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Abstract

It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the
genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their
superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins
emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In
this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive
nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes.
Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine
base as principal building blocks.
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Introduction

The origin of life is undoubtedly a fundamental problem of

natural science and attracts extensive attention of specialists in

different fields of science. As RNA is the only known macromolecule

acting as a genetic material as well as a catalyst, it is popular to think

of early evolution of life progressed from an ‘‘RNA World’’, in

which RNA played a central role before protein and DNA emerged

[1–5]. The ‘‘RNA world’’ hypothesis [3] has been widely discussed

and at present there are no serious alternatives to an RNA world

being one essential intermediate stage in the origin of life [6–8].

These studies have enabled us to resolve many pieces of the puzzle

but have also left some critical gaps. For instance, a consequence of

the RNA world model is that proteins have gradually replaced

RNAs in catalysis by virtue of their superior catalytic properties over

time [1,7]. However, how primitive functional proteins emerged

from the RNA world remains obscure.

Considering the fact that RNA may not serve simply as a

molecular scaffold for protein folding but also may influence the

function of a protein [8], it is rational to expect that in the RNA

world the primitive functional protein emergence was directly

induced by RNA molecules. If this conjecture was true, the

structural information of primitive functional proteins replacing

RNA molecules can be conceived in the present RNA-protein

complexes. In view of the high conservation of the protein folds,

the systematic analysis on the corresponding folds of RNA-binding

proteins may help characterize the potential primitive proteins

interacting with RNAs. In the present study, we proposed that the

early primitive nucleotide cofactors play a major role in the

primitive functional protein emergence. The present findings also

have significant implication for understanding the composition of

primitive RNA.

Materials and Methods

The NPIDB, i.e., Nucleic Acids–Protein Interaction DataBase

[9], is a well-defined database that contains structures of RNA–

protein complexes extracted from PDB, in which RNA–protein

complexes were defined and selected according to the following

criteria. First of all, the chains of RNA and protein in the

coordinate (ATOM and HETATM) section of a PDB file are

identified directly and only if a PDB file contains at least one

protein chain and one RNA chain, it is included in NPIDB.

Moreover, the interactions between RNAs and proteins in

complexes are carefully examined. The hydrophobic interactions

are evaluated by the CluD program [10,11] and the recom-

mended threshold distance range of hydrophobic interaction

between a RNA and a protein is 4.5,5.4 Å. The potential

hydrogen bonds between a RNA and a protein are also detected

based on the criterion that the distance between oxygen or

nitrogen atoms of different molecules is ,3.7 Å [9]. Taken

together, the clear definition for the RNA-protein complexes in

NPIDB guarantees the repeatability of the present analysis.

Until August 15 2010, 832 structures of RNA–protein

complexes are available in NPIDB [9]. As our interest focused

on the RNA-binding proteins with commented fold information,

184 structures were eliminated. Then, the corresponding folds of

648 RNA-binding proteins were identified manually from

Structural Classification of Proteins (SCOP) database 1.75

[12,13], which were classified into 177 types of domains and

134 families. Domain is defined as a part of protein sequence and

structure, which can form a compact three-dimensional structure

and can evolve, function, and exist independently of the rest of the

protein chain [14]. For a little part of RNAs that are shared by two

domains, both domains were counted. According to SCOP 1.75

[12,13], these domains belong to 91 folds.
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Results

Architectural profiles of RNA-binding proteins
As shown in Table S1, 91 folds do not distribute evenly in

domain space. For instance, 60 folds (65.9%) appear only once in

domain space, while 2 folds (2.2%) cover more than 10 domains

respectively. Among 91 folds, Ferredoxin-like (d.58, which belongs

to alpha and beta (a+b) protein class) is the most common fold,

which cover 17 domains. Moreover, as illustrated in Fig. 1a, the

number of folds (N) decays with the increase of the number of

domains covered by the fold (D) and follows power-law equation

N = aD2b (P,0.0001). As families are more evolutionarily

conserved than domains, we also analyzed the distribution of the

folds in family space and it was found that the correlation between

the number of folds (N) and the number of families (F) also follows

the power-law behavior (Fig. 1b).

Biological basis underlying the power-law behaviors of
RNA-binding protein architectures

The power-law behaviors of protein folds and ligand-protein

binding have been successfully explained in terms of preferential

attachment principle [15–18], which implicates that the more

popular the folds, the earlier they originated. Therefore, it is

desirable to explore the applicability of preferential attachment

principle for the evolution of RNA-binding protein architectures.

The age assignment for RNA-binding protein architectures are as

follows: early RNA-binding protein architectures defined as those

owned by both prokaryotic (E. coli) and eukaryotic (yeast or higher)

species, while late architectures defined as those owned only by

eukaryotic (yeast or higher) species. During the age-assigning

process, to guarantee that the conclusion is not confined by the

limited three-dimensional structures recorded in PDB, not only the

proteins recorded in PDB were checked, but also the correspond-

ing homologous proteins retrieved from Swiss-Prot database [19]

were considered.

As shown in Table S1, 40 folds are owned by both prokaryotic

(E. coli) and eukaryotic (yeast or higher) species, which suggests that

these folds appeared relatively early. In comparison, 19 folds are

only owned by eukaryotic (yeast or higher) species, which implies

that these folds originated relatively late. Further analysis showed

that early folds cover 2.8 domains on average, in contrast to the

Figure 1. Power-law behaviors of RNA-protein binding. (a) The number of folds (N) decays with the increase of the number of RNA-binding
domains covered by the fold (D) and follows power-law equation N = aD2b (P,0.0001). (b) The number of folds (N) decays with the increase of the
number of RNA-binding families covered by the fold (F) and follows power-law equation N = aF2b (P,0.005).
doi:10.1371/journal.pone.0022494.g001
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late folds that only cover 1.4 domains averagely. These results

suggest that preferential attachment principle is indeed applicable

to elucidating the power-law behaviors of RNA-binding protein

architectures.

Discussion

Identification of the most ancient RNA-binding protein
architecture

Based on the power-law feature of RNA-binding protein

architectures and the underlying preferential attachment principle

implication that the more widely shared architectures have an

earlier origin, we can conclude that the higher occurrence of

Ferredoxin-like (d.58) than others in RNA-binding domain space

implies that the most ancient RNA-binding proteins were very

likely to adopt this fold. This opinion is partially supported by

previous studies [20,21]. Through analyzing the sequences, Hall

et al. and Wächtershäuser proposed that ferredoxins should play an

important role in the origin of life and may have been among the

earliest proteins formed. Further inspection to the structural

information of ferredoxins reveals that they have only iron and

inorganic sulphur in their active sites, which is unlike to other

electron-transfering proteins, e.g., cytochromes and flavoproteins,

employing complex organic molecules as cofactors. Thus,

considering the abundance of iron and sulphur in the primitive

Earth, ferredoxin should possess inherent advantage than others to

emerge readily.

Implications for tracing the emergence of primitive
functional proteins

Through a large-scale phylogenomic analysis on 174 proteomes,

Caetano-Anollés and co-workers established a chronology for

proteins, in which 776 folds are recorded according to their

evolutionary order, respectively. (http://www.manet.uiuc.edu/

download/foldAncestryVal2_0.txt) [22–24]. According to the

evolutionary sequence of 776 folds, Ferredoxin-like (d.58) is

No. 5. It is interesting to note that this fold is indeed one of the

earliest protein architectures. However, there are still four kinds of

folds appeared earlier than d.58. How did the proteins of these

four folds appear?

To address this question, the first ten most ancient folds

characters were investigated. According to the MANET database

[24], the first ten most ancient folds are as follows: P-loop

containing nucleoside triphosphate hydrolases (c.37), DNA/RNA-

binding 3-helical bundle (a.4), TIM beta/alpha-barrel (c.1),

NAD(P)-binding Rossmann-fold domains (c.2), Ferredoxin-like

(d.58), Flavodoxin-like (c.23), Ribonuclease H-like motif (c.55),

OB-fold (b.40), S-adenosyl-L-methionine-dependent methyltrans-

ferases (c.66) and Adenine nucleotide alpha hydrolase-like (c.26).

Interestingly, through examining the structures and functions of

proteins belonging to these ten folds, we found that 8 of 10 folds

are dominated by special cofactors. For instance, in c.37, ATP

(adenosine-59-triphosphate) is the most popular cofactor, which

covers 17 of 24 families in whole. In turn, NAD (nicotinamide-

adenine-dinucleotide)/FAD (flavin-adenine dinucleotide)/FMN

(flavin mononucleotide) for c.1, NAD(P) for c.2, FMN for c.23,

AT(D)P for c.55, THP (thymidine-39,59-diphosphate) for b.40,

SAH (S-adenosyl-L-homocysteine) for c.66 and AMP (adenosine

monophosphate) for c.26. Considering the prevalent cofactor-

induced protein folding [25–29], we hypothesize that the early

cofactors may facilitate primitive functional protein formation. If

this hypothesis is reasonable, some cofactors should be, at least in

some cases, still be covalently linked to the protein component.

Indeed, there are many such cases in which the cofactors

contained both nucleotide and amino acid characteristics

(Table 1) [30–32], which might be considered as the vestige of

the ancient link between the cofactor and amino acid or protein.

Furthermore, Szathmary et al. also suggested that amino acids

were used by ribozymes (also called catalytic RNA) as cofactors in

anticodon-plus-amino-acid complexes, in which, cofactors consist-

ed of an amino acid bonded to one or more nucleotide

(oligonucleotide) [33–36]. A close inspection on the structures of

some cofactors, such as coenzyme A (CoA), FAD, NAD, and

coenzyme F420, indicates that these should be sited at 59 of RNAs,

which provides further evidence to support the notion that early

cofactors are the vestiges of RNA world [37]. Although the

possibility cannot be excluded that random peptides existed in

RNA world or preceded the RNA world, these random peptides

should be much shorter than any used in life today and usually

have no particular function. Therefore, according to the present

results, we proposed that the origin of primitive functional proteins

are mainly assisted by early primitive nucleotide cofactors. Despite

RNAs may also participated in the emergence of primitive

functional proteins, such as those in d.58, this pathway only plays a

minor role in whole according to the analysis.

The present finding is also helpful for understanding the

homochirality conundrum [38–42], i.e., L-amino acids and D-sugars

usually being preferred in nature over their respective enantiomers

(mirror images) with the precondition of equal production of L- and

D-amino acids provided at reaction equilibrium in vitro. Although L-

and D-amino acids are proved to possess similar thermodynamic

stability [43] and be equally efficient in building proteins [44], the

preferential stabilization of the naturally occurring D-configuration of

RNA over the L-configuration [45–48] is an inducement for proteins’

selecting L-amino acid as their building blocks when early cofactors

or RNA itself assisted the origin of primitive proteins.

Implications for tracing the composition of the primitive
RNA

An RNA world has been widely discussed as a probable stage in

the early evolution of life [1–6], however, there are still several

unanswered questions which highlight a dangerous weakness in

the whole RNA world hypothesis. For instance, the pre-condition

of RNA world hypothesis is that RNA molecules emerged in

abiotic conditions, which implies that the building blocks of RNA,

i.e., adenine (A), cytosine (C), guanine (G), and uracil (U) were

readily available on early prebiotic Earth. The isolation of adenine

and guanine from meteorites can be act as evidence that these

substances might have been available as ‘‘raw material’’ on early

Earth [49], however, cytosine has neither been reported in such

Table 1. Several cofactors contain both nucleotide and
amino acid characteristicsa.

Cofactors Full name Descriptiona

CoA Coenzyme A ADP-pantothenylcysteamine

FAD Flavin-adenine dinucleotide Linked to lysine of proteins

FMN Riboflavin-59-phosphate Linked to cysteine of proteins

SAM S-adenosyl methionine S-Adenosylmethionine

Factor 420 8-hydroxy-5-deazaflavin Flavinoid-linked (Glu)2

F390-A Adenosine 59-phosphate Flavinoid-linked (Glu)2

F390-G Guanosine 59- phosphate Flavinoid-linked (Glu)2

aMost of the observations were taken from [30–32].
doi:10.1371/journal.pone.0022494.t001
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analyses nor is the product of electric spark discharge experiments

[50]. Thus, it seems difficult for the primitive RNA to be

constituted by four types of bases, i.e., A, C, G, U.

Ribosomes, a place for protein synthesis, are large macromo-

lecular assemblies consisting of RNAs and proteins, in which RNA

plays a catalytic role in the formation of the peptide bond and the

key catalytic site is proved to be only an adenine residue in the

RNA [51,52]. Further inspect showed that cofactors dominated in

earliest folds, e.g., ATP, NAD, FAD, ADP, SAH, AMP, contain a

same base part, i.e., adenine. Considering the notion that early

cofactors are vestiges of RNA world, we thus believed that adenine

base should be included in the original composition of primitive

RNA. Moreover, many modern RNA molecules still contain

adenine-rich sequences. For example, the adenine composition in

a Sendai virus 18S messenger RNA is as high as 99.1% [53], which

implies that simpler RNA still can perform its function. Based on

the above results, we proposed that primitive RNA is most likely

composed mainly by adenine base (A).

In summary, as a probable stage in the early evolution of life,

RNA world has been wildely accepted because of the duplicate

roles of RNA as both genetic material and catalysts. Thus, it is

significant importance of tracing the pathway of RNA world to

modern world. Although the possibility of random peptides

existing in RNA world cannot be excluded, it was suggested that

these random peptides usually have no particular function.

Through systemic analysis of RNA-protein complexes, we

proposed that primitive functional protein emergence is mainly

assisted by early primitive nucleotide cofactors, while only a

minority induced by RNA itself. The present findings also have

significant implications for understanding origin of the homochi-

rality of biomolecules and the composition of primitive RNA.
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