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Abstract

Background: As the amount of data from genome wide association studies grows dramatically, many interesting scientific
questions require imputation to combine or expand datasets. However, there are two situations for which imputation has
been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped
on different platforms. Traditional measures of imputation cannot effectively address these problems.

Methodology/Principal Findings: We introduce a new statistic, the imputation quality score (IQS). In order to differentiate
between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between
imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of
subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and
imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in
minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS
can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly
dividing the data into ‘‘cases’’ and ‘‘controls’’, we extracted the Illumina 550 K SNPs from the cases and imputed the
remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly
distorted (l= 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS,0.9, the Q-Q
plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed
independently on the two halves of the data. In both European Americans and African Americans the correlation was .0.99
demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data
genotyped on different platforms.

Conclusions/Significance: IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for
SNPs with low minor allele frequency and when datasets are genotyped on different platforms.
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Introduction

Genome-wide association studies (GWAS) represent a power-

ful approach to the identification of genetic variants involved in

common human diseases[1]. GWAS use commercial SNP micro-

arrays to genotype large numbers of genetic markers. However,

SNP microarrays currently can only genotype up to one million of

the 9–10 million common SNPs in the assembled human genome

[2]. In addition, for a typical case-control design, several thousand

cases and several thousand controls may be needed for adequate

power to detect associations[3]. With little cost, imputation can

boost power both by increasing SNP coverage and by combining

samples from similar studies. Based on haplotypes from the

International HapMap project[4], imputation infers untyped

variants from known genotypes. The inference uses one of several

model-based methods, and the resulting imputed SNPs can be
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tested for association with a phenotype [5]. The power of this

method has been demonstrated in the literature where several

groups have found novel causal genes [6,7,8,9].

There are two situations where researchers avoid imputation due

to increased error in imputation: (1) SNPs with minor allele

frequency less than 1% [1,6,10], and (2) association studies where

cases and controls are genotyped on different platforms. Imputation

accuracy, calculated for each SNP as the proportion of genotypes

correctly classified, is the gold standard for evaluating the quality of

imputation. Unfortunately, it is an inadequate filter in both of these

circumstances. For the majority of SNPs, imputation programs such

as IMPUTE [5], MACH[10], and BEAGLE[11], have very high

imputation accuracy [5,11,12,13]. However, the use of imputation

accuracy in low frequency SNPs to evaluate imputation quality can

be misleading. When the minor allele frequency of a SNP is less than

5%, a program could randomly assign the two alleles to the sample

only using the minor allele frequency and achieve more than 90%

accuracy. Although SNPs with low minor allele frequencies

(MAF,5%) are referred to as uncommon SNPs, they represent

more than 30% of SNPs in the HapMap Phase II CEU population,

and this proportion is even higher in African populations[2]. This

problem assessing imputation accuracy in lower frequency SNPs

means that a large part of the genome will not be adequately

interrogated using imputation.

The second problematic situation for imputation is where cases

and controls are genotyped on different platforms. This is

problematic because imputation error can vary between cases

and controls, causing increased rates of false positives in

association studies. There is no known method for effectively

filtering the poorly imputed SNPs from the well imputed SNPs on

different platforms. Although this situation has been avoided by

researchers, it is an important application. Large studies such as

Wellcome Trust and the NIMH GAIN samples use common

controls that could be used in other studies to gain power [1,14].

But, if the primary datasets were genotyped on a different

platform, imputation is necessary.

In order to assess the reliability of imputation with an emphasis

on the less common SNPs and an interest in evaluating data

imputed from different platforms, we introduce a new statistic, the

imputation quality score (IQS). Partly motivated by Cohen’s

statistic Kappa to quantify rater agreement[15], IQS takes chance

agreement into account and thus controls for allele frequencies. In

this paper, we introduce IQS, demonstrate its value in situations of

low minor allele frequencies, and demonstrate how it can be used

to improve the type I error rate when cases and controls are

genotyped on different platforms.

Materials and Methods

Ethics statement
De-identified data from the Study of Addiction: Genetics and

Environment (SAGE) were analyzed for the research reported in

this manuscript. SAGE consists of existing data from three genetic

studies of addiction: the Collaborative Study on the Genetics of

Alcoholism (COGA), the Collaborative Genetic Study of Nicotine

Dependence (COGEND), and the Family Study of Cocaine

Dependence (FSCD). All participants in COGA, COGEND and

FSCD provided written informed consent for genetic studies and

agreed to share their DNA and phenotypic information for

research purposes. The institutional review boards at all data

collection sites granted approval for data collected from COGA,

COGEND and FSCD to be used for the Study of Addiction:

Genetics and Environment. Specifically, approval was obtained

from the Washington University Human Research Protection

Office (for COGA, COGEND and FSCD), the State University of

New York Downstate Medical Center Institutional Review Board

(COGA), the University of Connecticut Health Center Human

Subjects Protection Office (COGA), the Indiana University

Research Compliance Administration (COGA), the University of

California, San Diego Human Research Protections Program

(COGA), the Howard University Institutional Review Board

(COGA), The University of Iowa Human Subjects Office

(COGA), and the Henry Ford Health System Institutional Review

Board (COGEND). The second dataset was obtained from the

National Institute of Mental Health Center for Collaborative

Genetic Studies on Mental Disorders (http://www.nimhgenetics.

org/) and was also de-identified.

Methods
The computation of IQS requires the posterior probabilities of

AA, AB and BB as output by the imputation program. For one

SNP genotyped on N individuals, the probabilities can be readily

tabulated into a 363 table where each cell, nij, represents the

number of individuals with true genotype i and imputed genotype j

(Table 1). Note, in this scenario, nij may not be an integer due to

imputation probabilities being reported rather than imputed

genotypes.

We define the observed proportion of agreement (Po) as:

Po~

P
inii

n::

The observed proportion of agreement can be used to evaluate

imputation reliability. But, like imputation accuracy and average

maximum posterior probability, it can overestimate reliability for

uncommon SNPs because it is not adjusted for ‘‘chance’’

agreement.

IQS adjusts for allele frequency by subtracting ‘‘chance’’

agreement from the ‘‘observed’’ agreement. Similar to Po,

‘‘chance’’ agreement (Pc) is computed as the sum of the products

of marginal frequencies that would occur if genotypes are called at

random using the same marginal rates:

Pc~

P
ini:n:i

n::2

IQS is then computed by subtracting the chance agreement

from the observed agreement and dividing by the maximum

possible value of the numerator. The value of one indicates a

Table 1. Marginal cross classification of the genotypes used
for the computation of IQS.

True genotypes

Imputed
Genotypes AA AB BB Total

AA n11 n12 n13 n1.

AB n21 n22 n23 n2.

BB n31 n32 n33 n3.

Total n.1 n.2 n.3 n..

IQS adjusts for minor allele frequency by comparing observed frequencies to
expected frequencies.
doi:10.1371/journal.pone.0009697.t001

Imputation Quality Score
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perfect match, and negative values indicate that the imputation

program performed worse than chance.

IQS~
Po{Pc

1{Pc

In addition, the calculation of IQS can be expanded to evaluate

non-random error. When cases and controls are genotyped on

different platforms (e.g., cases genotyped on the Affymetrix array

and controls genotyped on the Illumina array), some SNPs are not

genotyped in either array but are imputed from their respective

arrays. This imposes non-random errors on the imputed

genotypes. In particular, if we combine these imputed genotypes

together, it will inflate false positive rates. IQS can take this into

account by incorporating marginal frequencies into the calcula-

tion. For instance, if imputation from the Illumina array reports

that for a particular SNP, the probabilities of AA, AB and BB are

a1, a2, a3, and imputation from the Affymetrix array reports that

the probabilities for the three genotypes are b1, b2, b3, then nij in the

calculation of Po becomes

nij~aibj

In this scenario, IQS provides a useful criterion to exclude

unacceptable SNPs imputed from different sources.

Data and imputation
The first dataset was collected as part of SAGE, one study in the

Gene Environment Association (GENEVA) project (http://

genevastudy.org/). Samples were genotyped on the Illumina

Human 1 M array at the Center for Inherited Disease Research

(CIDR) at Johns Hopkins University. The Illumina 1 M array has

a total of 1,049,008 probes as SNP assays. All SNPs with a

genotype call rate ,98% were removed, as were SNPs with

a Hardy-Weinberg exact p value ,161024. Additional data

cleaning procedures were applied to ensure the highest possible

data quality, including using HapMap controls, detection of

gender and chromosomal anomalies, hidden relatedness, popula-

tion structure, batch effects, Mendelian error detection, and

duplication error detection[16]. The composition of the remaining

project samples in terms of self-identified ethnicity is 2597

European Americans and 1264 African Americans, confirmed

by principal component analysis. Among the 1,049,008 SNPs,

948,658 SNPs (90%) passed data cleaning procedures.

The second dataset consists of controls from the National

Institute of Mental Health Center for Collaborative Genetic

Studies on Mental Disorders (http://www.nimhgenetics.org/). A

total of 418 subjects (controls) were genotyped using both the

Affymetrix GeneChip Mapping 500 K Array Set and the Illumina

HumanHap 550 K Array set and passed all cleaning procedures.

All individuals in this study were European Americans with no

evidence of heterogeneity, verified by principal component

analysis[17]. All SNPs with a genotype call rate ,95% were

removed, as well as SNPs with a Hardy-Weinberg exact p value

,161025. After quality control, 447,250 autosomal SNPs were

retained from the Affymetrix 500 K array, and 527,095 autosomal

SNPs were retained from the Illumina 550 K array.

Imputation from each array to Hapmap SNPs was done by the

program IMPUTE (https://mathgen.stats.ox.ac.uk/impute/impute_

v0.5.html) [5]. European Americans were imputed using the CEU

reference panel (HapMap release 22 - NCBI Build 36 dbSNP b126).

African Americans were imputed separately using the YRI

reference panel (HapMap release 22 - NCBI Build 36 dbSNP

b126). We omitted sex chromosomes in this study because of the

complication of imputation on these chromosomes. The Illumina

1 M array contains a small number of strand-ambiguous A/T C/G

SNPs. Although Illumina provides strand information about those

SNPs, we still found a few inconsistencies compared with the

reference panel. In order to make sure that all SNPs were reported

on the same strand, all strand-ambiguous A/T and C/G SNPs

(5583 in total, 0.5% of all Illumina 1 M SNPs) were excluded from

the comparison.

Imputation efficiency is calculated as the proportion of geno-

types that had a maximum posterior probability greater than 0.9,

as recommended by IMPUTE.

Association tests were done by the program SNPTEST with the

‘‘-proper’’ option[5]. With this option, SNPTEST runs a logistic

regression based on the probability of genotype rather than

dichotomous genotype, allowing the uncertainty of the imputation

to be factored into the consideration [18].

Statistical estimates of imputation quality
Both IQS and imputation accuracy compare true genotypes to

imputed genotypes. Given that imputation is designed to infer

unknown genotypes, one purpose of this paper was to use IQS to

evaluate statistics that measure the quality of imputation without

knowing the true genotype. The two statistics most commonly

used for this purpose are the variance ratio (rsq_hat in

MACH)[10] and the imputed information score (PROPER_INFO

in SNPTEST) [5]. The variance ratio for a particular SNP is a

ratio of the empirically observed variance (based on the

imputation) to the expected binomial variance p(1-p), where p is

the minor allele frequency[18]. As the amount of information

available to impute the SNP decreases, the empirically observed

variance decreases and the variance ratio approaches zero. The

product of the variance ratio and sample size defines the ‘effective

sample size’. Similarly, the imputed information score is a measure

of genotype information content, which is related to the effective

sample size (power) for the genetic effect being estimated [1,5,18].

Although computed using a different approach, the information

score is analogous to the variance ratio. For example, a SNP with

an imputed information score of 0.75 indicates that the imputed

SNP genotypes are equivalent to a dataset with 75% of the full

sample size with precisely known genotypes.

Results

The Illumina 1 M array covers all of the SNPs on the Illumina

550 K array. We started with all SAGE subjects genotyped on the

Illumina 1 M array and extracted the 545,966 SNPs that are

present on the Illumina 550 K SNPs. We used these Illumina

550 K SNPs to impute to the full Illumina 1 M array. We imputed

262,864 autosomal SNPs in 2597 European Americans (EA), and

304,425 autosomal SNPs in 1264 African Americans (AA). We

compared imputed SNPs to the genotyping results from the

Illumina 1 M array. The remaining SNPs could not be evaluated

due to the absence of those SNPs in either the Illumina 1 M array

or reference panel.

The imputation results are given in Table 2. The mean IQS is

lower than the mean accuracy in both EA and AA. There are

cases where IQS is negative, indicating that imputation did worse

than chance in assigning genotypes. In this situation, 95% of the

minor allele frequencies lie between 0 and 0.058, 95% of the

chance agreement rates lie between 0.78 and 1, and the

imputation accuracy is below chance agreement with 95% of the

Imputation Quality Score
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values between 0.81 and 1. These are strong examples of how

imputation accuracy can be misleading when ‘‘chance’’ contrib-

utes so strongly to the proportion of agreement.

A second notable result is that the quality of imputation in AA is

markedly lower than in EA. This is seen in the decreased efficiency

by nearly ten percentage points, and decrease in mean IQS by

nearly twelve percentage points. This is likely due to two factors.

First, African Americans have more diverse haplotypes and more

uncommon alleles. Second, there is non-negligible difference

between African Americans and the YRI reference panel, which

was clearly reflected by Eigenstrat population structure analysis

[17]. Interestingly, imputation accuracy is nearly the same for EA

as for AA, again highlighting how imputation accuracy can

overestimate the quality of imputation.

The relationship between IQS and imputation accuracy with

respect to minor allele frequency is seen in Figure 1. Although

imputation accuracy increases with decreased minor allele

frequency, IQS drops dramatically with decreased minor allele

frequency. Because it is known that low minor allele frequency

decreases the quality of imputation, many studies drop SNPs with

minor allele frequency less than 1%. According to this plot, this

practice would still retain SNPs with an average IQS score of 88%,

and would eliminate some well-imputed SNPs.

We then evaluated the effectiveness of IQS in the situation

where cases and controls are genotyped on different platforms. We

randomly divided the SAGE data into two subgroups labeled

‘‘cases’’ and ‘‘controls’’. In ‘‘cases’’, original genotypes were

retained for SNPs on the Illumina 550 K array; and then

imputation was performed to obtain the full Illumina 1 M array.

In ‘‘controls’’, original genotypes were retained for all SNPs on the

Illumina 1 M array. This process is equivalent to combining cases

genotyped by the Illumina 550 K array and controls genotyped by

the Illumina 1 M array.

We tested genetic association of all the 1 M SNPs with the cases

and controls. A Quantile-Quantile Plot (Q-Q plot) is shown in

Figure 2. By comparing the distribution of observed P values

against the theoretical model distribution of expected P values, Q-

Q plots are used in genome wide association studies to assess the

inflation of false positive rates [19]. In randomized data without

type I error arising from population stratification or some other

artifact, the Q-Q plot should be a 45 degree line. To ensure that

our random division of the data did not result in population

stratification, we constructed a Q-Q plot based on the true

genotypes, which was normal as expected (l= 1.03) (Fig. 2A).

However, the Q-Q plot of imputed SNPs compared to genotyped

SNPs is greatly distorted (l= 1.15), suggesting that combining

imputed SNPs with genotyped SNPs without other quality control

Table 2. Summary of evaluation measures for European
American and African American samples.

Ethnic group
European
Americans

African
Americans

Evaluation Measures No. of imputed SNPs 260908 304425

Imputation Accuracy Efficiency % 94.5 85.1

Mean % 98.8 97.1

Range % 0.0,100.0 0.0,100.0

Inter-quartile % 98.8,99.9 96.3,99.5

Imputation Quality
Score (IQS)

Mean % 90.2 78.3

Range % 29.1,100 27.9,100

Inter-quartile % 90.7,99.2 68.4,94.3

doi:10.1371/journal.pone.0009697.t002

Figure 1. The means of IQS and imputation accuracy within each minor allele frequency interval. IQS adjusts for chance agreement. As
the minor allele frequency approaches 0, the difference between IQS and imputation accuracy increases. The standard deviation is shown for every
other point.
doi:10.1371/journal.pone.0009697.g001

Imputation Quality Score
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is problematic (Fig. 2B). Therefore, the observed distortion was

due to imputation error and the statistically skewed SNPs (Fig. 2B)

are false positives. We then filtered the imputed data by removing

all SNPs with IQS#0.9, retaining 76% of the imputed SNPs, and

dramatically improving the Q-Q Plot (l= 1.04) (Fig. 2C). The Q-

Q plot remained grossly distorted even when the filter was

changed to an imputation accuracy of .99%, retaining 72% of

the SNPs, although l improved to 1.05 (Fig. 2D). Although this is

a very strict value for imputation accuracy, the Q-Q plot clearly

shows there is significant type I error.

A more practical way of evaluating this approach is to look at

the false positive rate. Specifically, although no SNPs are

associated with case/control status based on the true genotypes,

there were 4016 imputed SNPs that reach genome-wide

significance (p,561028). The IQS filter .0.9 eliminated all the

false positive SNPs, but the imputation accuracy filter .0.99 still

retained 759 false-positive SNPs. Based on these results, IQS is

better for discriminating between well-imputed SNPs and poorly-

imputed SNPs.

Although IQS can serve as an effective filter to minimize the use

of poorly-imputed SNPs, the computation of IQS requires a

sample that was both imputed and genotyped for the SNPs of

interest. This is impractical in most situations. A secondary goal of

this paper is to determine whether there are ways to evaluate

imputation quality without knowing the true genotypes.

The two common methods for filtering imputed data are to

combine a minor allele frequency threshold with either the imputed

information score .0.3,0.5 (PROPER_INFO in SNPTEST)

[10,18,20,21,22] or the variance ratio .0.3 (rsq_hat in MACH)

[7,10,20,21,22,23,24,25]. We calculated these two statistics for our

Figure 2. The Q-Q plots based on randomly dividing data into cases and controls. Samples were divided randomly into cases and controls.
(A) All Illumina 1 M SNPs are directly genotyped indicating there is no population stratification or other non-random factors in cases and controls. (B)
Cases were genotyped on the Illumina 550 K array and the remaining Illumina 1 M SNPs were imputed. (C) An IQS filter (IQS.0.9) was applied,
retaining 92% of the SNPs. (D) An imputation accuracy filter (.0.99) was applied, retaining 91% of the SNPs.
doi:10.1371/journal.pone.0009697.g002

Imputation Quality Score
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data and compared these filters to IQS (Table 3). After filtering by

these statistics, the type I error inflation decreases. In the AA

sample, IQS also acts as an effective filter and can be cautiously

approximated by a combination of MAF and either the imputed

information score or the variance ratio (Table S1). Unfortunately,

even in the most conservative situation, over three thousand false

positives remain. Therefore this is an ineffective approach for

filtering poorly-imputed SNPs.

Filtering on MAF differences between the Hapmap and the

study genotypes is another possible approach to control false

positives. In Table 3 and Supplementary Table S1, we provided

results filtered by MAF difference at 0.01, 0.1 and 0.2 for

European Americans and African Americans, respectively.

Filtering by MAF difference of 0.01 resulted in a reduction of

false positives, but retained less than 25% of the SNPs. In contrast,

filtering with a MAF difference of 0.1 or 0.2 retained many false

positives.

A second method for using IQS without directly genotyping

would be to develop a database of common imputations in

common populations that records IQS scores for each SNP. To

test the practicality of this approach, we randomly divided the data

into two groups and tested the robustness of the IQS score for the

SNPs imputed from the Illumina 550 K array to the Illumina 1 M

array in both EA and AA. Because small changes in the

denominator of IQS (1-Pc) will dramatically affect the value of

the statistic when MAF is small, we included only SNPs with

MAF.0.01. Figure 3 plots the IQS scores in both populations.

The correlation in EA is 0.99519 and the correlation in AA is

0.99020, indicating that IQS is robust for the same imputation in a

relatively homogeneous population.

We further tested whether the set of hard-to-impute SNPs

compiled from the first group can be used to filter the imputed

data in the second group. We applied a similar procedure as in

Figure 1. We randomly divided the second group into cases and

controls. Cases were genotyped on the Illumina 550 K array and

the remaining Illumina 1 M SNPs were imputed. Controls were

genotyped on the Illumina 1 M array. Figure 4 shows that the QQ

plot can be adjusted to normal by IQS calculated from the first

group. This implies that the development of a database of IQS

scores for standard imputations would allow researchers to use

data genotyped on different platforms and filter out potential false

positives.

In order to confirm these results in a different dataset, we

replicated the study in European American subjects genotyped on

two different platforms, Affymetrix 5.0 array and Illumina 550 K

array. All subjects were controls from the National Institute of

Mental Health Center for Collaborative Genetic Studies on

Mental Disorders. We randomly divided about 400 individuals

into two subgroups labeled ‘‘cases’’ and ‘‘controls’’ in a similar

manner as above. ‘‘Cases’’ were genotyped by the Affymetrix 5.0

array and ‘‘controls’’ were genotyped by the Illumina 550 K array.

In the replication, we also expanded our investigation to include

those SNPs that were not genotyped in either array, but were

imputed from their respective arrays. In fact, we had genotype

data from both platforms. No genome wide significant SNPs were

found. Therefore, if there were any significant SNPs in this

simulation, they should be false positives. The result was similar

with inflation of Type I error that is effectively filtered by IQS,

whereas filtering by MAF and either the imputed information

score or the variance ratio continue to have many false positive

values (Table S2).

Discussion

There are two situations in which imputation is avoided[18]: (1)

SNPs with low minor allele frequency and (2) cases and controls

genotyped on different platforms. The statistics previously used for

measuring the accuracy of imputation are inadequate for

evaluating the quality of imputation due to their dependence on

marginal SNP frequency. Specifically, imputation accuracy, a

measure of the concordance rate between the imputed and

observed genotypes for each SNP, dramatically over-estimates

reliability when minor allele frequencies are low and does not

address the inflation of false positive rates arising from imputation

error due to random agreement. We developed IQS to more

precisely estimate imputation error, effectively filtering imputation

error in these two problematic situations. We showed that IQS is a

more appropriate measure to evaluate imputation reliability

because it adjusts for ‘‘chance’’ agreement, and filtering by IQS

eliminates the inflation of the false positive rate arising from

imputation error.

It is important to note that the traditional genome inflation

factor l is not an ideal indicator of potential problems related to

imputation quality. In our studies, we noticed that l is not

dramatically different from 1, in contrast to the extent that the Q-

Q plot is distorted (Fig. 2B D). The reason is that l reflects

systematic inflation on all SNPs while the distortion of the Q-Q

plot in our studies is due to a small number of poorly-imputed

SNPs. However, problems with this limited number of SNPs (less

than 0.5% of total SNPs) can be dramatic and lead to pronounced

false positive P values that exceed genome wide significance.

We also would like to emphasize that we are dealing with the

extreme situation when cases and controls are genotyped on

different platforms. The elevated false positive rates are not

explicitly reported in the literature, as most groups do not have this

problem because of the study design. But many groups have

noticed it. In a recent paper by de Bakker[18], the author noted

Table 3. Comparison of empirical evaluations of imputation
quality to IQS in European Americans.

Minor Allele
frequency

False positives n
(retained %) .0.01 .0.05 .0.10

IQS .0.9 0 (89.47%) 0 (83.90%) 0 (72.92%)

No filter 3120 (96.63%) 2331 (89.48%) 1775 (77.47%)

Proper_info .0.5 3093 (96.62%) 2329 (89.48%) 1775 (77.47%)

Proper_info .0.7 2726 (96.32%) 2080 (89.28%) 1571 (77.31%)

Proper_info .0.9 1392 (94.16%) 1032 (87.67%) 805 (76.06%)

Variance Ratio .0.3 1869 (96.22%) 1526 (89.27%) 1234 (77.33%)

Variance Ratio .0.5 1226 (95.65%) 928 (88.89%) 770 (77.04%)

Variance Ratio .0.7 789 (94.57%) 514 (88.12%) 390 (76.47%)

Variance Ratio .0.9 498 (90.40%) 253 (85.00%) 153 (74.14%)

MAF difference ,0.01 267 (22.89%) 120 (19.63%) 76 (15.60%)

MAF difference ,0.1 2516 (95.11%) 1739 (87.97%) 1191 (75.94%)

MAF difference ,0.2 2952 (96.57%) 2168 (89.42%) 1615 (77.38%)

The sample is based on 2,597 European Americans that were randomized to
cases and controls. Cases used genotypes from the Illumina 550 K platform and
were imputed to the 1 M platform and controls were genotyped on the 1 M
platform. Genome-wide significance is set as p,561028. There were 792,563
SNPs available. False positives refer to the absolute number of SNPs that
reached genome-wide significance despite the filter. The retained percentage is
the proportion of SNPs that passed the filter.
doi:10.1371/journal.pone.0009697.t003
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‘‘the dangers of combining cases genotyped on one platform and

controls genotyped on another’’ (Page 124). In the GENEVA

consortium, there is a consensus that genotypes imputed from one

array should not be combined with imputed genotypes from

another array.

The reasons for the false positives are very complicated. Among

the 4016 genome wide significant SNPs, most of them have low R

square with other available SNPs. It is difficult to correctly assign

their values based on related haplotypes, and they therefore tend

to receive the allele frequency from the reference panel.

Filtering by the difference between the reference and the

estimated minor allele frequency can effectively remove some

genome wide significant SNPs. Of the 4016 genome wide falsely-

significant SNPs, 3120 (77.7%) SNPs are removed by removing

those SNPs whose minor allele frequency difference is greater than

0.01.However, there are still 832 (21% of the 4016 SNPs) that have

passed the filter. Most of the 832 remaining SNPs share one

character: they tend to have very low minor allele frequency (MAF

median = 0.00096). Imputation tends to over-assign the major

genotype to the imputed SNPs, resulting in different allele frequency

Figure 4. A database of IQS can be used to filter poorly-imputed SNPs. The set of hard-to-impute SNPs compiled from one dataset can be
used to filter the imputed data in another dataset. (A) Cases were European Americans genotyped on the Illumina 550 K array and the remaining
Illumina 1 M SNPs were imputed. Controls were European Americans genotyped on the Illumina 1 M array. The QQ plot was shown for the 790,965
available SNPs. (B) An IQS filter (IQS.0.9) was applied, retaining 92% of the SNPs. IQS was calculated from an independent dataset. (C) A similar QQ
plot for African Americans. Cases were genotyped on the Illumina 550 K array and the remaining Illumina 1 M SNPs were imputed. Controls were
genotyped on the Illumina 1 M array. The QQ plot was shown for the 836,993 available SNPs. (D) An IQS filter (IQS.0.9) was applied, retaining 78% of
the SNPs. IQS was calculated from an independent dataset.
doi:10.1371/journal.pone.0009697.g004

Figure 3. Evaluation of the robustness of IQS score. European Americans (A) and African Americans(B) datasets were split in half and Illumina
550 K SNPs were imputed to Illumina 1 M SNPs. IQS score for the two halves of the data were plotted against each other. SNPs with minor allele
frequency less than 0.01 were excluded to avoid zero in the denominator.
doi:10.1371/journal.pone.0009697.g003
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and therefore inflating the P value. However, to filter by MAF

difference at 0.01 is not an acceptable option. Most SNPs are

correctly predicted even if the minor allele frequency is different.

When we tried to remove all SNPs whose minor allele frequency

difference was greater than 0.01, 583,456 of the total 788,944

available SNPs (74%) were removed. Most of these SNPs were

correctly predicted even if minor allele frequency was different. This

is because imputation does not assign predicted genotype based on

minor allele frequency, but rather on haplotype modeling.

The typical methods for filtering poorly-imputed SNPs are using

either the variance ratio or the imputed information score combined

with minor allele frequency. Imputation quality is especially

important in a study that combines genotypes from different

platforms. Therefore, we increased our thresholds for variance ratio

and the imputed information score in Table 3, and in Supplemen-

tary Tables S1 and S2. But these measures were ineffective in this

extreme situation. However, IQS may be used as an effective filter

to combine data genotyped on different platforms.

Because IQS requires direct genotyping for evaluation, it is not a

practical statistic for directly evaluating imputation in the case

where imputation is used to screen for associations as a proxy for

genotyping. However, IQS was shown to be a robust measure of

imputation for specific imputations (from one standard platform to

another) and within a broad population (tested in both EA and AA).

Generally speaking, different populations have different linkage

disequilibrium structures and different allele frequencies that lead

to different IQS values. A mixture of different populations will

make the IQS sensitive to the ratio of population mixture.

Therefore, as in general association studies, a mixture of different

populations should be avoided. However, African Americans have

a unique and relatively stable genetic structure. The IQS score

from African Americans is stable in our study and is useful to filter

out poorly imputed SNPs.

Based on this theory, a database can be constructed and used to

filter future imputations and to avoid false positive associations. In

order to advance the development of this database, we have posted

IQS scores for imputation from Illumina 550 K to Illumina 1 M for

CEPH on the website of the NIMH Center (http://www.

nimhgenetics.org/). We envision this as a dynamic database to be

updated when new datasets include subjects genotyped on multiple

platforms. We will further provide IQS scores for various array

combinations when the genotype data of 6,000 controls typed on

both the Affymetrix 6.0 and Illumina 1 M array are available in the

near future [26]. The future database will include IQS scores for the

following imputations: (1) from Affymetrix 6.0 to Illumina 1 M, (2)

from Illumina 1 M to Affymetrix 6.0, (3) from Illumina 300 K to

Affymetrix 6.0 plus Illumina 1 M, (4) from Illumina 550 K to

Affymetrix 6.0 plus Illumina 1 M, and (5) from Affymetrix 5.0 to

Affymetrix 6.0 plus Illumina 1 M. Although genotyping will be

ultimately required to confirm associations, using IQS as a filter will

decrease the amount of false positive findings that arise, making

follow up of positive associations practical.

As genome wide association studies move toward rare variants,

over-estimation of the quality of imputation due to chance

concordance of uncommon alleles will be more common. In

addition, imputation will and should be used to analyze increasingly

complex data structures. IQS can be used as an accurate evaluation

of imputation quality enabling researchers to examine low allele

frequencies and complex data structures.

Supporting Information

Table S1 Comparison of empirical evaluations of imputation

quality to IQS in African Americans. The sample is based on

1,264 African Americans that were randomized to cases and

controls. Cases used genotypes from the Illumina 550K platform

and were imputed to the 1M platform and controls were

genotyped on the 1 M platform. Genome-wide significance is set

as p,5E-8. There were 837,001 SNPs available. False positives

refer to the absolute number of SNPs that reached genome-wide

significance despite the filter. The retained percentage is the

proportion of SNPs that passed the filter.

Found at: doi:10.1371/journal.pone.0009697.s001 (0.04 MB

DOC)

Table S2 Comparison of empirical evaluations of imputation

quality to IQS when combining Affymetrix 5.0 and Illumina

550 K SNPs. The sample is based on 418 healthy European

Americans from the NIMH Repository. Cases were genotyped on

the Affymetrix 5.0 platform and were imputed to the Illumina 550

platform and controls were genotyped on the Illumina 550

platform and imputed to the Affymetrix 5.0 platform. Genome-

wide significance is set as p,5E-8. There were 2,553,465 SNPs

available (including Hapmap SNPs). False positives refer to the

absolute number of SNPs that reached genome-wide significance

despite the filter. The retained percentage is the proportion of

SNPs that passed the filter.

Found at: doi:10.1371/journal.pone.0009697.s002 (0.04 MB

DOC)
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