5. Chart 2. Molecules identified in this study. Binding affinity data at three AR subtypes are presented in Table 1.
doi:10.1371/journal.pone.0049910.g005
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Experimental Assays
Binding affinity for three human AR (hAR) subtypes was

measured using standard radioligand assays and membrane

preparations from Chinese hamster ovary (CHO) cells [35] (A1

and A3) or human embryonic kidney (HEK) 293 cells (A2A) stably

expressing a hAR subtype (Table 1).

Receptor binding assays: [3H]8-Cyclopentyl-1,3-dipropylxanthine

([3H]DPCPX, 120 Ci/mmol) and [125I]N6-(4-amino-3-iodobenzy-

l)adenosine-5’-N-methyluronamide ([125I]I-AB-MECA, 2200 Ci/

mmol) were purchased from Perkin–Elmer Life and Analytical

Science (Boston, MA). [3H](2-[p-(2-Carboxyethyl)phenyl-ethyla-

mino]-5’-N-ethylcarboxamido-adenosine) ([3H]CGS21680, 39 Ci/

mmol) was purchased from American Radiolabeled Chemicals,

Inc. (St. Louis, MO). Other pharmacological reagents were

purchased from Tocris-R&D Systems, Inc. (Minneapolis, MN).

Test compounds were prepared as 5 mM stock solutions in

DMSO and stored frozen.

Cell Culture and Membrane Preparation: CHO cells stably expressing

the recombinant hA1 and hA3ARs, and HEK-293 cells stably

expressing the hA2AAR were cultured in Dulbecco’s modified

Eagle medium (DMEM) and F12 (1:1) supplemented with 10%

fetal bovine serum, 100 units/mL penicillin, 100 mg/mL strepto-

mycin, and 2 mmol/mL glutamine. In addition, 800 mg/mL

geneticin was added to the A2A media, while 500 mg/mL

hygromycin was added to the A1 and A3 media. After harvesting,

cells were homogenized and suspended in PBS. Cells were then

centrifuged at 240 g for 5 min, and the pellet was resuspended in

50 mM Tris-HCl buffer (pH 7.5) containing 10 mM MgCl2. The

suspension was homogenized and was then ultra-centrifuged at

14,330 g for 30 min at 4uC. The resultant pellets were resus-

pended in Tris buffer and incubated with adenosine deaminase (3

units/mL) for 30 min at 37uC. The suspension was homogenized

with an electric homogenizer for 10 sec, pipetted into 1 mL vials

and then stored at -80uC until the binding experiments. The

protein concentration was measured using the BCA Protein Assay

Kit from Pierce Biotechnology, Inc. (Rockford, IL) [36].

Binding assays: Standard radioligand binding assays for A1, A2A,

and A3ARs were used [37–39]. Into each tube in the binding assay

was added 50 mL of increasing concentrations of the test ligand in

Tris-HCl buffer (50 mM, pH 7.5) containing 10 mM MgCl2,

50 mL of the appropriate agonist radioligand, and finally 100 mL

of membrane suspension. For the A1AR (22 mg of protein/tube)

the radioligand used was [3H]DPCPX (final concentration of

0.5 nM). For the A2AAR (20 mg/tube) the radioligand used was

[3H]CGS21680 (final concentration 10 nM). For the A3AR

(21 mg/tube) the radioligand used was [125I]I-AB-MECA (final

concentration 0.2 nM). Nonspecific binding was determined using

a final concentration of 10 mM NECA diluted with the buffer. The

mixtures were incubated at 25uC for 60 min in a shaking water

bath. Binding reactions were terminated by filtration through

Brandel GF/B filters under a reduced pressure using a M-24 cell

harvester (Brandel, Gaithersburg, MD). Filters were washed three

times with 3 mL of 50 mM ice-cold Tris-HCl buffer (pH 7.5).

Filters for A1 and A2AAR binding were placed in scintillation vials

containing 5 mL of Hydrofluor scintillation buffer and counted

using a Perkin Elmer Liquid Scintillation Analyzer (Tri-Carb

2810TR). Filters for A3AR binding were counted using a Packard

Cobra II c-counter.

Data analysis: Binding and functional parameters were calculated

using Prism 5.0 software (GraphPAD, San Diego, CA, USA). IC50

values obtained from binding inhibition curves were converted to

Ki values using the Cheng-Prusoff equation [40]. Data were

expressed as mean 6 standard error or percentage inhibition at

10 mM.

Results

Model Building & Docking
In total, four conformational variants of the A1AR homology

model were used during docking and ligand selection (Fig. 1).

Model A was the original model, refined with the two previously

known ligands 5 and 6; model B was obtained by rebuilding ECL3

and adjacent residues around ligand 8; and models C and D were

generated by further adapting the binding site to the most selective

ligand previously identified in this study (8; binding mode shown

in Fig. 2) using logAUC and side chain orientation diversity as

model selection criteria. In terms of heavy-atom RMSD, models C
and D differed by less than 0.18 Å overall and by less than 1.17 Å

in the refined residues in the binding site (Fig. 1). Docked

compounds that ranked highly in at least one of the models

(Figure 5 and Table S1) were selected after visual inspection and

tested experimentally for receptor affinity. These diverse com-

pounds included thiazole (7, 8, 10–13, 16, 18, 20, and 23), 1,3,5-

triazine (9 and 24) and other heterocyclic cores. Thiazoles and

1,2,4-triazines are known chemotypes for binding to ARs [41,42].

A xanthine derivative 19, unusual in its 1-phenyl substitution, also

appeared as a hit. According to the docking predictions, this

phenyl ring of 19 was oriented away from Asn2546.55 toward the

pocket lined by Val622.57, Ala662.61, and Val873.32. A common-

ality of all compounds was that they form two hydrogen bonds

with Asn2546.55 in the calculated poses.

Table 1 lists all ligands that inhibited radioligand binding to at

least one hAR subtype by more than 50% at a concentration of

10 mM and were thus classified as active. Their two-dimensional

structures are shown in Figure 5. Data for molecules that did not

pass this threshold are presented in Table S1. Table 2 lists the total

number of molecules tested in each round. In total, we found 8

ligands for the A1AR, 15 for the A2AAR and 14 for the A3AR. The

structurally most similar known AR ligand from ChEMBL for

each hit, as determined by ECFP4 Tanimoto similarity, is listed in

Table S2. One of the ligands (14) may be regarded as a novel AR

ligand because its Tanimoto similarity to the most similar known

ligand is less than 0.26, which is generally accepted as a strict

cutoff [43]. By a more relaxed cutoff of 0.4 [44], five more

compounds (15, 21, 22, 25, 26) are novel. Table 2 furthermore

details the performance of the individual models by their ability to

predict ligands. Model C was the most unproductive, having no

correct ligand predictions. It is interesting to note that there is no

clear trend in the performance in terms of selectivity. One could

have assumed that models productive for one AR subtype might

perform badly in retrieving ligands for a different one (despite all

of them being models with the A1AR sequence). This only seems

to be the case for model A (retrieving more A2A and A3AR ligands

than A1AR ligands), but not the other ones, which tend to find

approximately equal numbers for ligands of all subtypes.

Selectivity Calculations
A total of 2181 ligands from the ChEMBL database had

experimentally determined non-negative Ki values against both A1

and A2A, and 1476 molecules had such measurements against A1

and A3. Only 77 of all known experimental AR ligands had

ambiguous classifications as being ‘‘inactive’’ and ‘‘active’’ against

at least one receptor, and were thus not investigated further. The

results are presented as pie charts in Fig. 3. Subtype-selective

molecules were slightly more prevalent between A1 and A3 than

between A1 and A2A: 66% and 58% of the ligands were more than

10-fold selective in either direction, respectively. The ligands

emerging from this screen tended to be more selective for A2A and

A3 than A1, as can be seen from the larger areas for the
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corresponding selectivity ratios (inner donuts in Fig. 3). Although

the numbers have to be viewed with caution because of the

limitations of statistics of small numbers, these observations

contrast those for the ChEMBL ligands, which tended to be more

selective for A1.

Discussion

Three main results emerge from this study. First, as has been

shown previously [45,46], different models (or X-ray structures) of

the same receptor yield different ligand sets, even when screening

the same diverse library. Interestingly, the performance of the

various models, both in absolute number of actual ligands as well

as in terms of selectivity, differed widely. This fact is both en- and

discouraging. It is encouraging, because it means that even using

models with large structural deviations from a closely related

template (i.e. the conformation of ECL3, the lack of the conserved

salt bridge between His2647.29 and Glu172, and the orientation of

Trp2476.48) such as model A, docking is likely to find pharmaco-

logically validated ligands. Conversely, it is discouraging, as the

presumably refined model C did not yield any ligands. This is

particularly striking considering the small differences between

models C and D. We did not exclude the molecules tested in

earlier rounds of screening during the subsequent ones, yet the vast

majority of ligands identified in one model did not appear in the

top ranks of a screen against another one (data not shown). Such

behavior is a testament to the conformational flexibility of GPCRs,

but also to the sensitivity of docking to small changes in the protein

structure. In combination, it can be exploited to identify larger

numbers of ligands by docking to more than one protein

conformation. Any model of a protein structure (including the

X-ray solution) represents only one possibility from the continuum

of conformations. Thus, using differently optimized models (e.g.

obtained by slightly different ligand placements or different force

field parameters), the set of identified ligands would have changed.

Yet, the overall performance, with some models being able to

recognize ligands and some not, would be similar. This fact might

also be considered disheartening for approaches that aim to

include receptor flexibility via docking to multiple conformations

of a receptor and calculating the average rank of a molecule across

all structures.

Second, docking to GPCRs, even using ‘‘only’’ homology

models, works well. The screen against the A1AR was successful by

all criteria, with a hit rate of 21% and potent compounds with Ki

values as low as 400 nM for the 2H-chromen-2-imine derivative

17. Some of the ligands also represent novel chemotypes for the

A1AR, such as 17 and related, albeit only weakly active,

derivatives quinazolin-4(3H)-ones (14, 22, 25) and a pyrido[2,3-

d]pyrimidin-4(3H)-one (26). In particular, the ligands identified

with model D tend to have ECFP4 Tanimoto similarity values of

less than 0.40 when compared to the 7173 AR ligands in the

ChEMBL database. The reason for the relatively few genuinely

novel ligands presumably lies in the bias of the library, as shown

before [47]. However, the overall performance of this screen is in

line with previous docking studies that identified numerous and

potent GPCR ligands [9,45–49]. As was the case here, most of

these campaigns targeted a Class A GPCR that binds small

organic molecules. Such receptors tend to have rather narrow,

well-defined binding sites – in contrast to the CXCR4 receptor,

the only peptide-bound GPCR structure elucidated so far [50].

Smaller binding pockets make for narrower physical search spaces

which is likely one of the reasons behind the tractability of these

GPCRs by docking and similar approaches.

Third, for receptors with high degrees of similarity, such as the

ARs, selective compounds cannot be predicted solely by docking

to one receptor subtype. Most of the ligands identified as A1AR

hits also bound to one of the other AR subtypes, and vice versa. In

fact, the screen directed toward the A1AR worked even better

against the A3AR, with a hit rate of 36% and the most potent

compound inhibiting with a Ki of 36 nM. This is an advantage if it

is desired to discover ligands for other related GPCR subtypes

within a single screening process.

However, there is one compound, 8, which appears selective for

the A1AR by the criteria used in this screen. In addition, some of

the ligands were also moderately selective in binding to the A3AR,

which may be due to the fact that the binding pocket of the A3AR

is the most divergent one when comparing the three AR subtypes

(Table S3), suggesting the relative ease of achieving A3AR

selectivity. This tendency to cross over to other subtypes in the

screening process can be expected from the similarity of the

binding sites. It is difficult to estimate, however, to what degree the

use of homology models affected the selectivity of the compounds.

Bias stemming from the template used (the A2AAR) cannot be

ruled out, but cannot be the only factor as evidenced by the many

compounds binding to A3AR. Very likely, even computational

screens employing X-ray structures result in similarly nonsubtype-

selective hit compounds. However, because biochemical testing is

limited to the targeted subtype in most studies, this does not

become apparent. As a further example of this observation, in the

A2AAR screen by Carlsson et al. [10], which is based on a crystal

structure, several ligands were found that had mixed selectivity for

the A2A and A3ARs.

Docking will undoubtedly continue to play a significant role in

the quest for novel GPCR ligands, as it has been able to

consistently identify potent and chemically novel ligands for a

variety of receptors. The targeted identification of selective

compounds by combining multiple approaches to model the same

receptor and closely related members of the same protein family

will be the topic of future investigations. Furthermore, the most

promising hits from this study, such as a mixed A1/A2AAR ligand,

i.e. the 2H-chromen-2-imine derivative 17, or a moderately potent

and slightly selective A3AR ligand, i.e. 1,3,5-triazine derivative 24,

could now be optimized structurally for AR affinity and selectivity.
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Table S1 Ligands that were tested and replaced less
than 50% of radioligand at 10 mM in all targets. **n = 2.
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Table S3 Comparison of binding site residues between
A1AR, A2AAR and A3AR. asuperscripts give the Balles-
teros-Weinstein numbers.
(PDF)
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