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Abstract

Accurate and consistent segmentation of infant brain MR images plays an important role in quantifying patterns of early
brain development, especially in longitudinal studies. However, due to rapid maturation and myelination of brain tissues in
the first year of life, the intensity contrast of gray and white matter undergoes dramatic changes. In fact, the contrast inverse
around 6–8 months of age, when the white and gray matter tissues are isointense and hence exhibit the lowest contrast,
posing significant challenges for segmentation algorithms. In this paper, we propose a longitudinally guided level set
method to segment serial infant brain MR images acquired from 2 weeks up to 1.5 years of age, including the isointense
images. At each single-time-point, the proposed method makes optimal use of T1, T2 and the diffusion-weighted images for
complimentary tissue distribution information to address the difficulty caused by the low contrast. Moreover, longitudinally
consistent term, which constrains the distance across the serial images within a biologically reasonable range, is employed
to obtain temporally consistent segmentation results. Application of our method on 28 longitudinal infant subjects, each
with 5 longitudinal scans, shows that the automated segmentations from the proposed method match the manual ground-
truth with much higher Dice Ratios than other single-modality, single-time-point based methods and the longitudinal but
voxel-wise based methods. The software of the proposed method is publicly available in NITRC (http://www.nitrc.org/
projects/ibeat).
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Introduction

The first year of life is the most dynamic phase of postnatal

brain development. The brain undergoes rapid tissue growth and

experiences development of a wide range of cognitive and motor

functions. Accurate tissue segmentation of infant brains in the first

year of life has important implications for studying normal brain

development, as well as for diagnose and treatment of neurode-

velepmental disorders such as attention-deficit/hyperactivity

disorder (ADHD), and autism. Current methods are able to

segment neonates (less than 3 months) and infants (over 1-year-

old) with great success [1–8] (a summary can be found in [9]). In

general, most existing neonatal segmentation methods were

proposed for single time-point image (less than 3 months). Few

algorithms take advantage of the increasing availability of

longitudinal MR images, which provides important information

on the evolution of brain structures. Moreover, most existing

methods rely on the T2 modality for the neonates less than

3 months old [4,5,8] and T1 modality for the infants over 1-year-

old [10,11], which demonstrates good contrast between white

matter (WM) and gray matter (GM). However, at the middle of

the first year (around 6–8 months of age), T2 and T1 modalities

have lowest contrast where the WM and GM exhibit almost the

same intensity level, which poses a significantly more challenging

problem [12].

During the brain growth in the first year, the intensity contrast

between WM and GM dramatically reverses owing to maturation

and myelination. There are three distinct WM/GM contrast

patterns that can be observed in images of normal development

infants (in chronological order) [13]: infantile (birth), isointense,

and adult-like (10 months onward). As an illustration, we show in

Fig. 1 a series of longitudinal MR images for an infant scanned

every 3 months, starting from the second week. From the T1

images, it can be seen that the intensity of WM is initially lower

than that of GM, but becomes gradually brighter, resulting in a

contrast pattern that resembles adults. The opposite trend can be

observed for T2 images. At around 6–8 months of age, the WM

and GM exhibit almost the same intensity level (see the third

column of Fig. 1), resulting in the lowest WM/GM contrast and

hence great difficulties for segmentation. Few studies have

addressed the tissue segmentation problem of the isointense infant

images, hindered by the insufficient contrast of the respective T1/

T2 images [12].

The fractional anisotropy (FA) images from diffusion tensor

imaging (DTI) (last row of Fig. 1) provide rich information of

major fiber bundles [14], especially in the subcortical regions
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where GM and WM are hardly distinguishable in the T1/T2

images. Moreover, the WM structure remains very consistent

throughout all time points, proving partly the notion that the

majority of the fibers exist at birth. In this work, we employ

complementary information from multiple modalities by using T1,

T2 and FA images to deal with the problem of insufficient tissue

contrast. Information from these images are fed into a longitudi-

nally guided level-set-based framework for consistent segmentation

of the serial infant images. The main idea of level set method is to

embed a front or interface of interest as the zero level set of a

higher dimensional function [15]. To introduce temporally

consistent segmentation results, we enforce a longitudinal

constraint term that is in accordance to the fact that global brain

structures of the same full-term infant are closely preserved at

different developmental stages [16]. The constraint keeps the

distance between the tissue boundaries of the serial images within

a biologically reasonable range. This approach was tested on 28

infants with longitudinal acquired images.

This paper is an extension of our previous work [17], which

focuses on the image segmentation of neonates (e.g., 2 weeks) by

using subject-specific guidance from follow-up images (1-year-old

or 2-year-old). In the current work, the segmentation of the images

at each time-point will be influenced by the neighboring time-

points. Both the early time-point (e.g., neonate) and late time-point

(e.g., 1-year-old) images provide guidance for the segmentation of

middle year (e.g., 6-month-old) images. In addition, to alleviate the

problems associated with contrast especially for images at

isointense stage, we propose to integrate the information from

multiple modalities (T1, T2 and DTI). Note especially that the FA

images from DTI provide rich information of major fiber bundles,

which can be used to improve the segmentation accuracy.

Materials and Methods

Ethics Statement
Subjects used in this paper were part of a large study of early

brain development in normal children [18]. This study was

approved by the ethics committee of University of North Carolina

(UNC) School of Medicine. The parents were recruited during the

second trimester of pregnancy from the UNC hospitals and

written informed consent forms were obtained from all the

parents. The presence of abnormalities on fetal ultrasound, or

major medical or psychotic illness in the mother, was taken as

exclusion criteria. The infants were scanned without being

sedated, fed before scanning, swaddled, fitted with ear protection,

and had their heads secured in a vacuum-fixation device. A

physician or nurse was present during each scan; a pulse oximeter

was used to monitor heart rate and oxygen saturation.

MRI Acquisition
Images were acquired on a Siemens head-only 3T scanner

(Allegra, Siemens Medical System, Erlangen, Germany) with a

circular polarized head coil. Each subject was scanned at 5 time

points: 2 weeks, 3, 6, 9, and 12 months (or older than 12 months).

T1 images were acquired using a 3T head-only MR scanner, with

144 sagittal slices at resolution of 1|1|1mm3, TR/TE = 1900/

4.38ms, flip angle = 7. T2 images of 64 axial slices were obtained

at resolution of 1.25|1.25|1.95mm3, TR/TE = 7380/119ms,

flip angle = 150. Preprocessing steps such as skull stripping [19]

and bias correction [20] were performed. The skull-stripped results

were then reviewed by a trained rater to manually edit, by using

ITK-SNAP [21], to ensure the actual removal of non-brain tissues.

Diffusion weighted images consisting of 60 axial slices (2 mm in

thickness) were scanned with imaging parameters: TR/

TE = 7680/82ms, matrix size = 128|96, 42 non-collinear diffu-

sion gradients, diffusion weighting b = 1000s/mm2. Seven non-

diffusion-weighted reference scans were also acquired. The

diffusion tensor images were reconstructed and the respective FA

images were computed. T2 and FA images were linearly aligned to

their T1 images and were resampled with a 1|1|1 mm3

resolution before further processing.

Overview of the Proposed Method
The proposed method utilizes multi-modality information, a

cortical thickness constraint, and a longitudinal constraint to

derive an accurate and consistent segmentation of serial infant

brain MR images. An overview of the proposed framework is

shown in Fig. 2. The framework consists of two steps: (1) robust

segmentation of each time-point image based on coupled level sets

[22]; and (2) iterative 4D registration and segmentation. In the

following subsections, we will discuss each component in detail.

Multi-modality Data Fitting Term
To robustly segment each time-point image, we make optimal

use of T1, T2 and FA images. Let t~f0,3,6,:::g be the age

(months) of an infant at scan, and index j[fT1,T2,FAg be the

modality, i.e., T1, T2 and FA. Let It,T1, It,T2, and It,FA denote the

T1, T2 and FA images at time-point t. In this paper, the level set

function takes negative values outside of the zero-level-set and

positive values inside of the zero-level-set. Denoting the level set

functions as Wt~(w1,t,w2,t,w3,t) and with the help of the Heaviside

function H, the regions corresponding to WM, GM, CSF and the

background, i.e., Mi(Wt), i~1,2,3,4, are defined respectively as

M1~H(w1,t)H(w2,t)H(w3,t), M2~(1{H(w1,t))H(w2,t)H(w3,t),

M3~(1{H(w2,t))H(w3,t), and M4~1{H(w3,t), as illustrated in

left part of Fig. 3(a). The data fitting energy using both local

intensity distribution fitting [22] and population-atlas prior Pi is

first defined as,

Edata(Wt)~
P4
i~1

Ð
x

(
Ð

y
{Ks(x{y) log (Pi(y)pi,x(~IIt(y)))Mi(Wt(y))dy)dx ð1Þ

where x (or y) is a voxel in the image domain, Ks is a Gaussian

kernel (with scale s) to control the size of the local region [23–26],

Figure 1. T1, T2 and FA images of an infant scanned at
2 weeks, 3, 6, 9 and 12 months.
doi:10.1371/journal.pone.0044596.g001

ð1Þ
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and pi,x(~IIt(y)) is the probability density of ~IIt(y)~(It,T1(y),

It,T2(y),It,FA(y))T for the tissue class i. We use the atlas proposed

in [10], which was constructed from a unique dataset including 95

normal infant subjects with age from 2 weeks to 2 years old. To

take advantage of information given by different imaging

modalities (T1, T2 and FA), we represent the distribution of

Figure 2. The proposed framework for segmentation of serial infant brain MR images.
doi:10.1371/journal.pone.0044596.g002

Figure 3. (a) Longitudinal guided level-sets segmentation. The evolutions of w1,t and w2,t are not only influenced by the information from the
current image but is also adaptively constrained by longitudinal information from the image at another time-point t, weighted by f(t), where w1,t(0),
w2,t(0) and w3,t(0) are the interfaces between WM/GM, GM/CSF, and CSF/Background, respectively. (b) The weight parameters f(t) for the image at
each time-point (the last time point is 12 months).
doi:10.1371/journal.pone.0044596.g003
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~IIt(y) as a multivariate normal (or Gaussian) distribution with mean

m and covariance matrix S,

pi,x(~IIt(y))~
1

(2p)3=2 det (S)1=2
exp ({

1

2
(~IIt(y){m)T S{1(~IIt(y){m)) ð2Þ

Cortical Thickness Constraint Term
As pointed out in [27,28], the variation of regional cortical

thickness is smooth. This observation can be used to constrain

surface evolution. To utilize this information, we designed a

coupled surface model to constrain the distance of zeros level

surfaces of w1,t and w2,t within a predefined range ½d D�, where

0vdvD. For simplicity of notation, we let w:,t(l) denote the level

Figure 4. From top to bottom show the segmentation results of CoupledLS(T1+T2) [22], CoupledLS(T1+T2+FA) [22], LongLS(T1+T2) [17],
the proposed method and manual ground truth. The original images are shown in Fig. 1. The blue circles mark the obvious difference between
the results given by CoupledLS(T1+T2) and CoupledLS(T1+T2+FA), while the red circles mark the obvious difference between the results given by
LongLS(T1+T2) and Proposed(T1+T2+FA).
doi:10.1371/journal.pone.0044596.g004

Figure 5. The average Dice ratios of different methods on 28 subjects. The proposed method achieves significant (pv0.01) higher Dice ratio
than other methods.
doi:10.1371/journal.pone.0044596.g005

ð2Þ
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sets w:,t~l. As illustrated in the left part of Fig. 3(a), the zero-level-

sets of w1,t and w2,t, i.e., w1,t(0) and w2,t(0), indicate the interfaces

of WM-GM and GM-CSF, respectively. As the WM is surrounded

by the GM, w1,t(0) should be interior to w2,t(0) and should fall

between the level sets of w2,t(d) and w2,t(D) for the thickness to be

reasonable. Based on this observation, we define a new cortical

thickness constraint term [17] for w1,t,

Edist(w1,t)~½1{(H(w2,t{d){H(w2,t{D))�

½(H(w2,t{d){H(w1,t))
2z(H(w2,t{D){H(w1,t))

2�
ð3Þ

In a similar way, we can define a cortical thickness constraint

term [17] for w2,t,

Edist(w2,t)~½1{(H(w1,tzD){H(w1,tzd))�

½(H(w1,tzd){H(w2,t))
2z(H(w1,tzD){H(w2,t))

2�
ð4Þ

Therefore, we can define the following energy functional for

initial segmentation for each time-point image,

E(Wt)~Edata(Wt)za((Edist(w1,t)zEdist(w2,t))znEsmooth(Wt) ð5Þ

where Esmooth(Wt)~
Ð
j+H(w1,t(x))jzj+H(w2,t(x))jzj+H(w3,t(x))

jdx is the length regularization term to maintain a smooth contour/

surface during evolution; a and n are the blending parameters. The

energy (5) can only deal with a single time-point image, and thus

cannot benefit from the longitudinal data. In the following, we will

propose a longitudinally guided level sets for consistent segmentation.

4D Level Set Segmentation
The first year of life is the most dynamic phase of postnatal

brain development. However, major sulci and gyri in the adult

brain are already present since birth and are retained during early

brain development [16,29–31]. Therefore, we can include a

longitudinal constraint term or temporal consistency term to better

guide the segmentation. For each time-point t, by using 4D

registration algorithm, segmentation results from other time points

t(t=t) can be registered into the space of the image at the current

time-point t. The level set functions w1,t and w2,t can be similarly

warped based on the same deformation fields. Let the warped

version of w1,t and w2,t be wL
1,t and wL

2,t, respectively. The distance

Figure 6. Surface comparison between the coupled level sets
(CoupledLS) [22] and the proposed method. The lower part shows
the zoomed views of the upper part.
doi:10.1371/journal.pone.0044596.g006

Figure 7. Surface comparison between Voxelwise Expectation-
Maximization (EM) method [12] and the proposed method. The
lower part shows the zoomed views of the upper part. From left to
right: results at 2 weeks, 3, 6, 9 and 12 months.
doi:10.1371/journal.pone.0044596.g007
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between the zero-level-surface of w1,t (or w2,t) and wL
1,t (or wL

2,t) is

constrained in a certain range. As illustrated in Fig. 3(a), the

evolutions of w1,t and w2,t are not only influenced by the

information from the current image but is also adaptively

constrained by longitudinal information from another time-point

t image weighted by f(t). This longitudinal constraint serves to

better guide tissue segmentation, and also ensures that the

segmented cortical surfaces of the serial infant images of the same

subject are consistent with each other.

Similar to Eqs. (3) and (4), we can also constrain the distance

between the zero level surfaces of w1,t (or w2,t) and wL
1,t (or wL

2,t).

Here, we first consider w1,t. Since the cortex is under rapid

development in the first two years and registration across the time-

points is not exact, we need to allow the displacement between

zero level surfaces of w1,t (or w2,t) and wL
1,t (or wL

2,t). Let the allowed

longitudinal range of variation be ½d1 D1� with d1v0 and D1w0,

we constrain the zero level sets w1,t(0) to fall between the level sets

wL
1,t(d1) and wL

1,t(D1). We can define the longitudinal constraint

term as,

Figure 8. Comparisons of the automated segmentation results with the ground truth. From left to right: original T1, T2, FA images and
results of Voxelwise Expectation-Maximization (EM) [12], proposed and manual ground truth. From top to bottom, images acquired at 2 weeks, 3, 6, 9
and 12 months.
doi:10.1371/journal.pone.0044596.g008

Figure 9. Averaged Dice ratios between manual ground truth and automated segmentations derived by Voxelwise Expectation-
Maximization (EM) [12] and the proposed method. The proposed method achieves significant (pv0.01) higher Dice ratio at all time-points.
doi:10.1371/journal.pone.0044596.g009

Segmentation of Serial Infant Images

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44596



Elong(w1,t)~
P
t=t

f(t)½1{(H(wL
1,t{d1){H(wL

1,t{D1))� ð6Þ

½(H(wL
1,t{d1){H(w1,t))

2z(H(wL
1,t{D1){H(w1,t))

2�

where f(t) is the weight of each time-point, as shown in Fig. 3(b).

Thus, the segmentation of each time-point image will be

influenced by its neighboring time-point images. The last time-

point image usually has good contrast (see Fig. 1), therefore, its

influence will be propagated further and has a greater impact on

guiding the segmentation of other time-points. Segmentation of

images with lower contrast (e.g., 3, 6, 9 months) can hence be

guided by images with higher contrast (e.g., 2 weeks and

12 months).

Similarly, for w2,t, the longitudinal constraint term can be

defined as,

Elong(w2,t)~
P
t=t

f(t)½1{(H(wL
2,t{d1){H(wL

2,t{D1))�

½(H(wL
2,t{d1){H(w2,t))

2z(H(wL
2,t{D1){H(w2,t))

2� ð7Þ

Finally, we can define the longitudinally guided level-sets

energy, which combines local information from T1, T2 and FA

images, cortical thickness constraint term, and longitudinal

constraint term, as

F (W)~
X

t

Edata(Wt)za(Edist(w1,t)zEdist(w2,t))z

b(Elong(w1,t)zElong(w2,t))znEsmooth(Wt)

ð8Þ

where W~(W1,W2, � � � ,Wt, � � � ), a, b and n are the blending

parameters. It is worth noting that, without FA image, if b~0, the

energy functional will be the same as the coupled level sets

(CoupledLS) [22]; if b=0 and only two time-points, e.g., year0

and year2, this energy will be the same as the energy proposed in

[17]. Therefore, F (W) can be considered as a general framework

for infant brain MR image segmentation, which actually can deal

with single/multiple time-points, and single/multiple image

modalities.

To effectively minimize this energy with respect to Wt, we can

rewrite it as,

F1(w1,t)~EdatazaEdist(w1,t)zbElong(w1,t)zn
Ð
j+H(w1,t(x))jdx,

F2(w2,t)~EdatazaEdist(w2,t)zbElong(w2,t)zn
Ð
j+H(w2,t(x))jdx:

(
ð9Þ

The energy function F1(w1,t) and F2(w2,t) with respect to w1,t,

w2,t and w3,t can be easily minimized by using calculus of

variations.

The iterative procedure is summarized in Algorithm. 1.

Algorithm 1 4D Multi-modality Image Segmentation Using

Level Sets

Initial segmentation by applying level-set based segmentations

on each time-points (Eq. (5));

while convergence criteria is not met do

Building 4D correspondences across time-points by using 4D

registration [32] based on the

segmentation results;

Longitudinal segmentation: update w1,t, w2,t and w3,t using

constraints from neighboring

time-points by minimization of energy (Eq. (8)).

end while

Results

To validate our proposed method, we apply it to a group of 28

infants, each scanned at 5 time points: 2 weeks, 3, 6, 9, and

12 months (or older than 12 months). In our experiments, we set

the allowable cortical thickness to ½1,6:5�mm, the allowable

longitudinal constraint range to ½{1:5,1:5�mm, n = 0.5, a = 0.25,

and b = 0.5. The functions d and H are regularized as in [33]. The

level set functions are reinitialized as the signed distance functions

at every iteration by using the fast marching method [34]. To

measure the overlap rate between the two segmentations A and B,

we employ the Dice ratio (DR), defined as

DR(A,B)~2jA\Bj=(jAjzjBj). DR ranges from 0 to 1, corre-

sponding to the worst and the best agreement between labels of

two segmentations.

Importance of FA Information
To demonstrate the benefit of incorporating the FA image in

the proposed method, we first compare the performance of the

CoupledLS [22] for cases when only T1 and T2 images are used

and when T1, T2, and FA images are used. These are referred to

Figure 10. Left: Scatterplots of TBV, cortical GM and WM volumes by age at scan. Right: Scatterplots of cortical GM and WM volumes in
terms of percentage of the total brain volume.
doi:10.1371/journal.pone.0044596.g010

ð9Þ
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as CoupledLS(T1+T2) and CoupledLS(T1+T2+FA), respectively.

Fig. 4 shows the segmentation results for a randomly selected

subject with the original images are shown in Fig. 1. The manual

segmentations, performed by the trained neuroanatomist, are

shown in the last row. The boundaries of neonatal images at the

isointense stage are quite fuzzy. The neuroanatomist will use the

aligned last time-point (e.g., 1.5-years-old) image as a reference to

delineate the boundaries. It can be clearly seen that the

CoupledLS(T1+T2+FA) (the second row) yields more accurate

results than CoupledLS(T1+T2) (the first row). For images acquired

from the 6-month-olds, the image contrast is quite low. As a result,

without information from the FA images, CoupledLS(T1+T2)

cannot obtain an accurate result (see the blue circled region).

Next, we compared the proposed method with the method

proposed in [17] LongLS(T1+T2) in which T1 and T2 images are

used. The results are shown in the third and fourth rows,

respectively. It can be clearly seen that the proposed method using

T1+T2+FA yields more accurate results, e.g., in the areas marked

by the red circles. The mean and standard deviation of DR values

of the WM, GM and CSF segmentations of all 28 subjects are

shown in Fig. 5. It can be observed that both the CoupledLS and

the proposed method achieve much higher accuracy with the help

of the FA image.

Coupled Level Sets (3D) vs the Proposed Method (4D)
To demonstrate the advantages of the proposed method in

terms of consistency, in this section, we make comparisons

between the CoupledLS [22] working only on a single time-point

image and the proposed method working on longitudinal images.

For fair comparison, we utilize T1+T1+FA images for both

CoupledLS and the proposed method. Since CoulpedLS works on

the 3D image individually, the temporal consistency cannot be

guaranteed. The 3D rendering of the WM/GM and GM/CSF

surfaces are shown in Fig. 6. From the zoomed views (the bottom

four rows), it can be seen that the CoupledLS cannot achieve

consistent results for serial infant images, while the results of the

proposed method are much more consistent. The average DR

values on all 28 subjects are also shown in Fig. 5, again

demonstrating the advantage of the proposed method.

Voxelwise EM Method (4D) vs the Proposed Method (4D)
In this section, we make comparison with the method proposed

in [12], which was the first method proposed for the segmentation

of serial infant brain MR images. This method is a voxelwise

Expectation-Maximization (EM) algorithm utilizing subject-spe-

cific prior atlases adaptively adjusted by the longitudinal

constraints between time-points. Intrinsically, it cannot provide

smooth and closed contours/surfaces as final segmentation

outcome and cannot guarantee longitudinally consistent segmen-

tation results, although temporal consistency was considered (see

Fig. 7). Fig. 8 presents typical segmentation results on a randomly

selected subject. Compared with the results of the voxelwise EM,

the results of the proposed method are much more consistent with

the ground truth, as indicated by the red marks. Fig. 7 presents the

surfaces derived by these two methods. It can be clearly seen from

the lower zoomed views that the proposed method achieves much

more consistent results than the voxelwise EM method. The

average DR values are shown in Fig. 9, again demonstrating the

advantage of the proposed method in terms of accuracy.

Volume Analysis
The proposed segmentation method has been validated on 28

subjects. The GM and WM volumes are plotted on the left of

Fig. 10. The GM volume increased by 151%, and the WM 55% in

the first year of life. The total brain volume (TBV), which was

calculated by combining total GM and WM, increased by 115%

in the first year of life, while only 11% in the following half year.

The volumes, when normalized by TBV, can be used to reflect

growth relative to the full brain. As shown in the right of Fig. 10,

the percentage of GM increased significantly in the first year, while

the WM percentage decreased. Both of them remained relatively

constant in the following half year. Our findings are in agreement

with a previous study [11].

Discussion

In this paper, we have presented a longitudinally guided level set

method for segmentation of serial infant brain MR images.

Combined information from T1, T2 and FA images are utilized by

the proposed method. 4D constraint is introduced to ensure

consistency across time points. The proposed method has been

tested on 28 subjects and high overlap ratio was obtained in

comparison to manual segmentations. Extensive comparisons with

voxel-based methods and non-4D methods also demonstrate the

advantages of the proposed method in terms of accuracy and

consistency. The source code and software of the proposed

method have been released in NITRC (http://www.nitrc.org/

projects/ibeat). Up to now, there have been more than 190

downloads, after it was released in December, 2011.

The rapid growth of the total brain volume in the first year of

life reveals that this is a critical period of brain development. This

may be a period of developmental vulnerability, but may also be a

period of therapeutic interventions with the greatest positive effect.

Meanwhile, the relatively faster growing trend of GM compared

with WM growth suggests that early growth is dominated

primarily by GM. The findings are consistent with a previous

study [11].

In this paper, the FA image, which provides better WM contrast

[14], has been utilized to guide image segmentation, especially for

the 6–8 month old image. The most related work was presented in

[17], in which the focus of segmentation was on neonatal (less than

2-month-old) images. That method only utilizes T1-weighted

follow-up images for segmentation of T2-weighted neonatal

images. The current work extends the previous work [17] in two

ways. First, in this paper, we propose a 4D segmentation

framework that focuses on the segmentation of the serial infant

images, from 2 weeks up to 1.5 years of age. Second, images from

multiple modalities (T1, T2 and FA) are utilized in this framework

for the accurate segmentation, especially for images of the 6-

month-olds, which has lowest brain tissue contrast.

The cortical thicknesses range ½d D� from post-mortem data in

adults are in the range of 1.3–4.5 mm [35–37]. Although, to the

best of our knowledge, there are currently no studies measuring

the physical cortical thickness in first year of infant brain, we

conservatively set the acceptable range ½d D� as 1–6.5 mm. For the

longitudinal range of variation ½d1 D1�, since the cortex is under

rapid development in the first two years and registration across the

time-points is not exact, we need to allow the displacement

between the WM/GM (GM/CSF) boundaries of current time-

point and the warped boundary from the other time-points. In this

paper, we tested the displacement from 0 mm to 3 mm. We

observed an inverted, flat bottomed U-shaped curve for the Dice

ratio with a peak at *1.5 mm. Therefore, we set the longitudinal

range of variation ½d1 D1� as ½{1:5,1:5� mm. The other weighting

parameters a, b and n were set based on the similar strategy.

There are many options for 4D registration methods, however,

since the main focus of this paper is on segmentation, comparison

of the different registration methods is out of scope of the current
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paper. In this paper, we adopt a 4D HAMMER [32] registration

method. In our future work, different registration methods can be

evaluated.
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