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Abstract

Background: Gout is a prevalent inflammatory arthritis affecting 1–2% of adults characterized by activation of innate
immune cells by monosodium urate (MSU) crystals resulting in the secretion of interleukin-1b (IL-1b). Since neutrophils play
a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory
neutrophil extracellular traps (NETs) in relation to autophagy and IL-1b.

Methodology/Principal Findings: Synovial fluid neutrophils from six patients with gout crisis and peripheral blood
neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or
serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was
assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET
formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or
peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1) supporting
their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented
NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1b as demonstrated by
experiments involving IL-1b and its inhibitor anakinra.

Conclusions/Significance: These findings document for the first time that activation of neutrophils in gout is associated
with the formation of proinflammatory NETs and links this process to both autophagy and IL-1b. Modulation of the
autophagic machinery may represent an additional therapeutic study in crystalline arthritides.
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Introduction

Acute gout is a prevalent inflammatory arthritis that results

from monosodium urate (MSU) crystal deposition. It affects up to

1–2% of adults and is the most common inflammatory arthritis in

men [1]. MSU crystals are endogenous danger signals, which

activate articular resident cells of the monocyte/macrophage

lineage, resulting in the triggering of inflammatory attacks [2,3,4].

Even though several proinflammatory cytokines and chemokines

have been associated with the early phase of acute gouty arthritis,

growing evidence derived from experimental and clinical studies

indicates a pivotal role for interleukin-1b (IL-1b) in the initiation of

inflammation. Activation of NLRP3 inflammasome by MSU

crystals is thought to regulate pro-IL-1b processing during gout

[5,6]. Moreover, neutrophil-derived proteases have been reported

to contribute to IL-1b production [7]. Inhibition of IL-1b signaling

is effective in the resolution of gouty inflammation in both animal

models [8,9] and in humans [10–13].

In gout, initial activation of articular cells by MSU crystals is

followed by the recruitment and ingress of large numbers of

neutrophils into the inflamed joints [14]. In vitro studies have

previously attempted to elucidate the mechanism that drives

neutrophil activation by MSU-crystals and proposed the stimula-

tion of several kinases including Src-family tyrosine kinase [15],

protein kinase C [16] and phosphatidylinositol 3-kinases (PI3Ks)

[17,18] as key signaling events in this process.

PI3K signaling has been previously implicated in the initiation

of autophagy in human neutrophils in response to several

inflammatory stimuli [19]. Autophagy constitutes a critical cellular

mechanism for the preservation of cell integrity, while it is

implicated in the regulation of innate immune functions [20].

Recent data suggest that autophagy is required for NETosis, a

distinct form of neutrophil cell death, characterized by the release

of neutrophil extracellular traps (NETs) [21].

NETs are extracellular fibrous structures composed of chroma-

tin and granule constituents of neutrophils [22]. NET formation
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after phagocytosis of pathogens or treatment with inflammatory

stimuli has been recently described as an extracellular antimicro-

bial process, critical for neutrophil physiology [22]. It is suggested

that capture and killing of microbes by the formation of NETs

constitutes an additional mechanism for pathogen elimination

which expands neutrophil microbicidal activity after cell death

[22,23]. However, NET release from cells not undergoing

NETosis has also been reported [24]. The localization of several

neutrophil enzymes with proinflammatory function, like elastase,

myeloperoxidase (MPO) or proteinase 3, to NETs and the

increasing evidence for the implication of NETs in non-infectious

diseases, including asthma [25], ulcerative colitis [26] and systemic

lupus erythematosus (SLE) [27–29], suggest a role for the

formation of these structures in the amplification of the

inflammatory responses that characterize these disorders.

Since both neutrophils and IL1b play a major role in the

pathogenesis of acute gout, we studied the generation of NETs

during acute gout and its relation to autophagy and IL-1b. Herein,

we report for the first time proinflammatory NET formation from

neutrophils derived from synovial fluid and peripheral neutrophils

from patients with acute gout and control neutrophils stimulated

with MSU crystals. We also present data linking this to autophagy

and IL-1b.

Results

MSU crystals induce the formation of NETs
The ability of MSU crystals to induce neutrophil activation and

NET release was initially studied by treating peripheral polymor-

phonuclear cells (PMNs) with MSU crystals for 5 min, 30 min,

90 min and 3 h. The presence of web-like structures, visualized by

co-staining with diamidino-2-phenylindole (DAPI) and MPO, was

observed after 90 min of treatment and was prominent at 3 h

(Fig. 1), indicating the formation of NETs [23]. To examine the

possible implication of the autophagic machinery in the release of

these structures, 3-methyladenine (3-MA), an inhibitor of class III

phosphatidylinositol 3-kinase (PI3K) signaling [19], LY294002

(Fig. S1), a pan-PI3K inhibitor, or bafilomycin A, which prevents

autophagosome maturation by inhibiting their fusion with

lysosomes [30], were used. Treatment of PMNs with these agents

30 min after the addition of MSU crystals significantly diminished

the percentage of cells releasing the aforementioned structures

(Fig. 2). On the other hand, Src kinase inhibition had no effect on

NET formation (Fig 2B, Fig. S1).

Moreover, the activation of autophagy in PMNs treated with

MSU crystals was assessed by endogenous LC3B immunofluores-

cence. LC3B punctuated structures, associated with autophagy

induction, were observed in cells treated for both selected time

points, 20 min and 60 min. This effect was inhibited by 3-MA

(Fig. 3A). The ability of MSU crystals to induce autophagy was

also demonstrated by LC3B immunoblotting of cell lysates from

PMNs treated for 45 min (Fig. 3B and C). Additionally, treatment

of PMNs with MSU crystals for 3 h did not induce apoptosis or

necrosis (Fig. S3B).

Release of extracellular DNA traps by synovial fluid
neutrophils from patients with acute gout

We further studied whether cells isolated from inflamed joints

from patients with gout could release extracellular fibrous

formations. Formation of extracellular structures, visualized by

staining with DAPI and MPO, by synovial fluid cells was observed

after 3 h of incubation (Fig. 4, Fig. S2). Considering that

neutrophils were the predominant cell population in synovial

fluid (.95%), as demonstrated by May-Grunwald staining (Fig.

S3A), we conclude that this cell type was responsible for this

observation. To explore whether the inflammatory environment of

gout induces the formation of such structures, control PMNs were

treated with synovial fluid derived from inflamed joints. Extensive

NET release was observed under these conditions (Fig. 4), while

treatment with 3-MA or bafilomycin A abrogated this effect

(Fig. 4B).

NET formation by peripheral PMNs from patients with
acute gout

We next investigated whether NET production is a restricted

to affected joints response that depends on the localized

activation of PMNs by MSU crystals or a systemic phenomenon

in the context of gout. Peripheral PMNs from patients with gout

released NETs, determined by co-staining with MPO and DAPI,

when incubated for 3 h in a less prominent way compared to

those observed in synovial fluid cells (Fig. 4). Moreover, treatment

of control PMNs with serum from patients with acute gout had

minimal but statistically significant effect (Fig. 4). PI3K inhibition

or treatment with bafilomycin A effectively blocked this effect

(Fig 4B).

IL-1b blockade attenuates the effect of gouty synovial
fluid on NET formation

Given the previously suggested critical role of IL-1b in the

pathogenesis of gout [6], we studied the possible effect of

inhibition of IL-1 signaling on NET formation. Treatment with

anakinra, a recombinant IL-1 receptor antagonist, partially

inhibited NET production, determined by co-staining with

MPO and DAPI, from control PMNs treated with synovial fluid

from patient with gout (Fig 5). To further implicate IL-1 in this

process, synovial fluid was centrifuged, in order to reduce MSU

crystal concentration. IL-1 signaling inhibition attenuated the

observed NET release from control neutrophils treated with

centrifuged synovial fluid (Fig 5A and B). Moreover, anakinra

completely inhibited the respective effect of serum derived from

patients with acute gout on NET production from control PMNs

(Fig 5B). To discriminate whether the effect of anakinra was due

to the inhibition of IL-1a or IL-1b signaling, centrifuged synovial

fluid was treated with anti-IL-1b monoclonal antibody (mAb)

prior to stimulation of control PMNs (Fig 5B). Both anti-IL-1b
and anakinra treatment had a similar inhibitory effect. Moreover,

incubation of control PMNs with recombinant IL-1b induced the

formation of NETs (Fig 5).

Extracellular DNA structures from synovial fluid
neutrophils are decorated with high mobility group box
chromosomal protein 1 (HMGB1)

Given that HMGB1, an alarmin that activates the innate

immune system [31], has been recently identified in large

amounts on NETs from patients with pediatric SLE [27], its

localization on extracellular DNA web-like formations, assessed

by staining with DAPI, released by synovial fluid PMNs from

patients with acute gout was investigated. We observed that

HMGB1 was localized in the aforementioned extracellular

structures released from synovial fluid PMNs (Fig. 6) or control

PMNs treated with either MSU crystals or synovial fluid from

patients with gout (Fig. 6).

The expression of HMGB1 on extracellular DNA structures

released by control PMNs treated with MSU crystals or synovial

fluid was also demonstrated by immunoblotting of proteins

isolated from these structures. Treatment with bafilomycin A

abrogated this effect (Fig. 6).

NET Formation in Gout
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Discussion

In this report, we provide for the first time evidence for the

formation of NETs during acute gout. Our experimental data

indicate that inhibition of either phagolysosomal fusion or PI3K

signaling hindered NET release from control neutrophils treated

with MSU crystals. Peripheral and synovial fluid neutrophils

derived from patients with gouty inflammation formed NETs in an

autophagy-dependent manner while synovial fluid from affected

joints and serum derived from patients with gout induced NET

release by control neutrophils. We also provide evidence that IL-

1b signaling is implicated, at least in part, in the formation of

NETs, as shown by the inhibitory effect of anakinra and anti-IL-

1b mAb.

Neutrophils are thought to represent critical effector cells

responsible for gouty inflammation [14]. Neutrophil enzymes

have been previously proposed to participate in the cleavage of

pro-IL-1b in a MSU-driven model of inflammation [7].

Considering that the release of these enzymes promotes tissue

injury and inflammation and since NET formation results in the

extracellular exposure of proteolytic enzymes in the inflamed

tissues, a key role for NET release in the induction of

inflammation during the context of acute gout is suggested.

Moreover, the identification of HMGB1 in NETs released from

synovial fluid neutrophils argues for the pro-inflammatory

potential of these extracellular structures. HMGB1 is a nuclear

protein that acts as an inflammatory mediator for the innate

immune system when released to the extracellular milieu [31].

Even though it has not been directly involved in the pathogenesis

of gout, HMGB1 is implicated in the pathomechanism of

rheumatoid [32] and experimental arthritis [33], suggesting a

possible role in the induction of gouty arthritis.

In this study, 3-MA and LY 294002 were utilized as PI3K

inhibitors and bafilomycin A as an inhibitor of endosomal

acidification. Among other functions, PI3K signaling is crucial in

the initiation of autophagy while early autophagosome fusion with

Figure 1. PMNs treated with MSU crystals release NETs. PMNs from control subjects treated with MSU crystals for different time points. NETs
are assessed by immunofluorescence microscopy after co-staining with DAPI (blue) and MPO (green). Control represents untreated PMNs incubated
for 180 min. Scale bars, 30 mm. Original magnification 400x. One out of three independent experiments is shown. B) Percentage of NET releasing cells
presented in panel A. Data are representative of three independent experiments and presented as mean 6 SD. * P,0.05; ns = non significant
compared to control cells.
doi:10.1371/journal.pone.0029318.g001

NET Formation in Gout
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lysosomes and acidification of autophagosomes constitute a

terminal event in this process [20]. In view of the inhibitory effect

of 3-MA and bafilomycin A on NET formation, we propose that

intact autophagic machinery is required for the release of these

extracellular structures. This is in accordance with a recent report

demonstrating that the inhibition of autophagy in neutrophils

treated with phorbol myristate acetate prevented NETosis and led

to apoptotic cell death [21]. However, the interplay between

neutrophil autophagic machinery and NET formation in the

pathogenesis of an inflammatory disorder has not been previously

described. Our findings are in accordance with the previously

described involvement of MSU-containing phagolysosomal for-

mation [34] and PI3K signaling [17,18] in the activation of

neutrophils by MSU crystals. In contrast to previous studies which

demonstrated the implication of Src kinase signaling in the

activation of neutrophils [15], no such correlation was proven in

our model.

NET formation was further associated with IL-1 signaling.

Anakinra partially inhibited NET release from PMNs treated with

synovial fluid derived from patients with active arthritis. When

MSU crystal burden was minimized by centrifugation, the

inhibitory effect of anakinra became more obvious, implying that

Figure 2. PI3K signaling and endosomal acidification is involved in NET release after treatment with MSU crystals. A) Treatment with
3-MA or bafilomycin A prevents the release of NETs from PMNs from control subjects treated with MSU crystals for 180 min. NETs are determined by
co-staining with DAPI (blue) and MPO (green) and visualized by immunofluorescence microscopy. Scale bars, 30 mm. Original magnification 400x.
One out of four independent experiments is shown. B) The effect of treatment with 3-MA, LY294002, bafilomycin A or PP1 in the percentage of NET
releasing PMNs incubated with MSU crystals. Data are representative of four independent experiments and presented as mean 6 SD. * P,0.05;
ns = non significant compared to MSU treated cells.
doi:10.1371/journal.pone.0029318.g002

NET Formation in Gout
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IL-1 signaling acts in parallel with a possible direct effect of MSU

crystals. Whether the previously reported role of IL-1b in the

induction of autophagy in human neutrophils [19] is responsible

for this effect cannot be confirmed due to the uniform inhibitory

effect of autophagy inhibition on NET formation. Our data

provide novel insight in the role of IL-1b in the inflammatory

milieu of gout. Concerning the pathogenesis of the disorder, IL-1b
is considered a pivotal cytokine [6]. In addition to the ability of

MSU crystals to induce pro-IL-1b proteolytic cleavage via NLRP3

activation [5], studies in animal models suggest that this cytokine

Figure 3. Induction of autophagy in PMNs treated with MSU crystals. A) Induction of autophagy in control PMNs treated with MSU crystals
for 20 min and 60 min, as assessed by immunofluorescence microscopy of endogenous LC3B. LC3B-positive autophagosome formation was blocked
by 3-MA. DNA is labeled with DAPI (blue). LC3B was stained with polyclonal anti-LC3B Ab (green). Scale bars, 5 mm. Original magnification 1000x. One
out of three independent experiments is shown. B) Induction of LC3B-I to LC3B –II conversion in PMNs treated with MSU crystals for 45 min, as
assessed by immunoblotting. Attenuation of LC3B conversion in PMNs treated with 3-MA. C) Measurement of integrated optical density (IOD) of
bands presented in B, expressed as LC3B-II to LC3B-I ratio 6 SD. Representative data from four independent experiments are shown in B and C.
* P,0.05 compared to MSU treated cells.
doi:10.1371/journal.pone.0029318.g003

NET Formation in Gout
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participates in the neutrophil chemotaxis and influx into the site of

inflammation [8,9], while animals deficient in critical components

of IL-1 signaling were resistant to MSU induced inflammation [8].

The critical role of IL-1b in the pathogenesis of gout was

confirmed by the beneficial clinical outcome of IL-1b blockade in

patients with gout [10–13].

In conclusion, our data indicate that NETs are formed during

inflammatory attacks of gout and suggest a linkage between NET

Figure 4. NET release from synovial cells and peripheral PMNs from patients with gout. A) NET formation by synovial cells, peripheral
PMNs from patients with gout and from control PMNs treated with synovial fluid or serum from patients with gout, as assessed by
immunofluorescense microscopy after co-staining with DAPI (blue) and MPO (green). Inhibitory effect of treatment with 3-MA on the release of NETs
from synovial cells. Scale bars, 30 mm. Original magnification 400x. One out of six independent experiments is shown. B) The effect of treatment with
3-MA or bafilomycin A in the percentage of NET releasing cells presented in panel A. Data are representative of six independent experiments and
presented as mean 6 SD. { P,0.05 compared to control, * P,0.05.
doi:10.1371/journal.pone.0029318.g004

NET Formation in Gout
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release and signaling involved in autophagy and IL-1 activity. Our

study provides a springboard for further investigation of NET

release in the pathogenesis of inflammatory arthritis. Modulation

of the autophagic machinery may represent an additional

therapeutic target in crystalline arthritis.

Materials and Methods

Patients
Synovial fluid was collected from six patients with active gout

attack, centrifuged at 800x g to separate cells from supernatant.

Figure 5. Implication of IL-1b in the induction of NET release from PMNs treated with synovial fluid or serum from patients with
gout. A) The inhibitory effect of treatment with anakinra on NET release from control PMNs treated with centrifuged or not synovial fluid from
patients with gout, as assessed by immunofluorescense microscopy after co-staining with DAPI (blue) and MPO (green). Treatment with recombinant
IL-1b induces NET release. Scale bars, 30 mm. Original magnification 400x. One out of six independent experiments is shown. B) The inhibitory effect
of anakinra on the percentage of NET releasing PMNs presented in panel A and in PMNs treated with serum from patients with gout. Incubation with
anti-IL-1b mAb reduced the percentage of NET releasing PMNs treated with centrifuged synovial fluid. Data are representative of six independent
experiments and presented as mean 6 SD. { P,0.05 compared to control, * P,0.05.
doi:10.1371/journal.pone.0029318.g005

NET Formation in Gout

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29318



Supernatants were stored at 220uC until used. To minimize the

concentration of MSU crystals, synovial fluid was centrifuged at

12000x g for 15 min. A decrease in MSU crystal concentration

greater that 70% was observed after centrifugation, as observed by

microscopy. Synovial fluid cell populations were characterized by

May-Grunwald and indicated a neutrophil predominance

(.90%). Synovial cells were used immediately for determination

of NET formation. Furthermore, PMNs were isolated from

heparinized blood from six patients and six healthy donors by

Histopaque double-gradient density centrifugation as previously

described [35]. Serum was also isolated from patients with gout.

The study protocol design was in accordance of the Declaration of

Helsinki and the procedures have been approved by the local

ethics committee (Scientific Committee of the University Hospital

of Alexandroupolis, Greece). Informed, written consent has been

obtained from all participants involved in the present study.

Figure 6. Localization of HMGB-1 on extracellular fibrous DNA structures. A) Expression of HMGB-1 in extracellular DNA structures released
from PMNs derived from control subjects treated with MSU crystals or synovial fluid and synovial cells from patients with gout, as assessed by
immunofluorescense microscopy. DNA is labeled with DAPI (blue). HMGB-1 is stained with anti-HMGB-1 mAb (green). Control represents untreated
PMNs. One representative out of four independent experiments is shown. Scale bars, 5 mm. Original magnification 1000x. B) Expression of HMGB-1 in
NETs released from control PMNs stimulated with MSU crystals or synovial fluid from patients with gout, as assessed by immunoblotting of NET-
derived proteins. The inhibitory effect of bafilomycin A is shown. One out of three independent experiments is shown.
doi:10.1371/journal.pone.0029318.g006

NET Formation in Gout
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Reagents
Uric acid sodium salt, human recombinant IL-1b, bafilomycin

A, PP1, 49,6-Diamidino-2-phenylindole (DAPI), Limulus amebo-

cyte assay and anti-LC3B polyclonal Ab were purchased from

Sigma-Aldrich (St. Louis, MO). 3-MA and LY 294002 were

purchased from Calbiochem (San Diego, CA), IL-1b mouse mAb

and HRP-conjugated secondary antibody from R&D Systems

(Minneapolis, MN), MPO-specific mouse mAb from DAKO

(Denmark); HMGB1-specific mouse mAb and GAPDH polyclonal

Ab from Abcam (UK), polyclonal rabbit anti-mouse Alexa Fluor

488 Ab and polyclonal goat anti-rabbit Alexa Fluor 488 Ab from

Invitrogen (Carlsbad, CA). In experiments using pharmacological

inhibitors, control PMNs were treated with an equivalent

concentration of vehicle (0.1% DMSO).

MSU crystal preparation
MSU crystals were prepared under pyrogen-free conditions.

Urate acid sodium salt (Sigma-Aldrich) was dissolved in 1 M

NaOH (25 mg/ml) and boiled for 2 hours at 200uC prior to

crystallization. The solution was left to cool at room temperature

and filtered through a 0.2 mM filter. It was then incubated at room

temperature for 7 days. The resulting crystals were washed with

ethanol and acetone and allowed to air dry under sterile

conditions. Triclinic MSU crystals were needle-shaped, between

5 and 20 mm in length and verified to be free of detectable LPS

contamination by the Limulus amebocyte cell lysate assay (Sigma-

Aldrich).

Stimulation and inhibition studies
Neutrophils or synovial fluid cells were incubated at 37uC in a

total volume of 500 ml of RPMI (Gibco BRL, Gaithersburg, MD)

in the presence of 2% serum from healthy donor and different

stimulatory agents. In the set of experiments evaluating the effect

of treatment with MSU crystals, neutrophils were treated for

5 min, 30 min, 90 min and 3 h. To study autophagy induction,

neutrophils were treated for 20, 45 or 60 min [19,21]. Neutrophils

were treated with MSU crystals (250 mg/ml) or synovial fluid

supernatant (20 ml) or serum from patients with gout (20 ml). The

doses were selected according to optimization experiments. Cells

were also stimulated with human recombinant IL-1b (100 ng/ml)

[19]. To inhibit the autophagic machinery, cells were treated with

the PI3K inhibitor 3-MA (5 mM) [19] or LY 294002 (50 mM)

[19], or bafilomycin A (30 nM) [36] for the inhibition of

autophagolysosomal fusion after 30 min of stimulation in order

to permit phagocytosis of crystals to take place. For Src kinase

inhibition the selective inhibitor PP1 (3 and 100 mM) was used. IL-

1b inhibition was performed by Anakinra (Kineret; Amgen/

Biovitrum AB) at a concentration of 100 ng/ml, according to

neutralizing optimization experiments, or a neutralizing IL-1b
mouse monoclonal antibody (10 mg/ml), according to manufac-

turer’s instructions. All experiments were performed in triplicates.

Viability of cells treated with MSU for 3 h was assessed by flow

cytometry using propidium iodide (PI, Sigma-Aldrich) to stain

necrotic cells and an antibody against Annexin-V (BD Biosciences)

as an apoptotic marker. Cells were analyzed in a FACScan flow

cytometer (BD Biosciences). All the materials in this study were

endotoxin free, as determined by a Limulus amebocyte assay.

Immunofluorescence
To visualize NET formation, isolated neutrophils or synovial

fluid cells were seeded in lysine-coated glass coverslips and

prepared as previously described [37]. In brief, cells, after

incubation, were fixed in 4% paraformaldehyde for 2–4 hours at

room temperature. All samples were prepared in triplicates.

Nonspecific binding sites were blocked with 5% rabbit serum in

PBS. NETs were stained using an MPO-specific mouse mAb or an

HMGB-1-specific mouse mAb. A polyclonal rabbit anti-mouse

Alexa Fluor 488 antibody was utilized as secondary. DNA was

counterstained using DAPI. Cell preparations were visualized in a

fluorescence microscope (Leica DM2000). The percentage of cells

undergoing NET release was determined by examining 200 cells

per sample in a double blind fashion.

For LC3B immunofluorescence, neutrophils were prepared as

described above and were stained with an anti-LC3B polyclonal

Ab, followed by a polyclonal goat anti-rabbit Alexa Fluor 488

antibody utilized as secondary. Cells were counterstained using

DAPI.

Protein purification from NETs
NET protein purification was performed as previously described

[38]. In brief, neutrophils were seeded in 6-well culture plates

(Corning Incorporated) in RPMI medium (Gibco BRL). Cells

were incubated for 3 h at 37uC in a 5% CO2 atmosphere.

Approximately 1.56106 cells were used for protein purification.

Supernatant was removed and each well was washed twice with

1 mL of pre-warmed RPMI and incubated at 37uC for 10 min.

Extracellular DNA formations were then digested with 10 U/ml

DNase-1 (Fermentas, 798 Cromwell Park, USA) in 1 ml RPMI for

20 min. The activity of DNase-1 was blocked with 5 mM

ethylenediaminetetraacetic acid (EDTA; Applichem, GmbH,

Stockholm, Sweden). Samples were sequentially centrifuged at

300xg to remove whole cells and at 16000xg to remove cellular

debris.

Protein precipitation
Proteins were precipitated with cold acetone from identical

volumes of culture supernatant. Samples were incubated overnight

at 220uC and then centrifuged at 10.000xg for 15 min at 4uC.

The pelleted proteins were lysed in lysis buffer (1% Triton X-100

and 150 mM NaCl in 20 mM HEPES pH 7.5) with protease

inhibitors (Complete Protease Inhibitor Tablets; Roche).

Western blot analysis
Western blot analysis was performed in cells treated for 45 min,

as previously described [19]. Briefly, overnight incubation of the

PVDF membranes was carried out at 4uC using an anti-LC3B

polyclonal Ab (1/1000 dilution). Membranes were probed with

HRP-conjugated secondary antibody (1/2000 dilution) for 45 min

at room temperature. To verify equal loading, membranes were

re-probed for GAPDH. Moreover, HMGB1-specific mouse mAb

(1/1000 dilution) was utilized for the measurement of HMGB1

expressed in NETs, using the same protocol.

Statistical analysis
Data are presented as means 6 SD. Statistical analyses were

performed using unpaired and paired t-test (n,6) and Wilcoxon

paired test (n$6). All statistical analyses were performed with

GraphPad Prism (GraphPad Software, Inc.). P values of #0.05

were considered significant.

Supporting Information

Figure S1 Effect of treatment with PP1 or LY294002 on
the release of NETs from PMNs from control subjects
treated with MSU crystals for 180 min, as assessed by
immunofluorescence microscopy. DNA is labeled with

DAPI (blue) and MPO is stained with anti-MPO mAb (green).

NET Formation in Gout
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Original magnification 400x. One out of four independent

experiments is shown.

(TIF)

Figure S2 Scatter plot showing the percentage of NET
releasing synovial cells derived from six patients with
gout compared to untreated control PMNs.

(TIF)

Figure S3 A. Cytology. Isolated cells from synovial fluid from a

patient with acute gout demonstrating the prevalence of

neutrophils. Original magnification 1000x. Staining with May-
Grumvald-Giemsa. B. Flow cytometric analysis of cell viability,

using propidium iodide and Annexin-V staining, in untreated

(CONTROL) and MSU treated (MSU) control neutrophils after

3 h of incubation. One out of three independent experiments is

shown.

(TIF)
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