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Abstract

Background: The AutoDock family of software has been widely used in protein-ligand docking research. This study
compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds
active against HIV protease.

Methodology/Principal Findings: Both programs were used to rank the members of two chemical libraries, each containing
experimentally verified binders to HIV protease. In the case of the NCI Diversity Set II, both AutoDock 4 and Vina were able
to select active compounds significantly better than random (AUC = 0.69 and 0.68, respectively; p,0.001). The binding
energy predictions were highly correlated in this case, with r = 0.63 and i= 0.82. For a set of larger, more flexible compounds
from the Directory of Universal Decoys, the binding energy predictions were not correlated, and only Vina was able to rank
compounds significantly better than random.

Conclusions/Significance: In ranking smaller molecules with few rotatable bonds, AutoDock 4 and Vina were equally
capable, though both exhibited a size-related bias in scoring. However, as Vina executes more quickly and is able to more
accurately rank larger molecules, researchers should look to it first when undertaking a virtual screen.
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Introduction

The use of virtual screening to discover new inhibitors is

becoming a common practice in modern drug discovery [1].

Receptor-based virtual screens seek to ‘‘dock’’ members of a

chemical library against a given protein structure, predicting the

conformation and binding affinity of the small molecules [2]. A

large number of programs are available for this purpose, such as

DOCK [3], FlexX [4], GOLD [5], and AutoDock [6,7,8]. This

study focuses on AutoDock 4 and AutoDock Vina (henceforth

referred to as AD4 and Vina), both notable for being among the

few docking programs that are freely available for academic and

industrial use. The AutoDock programs are further unique in that

they are some of the only widely-used docking programs released

under open source licenses (GNU General Public License and

Apache Open Source License).

Both AD4 and Vina operate in a roughly similar manner,

pairing an empirically-weighted scoring function with a global

optimization algorithm. Key differences lie in the local search

function (illustrated in Figure 1) and parameterization of the

scoring function. In addition, Vina is designed to operate much

more quickly and its authors have shown that its accuracy in re-

docking protein-ligand complexes is greater than AD4 [8]. For 190

protein-ligand complexes, Vina was able to recapitulate the

observed binding mode within 2 Å RMSD in 78% of cases, while

AD4 succeeded for only 49%. However, using AD4 and Vina to

screen chemical libraries was not addressed. In this study, we

compared the ability of AD4 and Vina to identify ligands by

ranking the relative binding affinity of small molecules.

For this task, the National Cancer Institute (NCI) Diversity Set

II (DSII) was one of the chemical libraries used. DSII contains

1,364 compounds that tend to be small (the average molecular

weight is less than 300 Daltons) and have few rotatable bonds.

HIV protease was chosen as the protein target because it is a well-

studied protein that has been a major focus for structure-based

drug design [9]. As a complement to the relatively small DSII

compounds, an additional collection of molecules was taken from

the Directory of Universal Decoys (DUD) [10]. DUD contains

known ligands for a variety of proteins, and provides accompa-

nying ‘‘decoys’’ – molecules with composition similar to the known

ligands, but with a different topology – that are assumed not to

bind to the protein. There are 53 known HIV protease ligands in

DUD, along with 1,885 decoys. Overall, these compounds tend to

be appreciably larger than those from DSII, in terms of both

molecular weight and number of rotatable bonds.

Although DUD is already divided into known ‘‘active’’ and

inactive compounds against HIV protease, that information is not

available for DSII. A biophysical method, differential scanning

fluorimetry (DSF) [11,12,13], was used to infer binding between

HIV protease and the constituents of DSII. DSF functions by
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measuring the melting temperature of a protein through the use of

a fluorescent dye that interacts with the hydrophobic regions of the

protein. As a protein in solution is heated in the presence of this

dye, the protein unfolds and more of its surface is exposed to the

dye, which generates a greater fluorescent signal. The melting

temperature can be determined based on fluorescence measure-

ments taken during a gradual increase in temperature. The

presence of a bound ligand will stabilize the protein, increasing the

melting temperature. Screening DSII via DSF revealed a number

of stabilizing ligands, which were in turn treated as active

compounds for the virtual screen. The DSF assay does not

provide information on the binding site of the ligand, so the

docking studies focused on the selection of active compounds

rather than specific binding modes.

To evaluate the performance of AD4 and Vina in ranking the

small molecules from DSII and DUD, each compound was docked

against a single HIV protease structure. The predicted binding

energy from the dockings provided a ranking of the compounds,

which was compared to the known actives using two measures.

Virtual screening performance is commonly analyzed using a

receiver operating characteristic (ROC) curve, which can easily be

quantified by determining the area under the curve (AUC). The

AUC, as well as the Boltzmann-enhanced discrimination of

receiver operating characteristic (BEDROC) metric, were used to

evaluate the ability of the docking programs to select active

compounds [14]. In the following sections, we examine the results

from docking the DSII and DUD libraries to contrast the

performance of AD4 and Vina, analyze similarities and differences

in their predictions, and offer recommendations for users of these

programs.

Results

DSF screen for HIV protease ligands
In an effort to identify new inhibitors of HIV protease, a

biophysical method, DSF, was used to identify compounds which

altered the melting temperature of a protease sample. Such an

observation suggests that a compound binds protease, though it

may not act as an inhibitor. Additionally, no information

regarding a binding site is provided. In a first pass, all 1,364

compounds of DSII were assayed individually. The 84 compounds

which initially indicated a thermal shift were subsequently re-

screened in triplicate. Of these, 25 compounds (shown in Table S1)

displayed consistent shifts of at least 0.6uC beyond the control.

Figure 1. Comparing the methodologies of AD4 and Vina. Both programs use the same type of input files describing the receptor (generally
rigid) and flexible ligand. The scoring functions have similar parameters, but have been calibrated differently. A key difference between the programs
is the local search algorithm. AD4 uses a stochastic search which generates random conformations to test. Vina calculates a gradient while seeking a
local optimum.
doi:10.1371/journal.pone.0011955.g001

AutoDock Screening Comparison
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These 25 compounds comprised the active set used to evaluate the

virtual screen in the following section.

Virtual screen of NCI Diversity Set II
Using AD4 and Vina, the 1,364 members of DSII were docked

against HIV protease. From the results of each program, the

compounds were ranked based on their predicted binding

energies. These rankings were used to evaluate the ability of

AD4 and Vina to preferentially select the active compounds as

classified by DSF. Based on a previous study, the 2BPW structure

was found to be representative of wild-type HIV protease and was

used as the receptor in our investigations [15]. A large bounding

box was used, which encompassed the entire protein. In general,

the default parameters were used for both AD4 and Vina. Each

docking program reported multiple conformations and associated

binding energies. In the case of AD4, the results were processed by

the built-in clustering analysis, and the lowest energy conformation

from the largest cluster chosen as representative. For Vina, the

lowest energy conformation was selected. The compound rankings

were determined for each program, then compared against the 25

compounds designated as active by the DSF screen.

As shown in Figure 2, AD4 and Vina displayed similar

performance in correctly ranking active compounds in DSII.

Quantified by an AUC measure (Table 1), AD4 had a slight edge

over Vina, but both were highly significant when compared to

random rankings. In terms of early recognition, determined using

the BEDROC measure, only Vina seemed to perform significantly

better than random.

A comparison of the predicted binding energies from both

programs is shown in Figure 3, demonstrating a marked

correlation between the docking results. As evidenced by both

Kendall rank correlation and traditional Pearson correlation

(Table 2), there was a clear association between the predictions

from AD4 and Vina. Based on this correlation in terms of binding

energy, it was expected that the conformations reported by both

programs would also tend to be similar. However, pairwise

comparisons of the docked conformations reported by AD4 and

Vina showed that most of the compounds differed by more than

4 Å RMSD (Figure 4). Because HIV protease consists of two

identical subunits arranged in a symmetric manner, RMSD

calculations may be exaggerated when the symmetry is not taken

into account. In other words, a ligand conformation interacting

with chain A should be considered identical to the equivalent

conformation bound to chain B. Even allowing for symmetry,

though, the conformations tended to be quite different.

Finding it curious that the results were similar in binding

energy, but very dissimilar in terms of conformation, we turned to

an analysis of the properties of the compounds. Historically,

protein-ligand docking programs have been susceptible to bias

based on the size of the compound [16]. A comparison of the

number of heavy atoms present in each compound plotted against

the predicted binding energy of each compound revealed strong

correlations for both AD4 and Vina (Figure 5). For relatively small

compounds, then, it appears that the binding energy predictions

are strongly influenced by size alone, though both programs

favored the active compounds to a significant extent.

Virtual screen of DUD library
In contrast to DSII, the DUD compounds tended to be larger in

size and, by design, more homogeneous. From a docking

standpoint, these compounds also posed more of a challenge, as

the average number of rotatable bonds was 9.7 for the DUD

compounds, compared to 3.7 for DSII (Figure S1). The 53 active

compounds and 1,885 decoys from DUD were docked to the

2BPW HIV protease structure and the results processed in the

same manner as the DSII compounds detailed above.

Unlike what was seen with DSII, Vina showed clear superiority

over AD4, which performed worse than random selection

(Figure 6). Interestingly, both the AUC and BEDROC values

for Vina’s performance, shown in Table 1, were very similar to

those obtained from the experiments with DSII. In this screen, no

significant correlation between AD4 and Vina binding energies

was found, as shown in Figure 7. Likewise, neither program

displayed a strong correlation between the number of heavy atoms

in the compounds and the predicted binding energies, as was seen

with the DSII compounds (Figure 8).

In general, AD4 and Vina reported highly disparate confor-

mations for the DUD compounds. This occurred to an even

Figure 2. Virtual screen ranking of NCI Diversity Set II. The 1,364 members of DSII were docked to HIV protease using AD4 and Vina, then
ranked by predicted binding energy. The plot shows the number of active compounds (determined via DSF) retrieved versus the total number
selected. The dashed line indicates the number of actives that would be expected to be returned based on a random selection of compounds.
doi:10.1371/journal.pone.0011955.g002

AutoDock Screening Comparison
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greater extent than was seen previously with DSII, as shown in

Figure 3. Based on the larger size of the compounds and greater

number of rotatable bonds in DUD, it seemed possible that AD4

would possibly fail to even find the most favorable conformations

consistently. As each compound was docked in 100 independent

trials with AD4, cluster analysis provided a way to analyze

variations in the reported conformations. The distribution of

cluster sizes (Figure S2) shows that the docked conformation from

DSII tended to fall into large clusters, while those from DUD did

not. Small clusters indicate that AD4 had difficulty in consistently

determining binding modes for the larger compounds in the DUD

library.

Comparing AutoDock 4 and Vina Methodologies
To explore the differences between AD4 and Vina in docking

the DUD library, we explored the methodology of each program

in detail. In a broad sense, the advantage of Vina over AD4 in

addressing larger molecules must be due to one or more of the

major components of a docking program: 1) molecular represen-

tation, 2) scoring function, and 3) search algorithm. As AD4 and

Vina both use the same input files for the receptor and ligand,

differences in representation are not a factor. The scoring

functions and search algorithms, on the other hand, share

similarities in overall form, but have distinct implementations.

The scoring functions, for instance, are both empirically

weighted functions containing terms for values such as hydrogen

bonding and rotatable bond penalties. While there are obvious

differences in these parameters [7,8], it was unclear if the overall

scores would also differ. Due to differences in the programs’

methodologies, there were limited possibilities to de-couple scoring

and search, and so we focused on determining the degree of

correlation between AD4 and Vina in scoring identical ligand

conformations. Using AD4’s ability to score arbitrary ligand

conformations, we evaluated each of the final conformations

reported by Vina. Ligands were grouped by their number of

rotatable bonds, and the correlation between AD4 and Vina

energies for all conformations within each group was calculated.

Any positive energy values, which occurred with a frequency of

less than 1%, were ignored. As shown in Figure 9, the correlation

in scores for ligands with 6 or fewer rotatable bonds was generally

greater than 0.8, while the correlation dropped below 0.5 for

ligands with 8 or more rotatable bonds. Since the number of

rotatable bonds is primarily associated with a larger search space,

it was surprising to observe a difference in scoring as well.

In terms of the search algorithm, both programs apply a hybrid

global-local search, but the key difference appears to be in the

local optimization. The local search method in AD4 employs small

random steps while seeking more favorable conformations. No

gradients are calculated, though the size of the steps is adjusted. In

contrast, Vina calculates derivatives to generate a gradient,

performing its optimization accordingly. For technical reasons,

evaluating the search algorithms of AD4 and Vina independently

of their scoring functions was not feasible. However, the small

clusters generated by AD4 dockings while evaluating the DUD

library (Figure 8) show that AD4 had difficulty reliably finding

consistent energy minima. Absent any consideration of the scoring

function, this behavior indicates that the search algorithm is

ineffective for molecules with a large number of rotatable bonds.

Vina does not provide a cluster analysis, but its authors have

Figure 3. Predicted binding energies for NCI Diversity Set II compounds with HIV protease as determined by AD4 and Vina. A
moderately strong correlation was observed (r = 0.63, p%0.0001). A small amount of random noise (,0.1 kcal/mol) was added to Vina binding
energies for visual effect. Active compounds are highlighted in red.
doi:10.1371/journal.pone.0011955.g003

Table 1. Virtual screen statistics.

Library AUC p-value BEDROC 20 p-value

NCI
Diversity
Set II

AutoDock 4
AutoDock
Vina

0.69
0.68

0.00043
0.00091

0.11
0.14

0.10
0.028

DUD HIV
protease
set

AutoDock 4
AutoDock
Vina

0.40
0.66

—
0.00015

0.077
0.16

0.30
0.0014

Area under the curve (AUC) and Boltzmann-enhanced discrimination of receiver
operating characteristic (BEDROC) 20 values were calculated based on the data
shown in Figures 2 and 6. P-values were estimated using a bootstrap procedure
based on 100,000 random rankings of the active compounds.
doi:10.1371/journal.pone.0011955.t001

AutoDock Screening Comparison
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demonstrated superior performance over AD4 in reproducing

experimentally observed binding modes as the number of rotatable

bonds grows [8].

Discussion

The virtual screening abilities of AD4 and Vina were compared

based on binding predictions between the members of two chemical

libraries and HIV protease. DSII contained molecules that were

generally small, with few rotatable bonds, and both programs were

able to select active compounds with a similar, significant level of

accuracy. A strong correlation was found between the results of the

two programs, as well as between the predicted binding energies

and the number of heavy atoms present in the compounds. Coupled

with the low agreement in conformational similarity, however, it

appears that similarity in the binding energy predictions from both

programs suffer from a size-related bias in scoring, and that AD4

and Vina report distinct results.

A clear advantage for Vina was noted in the virtual screen of the

DUD library, whose constituents tended to be larger molecules,

with more rotatable bonds than DSII. As the search space in

protein-ligand docking is related exponentially to the number of

rotatable bonds present, this presented a far more difficult docking

problem. AD4 failed to preferentially rank active compounds,

while Vina maintained performance comparable to the results

from the DSII screen. Accordingly, it seems that Vina is more

scalable in addressing more difficult docking problems (i.e., larger,

more flexible compounds) than AD4.

In comparison, other popular docking programs also have

difficulty with increasingly flexible ligands. A 2004 study found

that DOCK, FlexX, and GOLD could reproduce the binding

modes of an assorted set of protein-ligand complexes with

reasonable accuracy (. = 70%) when the ligands had fewer than

8 rotatable bonds [17]. However, for ligands with 8 or more

rotatable bonds, none of the programs was able to reproduce

observed binding modes with even 30% accuracy.

Based on the docking results as a whole, both AD4 and Vina are

capable of providing useful predictions when modeling com-

pounds with a small number of rotatable bonds. However, based

on the results with larger compounds, users should look to Vina

first when undertaking a virtual screen. Vina’s other strengths

include streamlined parameters and much faster docking perfor-

mance. In this study, docking each library required approximately

10 times longer with AD4 compared to Vina.

Some users may still be well served by AD4, which benefits from

a long heritage. For instance, the MGLTools suite contains a

feature-rich GUI which can guide users through the process of

setting up a docking run or analyzing docking results. The open

source nature of AD4 has allowed customization for a wider

variety of problems, such as RNA-ligand docking [18]. For users of

AD4, a limit of 10 rotatable bonds may serve as a rough guide for

protein-ligand docking problems, though this would depend on the

size and properties of the binding site.

Materials and Methods

Differential scanning fluorimetry
The DSF compound screen generally followed the protocol

published by Niesen et al. [11]. Samples were loaded into a white

96-well PCR plate (Bio-Rad) with each well containing a final

volume of 40 ml. The concentration of HIV protease in each well

was 1.25 mM (26.8 mg/ml), with 10 mM pH 7.5 HEPES, 150 mM

NaCl, and 5X SYPRO Orange (Invitrogen). DSII compounds were

used at a concentration of 250 mM, taken from stocks supplied by

the NCI as 10 mM solutions dissolved in DMSO. The PCR plates

were sealed with optical quality sealing tape (Bio-Rad).

Table 2. Correlation between AutoDock 4 and Vina.

Correlation p-value

Pearson (r) 0.63 %0.0001

Kendall (t) 0.82 %0.0001

doi:10.1371/journal.pone.0011955.t002

Figure 4. Cumulative RMSD distribution between AD4 and Vina conformations. Differences in the binding conformations predicted by
AD4 and Vina were compared using RMSD. As HIV protease is a homodimer, calculations are shown with and without regard for protein’s symmetry.
Only a small fraction of compounds fall under the 2 Å threshold traditionally used to indicate close agreement in conformational space.
doi:10.1371/journal.pone.0011955.g004

AutoDock Screening Comparison
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DSF experiments were carried out using an iCycler iQ real-time

PCR system (Bio-Rad) set to use the 490/20 excitation and 575/

20 emission filters. The samples were heated from 20 to 95uC at

the rate of 1uC/minute. A single fluorescence measurement was

taken each minute. Melting temperatures were determined by

performing a curve fit to the Boltzmann equation. The degree of

thermal shift was calculated by comparing the melting tempera-

ture of the protease in the presence of various DSII compounds

against a negative control that contained DMSO.

Ligand and receptor preparation
Structural representations of the NCI Diversity Set II in

SMILES format were obtained from the Developmental Thera-

peutics Program website. CORINA [19], via the NCI’s Online

SMILES Translator and Structure File Generator, was used to

generate 3-dimensional coordinates in PDB format from the

SMILES-formatted file. 36 of the compounds contained arsenic

atoms, which are not supported by AD4 or Vina, so all arsenic

atoms were replaced by phosphorus. Individual PDB files were

prepared for docking using the prepare_ligand4.py script from

MGLTools 1.5.4 [20], using only the largest non-bonded fragment

present.

The DUD decoys and ligands for HIV protease were obtained

from the DUD website. These mol2-formatted files already

contained 3-dimesional coordinates, and were translated to PDB

format using Open Babel 2.2.3 [21]. Following conversion to PDB

format, files containing individual compounds were created, then

processed using MGLTools.

Figure 6. Virtual screen ranking of DUD compounds. The 1,885 DUD compounds were docked to HIV protease using AD4 and Vina, then
ranked by predicted binding energy. The plot shows the number of active compounds (as designated by DUD) retrieved versus the total number
selected.
doi:10.1371/journal.pone.0011955.g006

Figure 5. Predicted binding energies for NCI Diversity Set II compounds with HIV protease as a function of the number of heavy
atoms in the compound. r = 20.75 and r = 20.79 for AD4 and Vina, respectively. Active compounds are highlighted in red.
doi:10.1371/journal.pone.0011955.g005

AutoDock Screening Comparison
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The 2BPW HIV protease structure was obtained from the PDB

[22]. To prepare the structure for docking, the ligand and all water

molecules were removed. Charges and non-polar hydrogen atoms

were added using the prepare_receptor4.py script from

MGLTools.

Docking parameters
AutoDock 4.2.1 and Vina 1.0.2 were used for all dockings in

this study. In general, the docking parameters for both AD4 and

Vina were kept to their default values. However, the number of

AutoDock 4 GA runs was increased from 10 to 100 and the grid

spacing changed from 0.375 to 0.5. For both AD4 and Vina, the

size of the docking grid was 63 Å647 Å640 Å, which encom-

passed the entire HIV protease structure. The 100 independent

GA runs from AD4 were processed using the built-in clustering

analysis with a 2.0 Å cutoff.

Analysis of docking results
Virtual screen performance was quantified using AUC and

BEDROC measures. AUC was calculated via summation, while

BEDROC 20 values were obtained using the Python code

provided by Truchon and Bayly [14]. To estimate the statistical

significance of these results, a bootstrap method was applied.

Random rankings for m compounds were sampled from the range

1…n, where m is the number of active compounds and n is the

number of compounds in the library. These random rankings were

used to calculate AUC and BEDROC values, and the process

repeated 100,000 times.

Figure 7. Predicted binding energies for DUD compounds with HIV protease as determined by AD4 and Vina. No significant
correlation was observed. Active compounds are highlighted in red.
doi:10.1371/journal.pone.0011955.g007

Figure 8. Predicted binding energies for DUD compounds with HIV protease as a function of the number of heavy atoms in the
compound. Active compounds are highlighted in red.
doi:10.1371/journal.pone.0011955.g008

AutoDock Screening Comparison
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Supporting Information

Table S1 DSF hits. NSC ID numbers for compounds designated

as active in DSF screen.

Found at: doi:10.1371/journal.pone.0011955.s001 (0.02 MB

XLS)

Figure S1 Distribution of rotatable bonds in NCI Diversity Set

II and DUD compounds.

Found at: doi:10.1371/journal.pone.0011955.s002 (0.03 MB EPS)

Figure S2 Distribution of sizes for largest clusters in AD4 results.

Each compound was docked in 100 independent AD4 runs, then

clustered based on conformation, serving as an indication of the

level of convergence of the docking results.

Found at: doi:10.1371/journal.pone.0011955.s003 (0.02 MB

EPS)
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