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Abstract

During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in
speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied.
Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms:
vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form
two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to
form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher
frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation
rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative
clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda,
Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the
Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost
entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown
of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late
Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of
vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis.
Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of
speciation by vicariance as an outcome of the modern biodiversity crisis.
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Introduction

The Late Devonian (Frasnian-Famennian) interval is tradition-

ally considered to rank among the ‘‘Big Five’’ mass extinction

events in Phanerozoic history with peak diversity decline in the late

Frasnian Stage [1–3]. Certainly this interval included a dramatic

biodiversity crisis during which high levels of ecosystem reorga-

nization occurred [4]. Its status as a ‘‘mass extinction’’, however,

has been questioned based on statistical analyses of extinction

rates; Late Devonian extinction rates are not significantly higher

than extinction rates during background intervals [3,5].

Biodiversity loss can occur due to either (or both) elevated

extinction levels or reduced speciation rates. Because the role of

elevated extinction appears to be minimal during the Late Devonian

Biodiversity Crisis, an analysis of speciation dynamics across this

interval can provide critical insight into the faunal dynamics of this

key interval in life history. Indeed, reduced speciation rates during

the Frasnian crisis interval have been recognized since at least 1989

[1,2,4,6]. However, neither the statistical significance of this

reduction nor its causes have been previously explored using

phylogenetically constrained species-level data or within an

analytical framework that could assess speciation mode.

Previous attempts to examine Late Devonian biodiversity

dynamics have focused on either on either ecosystem level patterns

[4] or analyses of genus and family level data extracted from global

taxonomic databases [1–3,5]. Comparisons based on global

datasets are highly successful at elucidating large scale, biota-wide

patterns; however, included data are subject to error due to

stratigraphic biases [7], geographic incompleteness [8], and

taxonomic inaccuracies [9] which limits the ability of these

datasets to resolve detailed patterns. In particular these datasets do

not include phylogenetic information and lack the detailed

taxonomic, temporal, and evolutionary data required to investi-

gate speciation-level processes, such as those potentially driving

biodiversity loss during the Late Devonian Biodiversity Crisis.

Analyzing species-level patterns within a well-constrained phylo-

genetic framework ameliorates some of these biases because the

entire evolutionary history of an individual clade is examined. This

is particularly true for clades in which a high percentage of their

diversity is represented in the phylogenetic analysis [10–11].

Further, species-level analyses allow speciation mode to be assessed

and thereby provide insight into macroevolutionary dynamics not

possible with analyses based on higher taxa.

Speciation, the formation of new species from ancestral

populations, occurs by two primary allopatric mechanisms:

vicariance ( = allopatry model I of [12]), where the ancestral

population becomes passively divided into two large subpopula-

tions which subsequently diverge to form two daughter species,
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and dispersal ( = allopatry model II of [12], in which a small subset

of the ancestral population actively migrates and diverges to form

a new species [12–13]. Speciation mode at cladogenetic events can

be discerned by examining phylogenetic topology within a

biogeographic context [14]: episodes of vicariance are indicated

by daughter species occupying only a subset of the ancestral range,

whereas episodes of dispersal are indicated by daughter species

occupying geographic areas different from or additional to the

ancestral range.

Another notable feature of Middle to Late Devonian transition

is a reduction in endemism, which has been related to the

increased frequency of interbasinal species invasions at this time

[15–18]. The increased amount of interbasinal species invasions

potentially impacted opportunities for speciation. In analyses of

speciation mode in modern organisms, speciation by vicariance

occurs in much higher frequencies than speciation by dispersal

[12,19–21], a pattern which is repeated in fossil marine

invertebrates [22–26]. In this analysis, the hypothesis that

speciation rate declined during the Late Devonian biodiversity

crisis due to a reduction in speciation by vicariance is tested.

Herein rates of speciation, extinction, and biodiversity turnover

are calculated for three mainly North American clades: one

bivalve subgenus, Leptodesma (Leiopteria), and two brachiopod

clades, Floweria and Schizophoria (Schizophoria) based on species-

level phylogenic hypotheses previously published in [27–28]. In

addition, speciation mode (vicariance vs. dispersal) at individual

cladogenetic events is assessed by combining biogeographic

distributions with phylogenetic hypotheses for these three clades

and the subclass Archaeostraca, a clade of predatory crustaceans

[29]. These clades were selected in order compare speciation

patterns in the numerically dominant taxa from nearshore to

offshore marine environments including both the dominant

invertebrate predators and benthos. Because these taxa were

common members of Middle through Late Devonian biota, this

cross phyla analysis is likely representative of Devonian shallow

marine invertebrate dynamics in general. Analyses indicate a

fundamental shift in both speciation rate and mode during the

crisis interval.

Results

Biodiversity rates
Biodiversity rates were calculated in three ways: per-capita rates

based on observed species ranges, phylogenetically constrained

per-capita rates, and phylogenetically constrained deterministic

rates (see Methods). Results from the three sets of analyses

produced congruent patterns (Table S1, Figs. 1, Figure S2). For

clarity, the discussion below focuses on the phylogenetically

constrained per-capita rates unless otherwise noted.

Figure 1 illustrates the phylogenetically constrained instanta-

neous per-capita rates of speciation, extinction, and biodiversity

change calculated for each temporal bin spanning the interval

prior to, including, and following the late Frasnian crisis interval.

Although each clade exhibits some individuality of pattern, a

congruent general pattern emerges. Biodiversity increased in the

Middle Devonian, specifically during the late Eifelian and late

Givetian intervals, followed by a continuous decline during the

Frasnian with maximum biodiversity loss during the late Frasnian

coinciding with the Late Devonian Biodiversity Crisis. Examining

the two components of diversity change separately indicates that

elevated speciation rates drove the late Givetian diversity increase,

whereas elevated extinction rates contributed to the early Givetian

and early Frasnian declines. Although extinction rates were

elevated during the late Frasnian relative to the early Frasnian

and Famennian intervals, late Frasnian extinction rates do not

exceed that observed during Middle Devonian intervals. Notably,

speciation rates declined to near zero in all clades during the

Frasnian. Because extinction rates during the Frasnian crisis

Figure 1. Instantaneous per-capita rates for speciation, extinction, and biodiversity change calculated using phylogenetically
constrained species ranges (see Methods). The upper series displays rates calculated for each clade individually, and the lower series illustrates
rates calculated with species of all clades combined. Biodiversity increases in the late Eifelian and late Givetian are driven by high speciation rates
which overcome the effect of the high extinction rates. Extinction rates during the Frasnian biodiversity crisis interval are lower than during the
Middle Devonian; however, biodiversity declines due to the severe reduction in speciation rates.
doi:10.1371/journal.pone.0015584.g001
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interval do not exceed background rates, the dramatic biodiversity

loss is attributable to anomalously low speciation rates not high

extinction rates.

A potential concern with phylogenetically constrained specia-

tion rates is that artificially high rates of speciation can be

calculated during the early history of a clade due to reconstruction

of temporally equivalent splits of sister taxa from cladogenetic

nodes and associated backward extension of species ranges (10–

11). This potential bias does not appear to impact the results

obtained here because the highest rates of speciation occur in the

same temporal bins (late Eifelian and late Givetian) regardless of

whether observed species ranges or phylogenetically constrained

data are used (Table S1, Figs. 1, Figure S2). The observed

temporal trend in speciation rate, therefore, is a primary pattern of

the data rather than an artifact of the methodology.

To further test whether biodiversity decline was due to reduced

speciation rate rather than elevated extinction rate, average

Middle Devonian and average Late Devonian rates were

statistically compared. Mann-Whitney U tests confirmed that

Late Devonian speciation rates were significantly lower than the

Middle Devonian speciation rates in all clades as well as the

combined data set (a= 0.05 in all comparisons). Late Devonian

extinction rates were also significantly lower than extinction rates

during the Middle Devonian at the a= 0.05 level for Schizophoria,

Floweria, and the combined dataset, although this comparison is

marginally insignificant for Leiopteria (a= 0.10).

The same pattern emerges if instantaneous rates for each

temporal interval are compared to long-term rates for each clade.

Specifically, instantaneous speciation and extinction rates were

compared with the speciation/extinction rates characteristic of

each clade throughout its duration as well as the average

speciation/extinction rates for each clade for the entire study

interval (Figs. 2, S3). Frasnian speciation rates were statistically

lower than expected from the clade rate at the a= 0.05 level for all

taxa. Extinction rates, although statistically elevated during the

late Eifelian (a= 0.05), were not statistically higher than the clade

rates during the late Frasnian, with the exception of Floweria in

which rates are marginally higher (a= 0.01). These comparisons

further support the argument that the primary driver of

biodiversity loss during the Late Devonian biodiversity crisis was

a dramatic decline in speciation rate.

Speciation mode
The distribution of speciation events attributable to allopatric

speciation by vicariance or dispersal for Leptodesma (Leiopteria),

Schizophoria (Schizophoria), Floweria, and the crustacean suborder

Archaeostraca are summarized in Table 1. Speciation events in

Schizophoria, Leptodesma, and the archaeostracan crustaceans are

Figure 2. Comparison of instantaneous per-capita rates per interval versus the average rate across all intervals. Shading indicates
directionality of rate comparison; blue indicates temporal bin rate lower than the average; red indicates temporal bin rate higher than the average;
gray indicates approximately average rate. * indicates that rates during the Late Devonian intervals are significantly lower than rates during the
Middle Devonian intervals based on the Mann-Whitney U-test. During Late Devonian, speciation rate is significantly lower than the average rate for all
clades and extinction rate is either significantly lower or not significantly different than average rate. Biodiversity loss during the Frasnian crisis
interval, therefore, is due to reduced speciation rates not elevated extinction rates.
doi:10.1371/journal.pone.0015584.g002

Table 1. Comparison of allopatric speciation events by mode across Devonian, Early Paleozoic, and modern clades.

Clade
Number of vicariance
events

Number of dispersal
events

Percent speciation
by vicariance

Percent speciation
by dispersal

Schizophoria (Schizophoria) 2 17 11% 89%

Floweria 7 7 50% 50%

Leptodesma (Leiopteria) 2 6 25% 75%

Archaeostraca 6 13 32% 68%

Devonian Combined 17 43 28% (sd 16%) 72% (sd 16%)

Cambrian and Ordovician Trilobites 54% (sd 16%) 46% (sd 16%)

Early to Middle Devonian Trilobites 54% (sd n/a) 46% (sd n/a)

Modern Fauna 74% (sd 35%) 26% (sd 34%)

Schizophoria (Schizophoria) and Floweria are brachiopod clades, data from [28] Leptodesma (Leiopteria) is a bivalve clade, data from [27]. The subclass Archaeostraca is a
phyllocarid crustacean clade, data from [29]. Early Paleozoic Trilobites comparison based on [23–26]; Middle Devonian trilobites based on [22] Modern comparison
based on [20]. Devonian clades exhibit a dramatic reduction in speciation by vicariance when compared to the modern or other fossil taxa.
doi:10.1371/journal.pone.0015584.t001
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overwhelmingly attributable to speciation by dispersal. Within

these clades, speciation by dispersal is dominant, comprising 72%

of events, whereas vicariance is only implicated in only 28% of

speciation events (Table 1). Even in Floweria, where dispersal

events were less common, the percentage of speciation events

consistent with vicariance is lower than expected in comparison

with modern and other fossil clades (Table 1).

Discussion

The combined results of the biodiversity rate analyses strongly

indicate that the dramatic Frasnian speciation rate decline was the

primary driver of biodiversity loss during the Late Devonian

Biodiversity Crisis. This corroborates results of previous generic

and family level analyses [3,5], but temporal changes in rates alone

cannot identify the biological reason for the decline in speciation

rate. The analysis of speciation mode, however, does identify a

mechanism for the observed decline in speciation rate: a dramatic

lack of vicariant speciation during the study interval. In fact, all but

two of the documented vicariance events precede the Frasnian Stage.

The observed level of Late Devonian vicariance is greatly

reduced compared to that observed in modern and other fossil

clades, in which the great majority of allopatric speciation occurs

via vicariance (Table 1) [12,19–21]. Most of the modern

comparative data are based on analyses of continental taxa

[12,20,30], which have been suggested to potentially exhibit

higher levels of vicariance than marine taxa [31]. Recent

speciation mode analyses of modern marine invertebrates,

however, also document a 2:1 ratio of speciation by vicariance

versus dispersal [21,32–33] indicating that vicariance is also the

dominant speciation mode in modern marine ecosystems. Fewer

studies have examined speciation mode in fossil marine inverte-

brates; however, several studies of Cambrian and Ordovician

trilobites [23–26] also documented relative levels of vicariant

speciation that greatly exceed those of the of the Late Devonian

clades (Table 1). Significantly, the results of the present analysis

indicate levels of Late Devonian vicariance that are substantially

lower than that observed in Early to Middle Devonian trilobites

[22] (Table 1). Devonian calmoniid trilobites of the cool-water

Malvinokaffric realm also exhibited declining speciation rates

associated with increased dispersal events as the Devonian

progressed [34], which suggests the pattern reported herein is

not restricted to Laurentia.

The Late Devonian reduction in vicariance coincided with

increased intensity of interbasinal species invasions and expansion of

species’ geographic ranges [18] (Fig. 3). Interbasinal exchange was

facilitated by multiple transgressive events that flooded previously

emergent tectonic barriers within Laurentia [18,35]. The establish-

ment of broadly-adapted geographically widespread invasive species

was the likely trigger for speciation depression. Allopatric speciation

by vicariance requires passive isolation of previously adjacent

populations [13]. The numerous range expansion events during this

interval would have prohibited sustained geographic isolation,

thereby cutting off the primary mechanism of vicariant speciation.

Because vicariant speciation is the dominant speciation mode at

other intervals of geologic time, halting vicariance would have

resulted in a substantial lowering of speciation rate.

Speciation via dispersal, although more common than vicari-

ance throughout the entire study interval, also stopped during the

late Frasnian to Famennian interval. Analyses of the geographic

ranges of species across the Late Devonian crisis interval have

previously demonstrated preferential survival of species with large

geographic ranges, an episode of interbasinal invasion in their

history, and/or expanding geographic ranges during the late

Frasnian [18,36]. As species with small ranges were more likely to

become extinct during the Late Devonian [18], the reduction in

range size from an ancestral range to an isolated population

required for speciation by dispersal would have been more likely to

result in extinction than promote speciation during this interval.

By reducing opportunities for both vicariance and dispersal

during the crisis interval, the effective speciation rate declined far

beneath the marginally elevated extinction rate. This resulted in the

tremendous loss of biodiversity and ecosystem overturn that

characterizes the Late Devonian as no new species were forming

to fill ecological voids left by the continuing extinctions. Combining

these results with those of [18,36], a more complete understanding

of the faunal dynamics of the Late Devonian Biodiversity Crisis

begins to emerge. Species that originated via dispersal events and

participated in later episodes of interbasinal invasion were the

species that successfully survived the biodiversity crisis interval.

Conversely, ecologically specialized species with narrow geographic

ranges became extinct without producing daughter species because

of the general shutdown of vicariant speciation during this interval.

This differential speciation and survival was manifested as a

transition from the endemic faunas of the Middle Devonian to the

cosmopolitan fauna of the Late Devonian and a shift from

numerous more narrowly adapted species to fewer generalist

species at the ecosystem level and higher.

Species invasions in the fossil record provide useful analogs for

modern invasive species. These fossil invasions record the

introduction of species into a tectonic basin outside of its native

range and, therefore, into ecosystems in which they did not evolve

Figure 3. Middle to Late Devonian species geographic range
sizes and invasion intensity. Both the mean geographic range size
for brachiopod and bivalve species and interbasinal invasion intensity
increase during Frasnian crisis interval compared with Givetian
background levels. Modified from [18].
doi:10.1371/journal.pone.0015584.g003
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[37]. This is identical in principle to modern human mediated

introductions; therefore, modern invasive species should be

expected to have similar impacts as ancient invaders. If vicariance

is the more frequent mode of speciation, as indicated by studies of

modern taxa [19–21], then the modern spread of invasive species

may be expected to similarly result in speciation depression in

modern ecosystems. Furthermore, if the Late Devonian is an

accurate analog for modern ecosystems, modern human-mediated

species invasions [38–40] should result in a similar long term

diversity decline due to preferential survival of broadly adapted

invasive species, extinction of geographically restricted ecological

specialists, and suppression of vicariant speciation of new species.

Materials and Methods

Stratocladogram construction
In order to calculate speciation rates and assess speciation

modes, a robust and detailed phylogenetic framework is required

in order to determine evolutionary relationships and timing of

cladogenetic events [41–42]. Without a phylogenetic framework,

to ensure monophyly of species, paraphyletic or polyphyletic taxa

may be included within rate calculations which could produce

substantial errors in both absolute rates and the determination of

temporal trends in relative rates [9,20,43].

Previously published species-level phylogenetic hypotheses for

Leptodesma (Leiopteria) [27], Floweria [28], and Schizophoria (Schizo-

phoria) [28] were converted to stratocladograms following the

protocol of [41] (Fig. S1). Species temporal durations were

reconstructed using known stratigraphic ranges, assuming sister

taxa diverged simultaneously from cladogenetic nodes, and

creating ghost ranges to connect theoretical speciation events with

known range data. Species ranges span the late Emsian (Early

Devonian) to Tournaisian (Early Mississippian) Stages. This

interval was subdivided into ten temporal bins, one corresponding

to the either early or late halves of each stage. The absolute

duration of each stratigraphic bin was determined from the

composite Devonian timescale of [44]. This timescale incorporates

the greatest number of radiometric dates of any Devonian

timescale and is interpolated against a biochronographic relative

scale; consequently it represents the most robust hypothesis of

absolute ages currently available for the Devonian Period.

Calculation of biodiversity rates per temporal interval
Rates of instantaneous biodiversity change, speciation, and

extinction were calculated from this data for each clade

individually and for all three clades combined during each of

ten temporal bins. Rates were calculated using three variants of

the deterministic exponential model of taxon growth, which

facilitates calculating instantaneous rates of biodiversity change

within a phylogenetic framework [45–47].

Various speciation and extinction metrics have been proposed

for rate calculation of modern and fossil taxa. Those most

commonly applied to palaeontological data incorporate parame-

ters related to standing diversity and absolute duration of temporal

bins (see review in [48]); however, these typically utilize multi-

taxon datasets derived from databases rather than single clades

with known phylogenetic structure. Conversely, neontological

methods of diversity rate analysis typically consider phylogenetic

structure for clades, but produce a single value of speciation rate

for the entire radiation of a clade rather than a rate per time

interval [46]. Because this study combines both phylogenetic and

temporal information, rates were calculated using both traditional

paleontological rate estimation metrics designed to calculate

instantaneous rates normalized by standing diversity (e.g., those

of [48]), referred to herein as per-capita rates, and rate estimation

methods designed to incorporate phylogenetic structure (e.g., those

of [45,47]), referred to herein as deterministic rates. Comparison

of calculated rates provides a broader basis for interpreting the

generality of the recovered biodiversity patterns. Each of metrics

has a long history of use in phylogenetically-informed analyses of

speciation and extinction rates [6,34,42,49] or database-based

estimates of biodiversity change [7,9,50–51].

Per-capita rates for speciation (q̂), extinction (p̂), and diversity

change (d) were calculated following the equations in [48]. Rates were

calculated for each clade individually and all clades combined for

each temporal bin using counts from (1) raw species ranges and (2)

phylogenetically corrected species ranges obtained from the strato-

cladograms in Figure S1 (Table S1). Values calculated from bins 1

and 10 were excluded from further analysis to remove edge effects.

Deterministic rates of biodiversity change (R), speciation rate (S),

and extinction rate (E) were calculated for each clade during each

temporal bin based on phylogenetically corrected species range

data in Figure S1 (Table S1). Rates are calculated as: R = (ln N1–ln

N0)/Dt; S = (ln (N0+o0)–ln N0)/Dt; and E = (ln (N0+o0)–ln N1)/Dt;

where N0 is the initial number of species in a clade at time t0, N1 is

the number of species present at time t1, Dt is the duration of the

interval t1–t0, and o0 is the number of speciation events during

interval t1–t0 [48–49]. Following [52], the variance for each rate

(R, B, or D) was calculated as: variance (R, B, or D) = [rate value (R,

B, or D)]2/(n-2), and the standard deviation for each rate (R, B, or

D) was calculated as: standard deviation (R, B, or D) = ![variance

(R, B, or D)], where n = N0+o0, the number of species extant during

the interval, [52]. Ninety-five percent confidence intervals were

determined for calculated rate values based on the variance

calculated using: 95% CI = rate value (R, B, or D) 626 standard

deviation (R, B, or D). Values calculated from bins 1 and 10 were

excluded from further analysis to remove edge effects.

Calculations of general biodiversity rates per clade
Average per-capita speciation, extinction, and diversity change

rates were calculated for each clade and for the combined dataset

to provide a framework for comparing the instantaneous rates with

rates throughout the Middle to Late Devonian study interval

(Table S1). In addition, overall clade rates, rates exhibited by the

clade during the entire duration of the study interval, were

calculated using a pure-birth deterministic model based on species

longevity following the principles outlined in [53–54] (Table S2).

To calculate clade rates, each species temporal range was

interpreted to include the entire duration of all temporal bins in

which that species occurs; range extensions of ghost ranges

inferred from equal taxonomic split were not included. Species

which range into the Mississippian were also excluded in order to

calculate a rate characteristic of Devonian dynamics only. Because

phylogenetic topology was not incorporated into longevity

estimates, clade rates provide rate calculations independent from

the phylogenetically corrected instantaneous biodiversity rates.

The deterministic model assumes constant rates of speciation,

extinction, and biodiversity change during the history of a clade

that experiences exponential growth. Clade rates most accurately

estimate biodiversity dynamics during the exponential growth or

decay a clade from a starting clade size of one species [53], which

is appropriate for the taxa examined herein.

The calculated of rate of biodiversity increase (R) follows the

deterministic model outlined above assuming an initial standing

diversity of one species as follows: R = (ln n)/Dt, where n is the total

number of species in the clade and Dt is the entire temporal

duration of the clade. Following [46], the standard deviation of R

is calculated as: Standard deviation (R) = !(R2/(n-2)). Extinction

Invasive Species Linked to Speciation Decline
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rate (E) is calculated as the inverse of the longevity (temporal

duration) of a species in the clade such that: E = 1/d, where d is

the average species duration. The standard deviation of E is

calculated as: Standard deviation (E) = !(1/var (d)). Following the

same relationship between net biodiversity rate, speciation rate,

and extinction rate described above, speciation rate (S) is

calculated as: S = R+E. The standard deviation of S is calculated

as: Standard deviation (S) = !((R2/(n-2)) +1/var (d)).

Rate comparisons
Temporal variations in speciation, extinction, and diversity rates

are presented graphically (Figs. 1, Figure S2). The rate analyses

congruently indicate a reduction in both speciation and extinction

rate during the Frasnian stage when compared to the Givetian stage.

Several rate comparisons were conducted to determine whether the

instantaneous speciation or extinction rates for individual temporal

bins were, in fact, statistically different than expected under the null

hypotheses that Late Devonian speciation and extinction rates were

equivalent to or higher than Middle Devonian rates.

Per-capita rates for each interval were compared with (1) the

average per-capita rate calculated across all temporal bins and (2)

the clade rate. Instantaneous rates were coded as higher, lower, or

equivalent to the average rates or the clade rate +/2 2 standard

deviations (Figs. 2, S3). The statistical significance of the

comparison between instantaneous per-capita rate and average

per-capita rate was determined by comparing the four Middle

Devonian intervals versus the four Late Devonian intervals using

the non-parametric Mann-Whitney U test using the Bonferroni

correction for multiple comparisons. Comparisons were conducted

using both raw data and phylogenetically corrected data.

Instantaneous deterministic rates were compared with clade

rates using 2-sample T-tests by incorporating calculated rate and

standard deviations values for both values (Fig. S3).

Speciation mode determination
To determine speciation mode at individual cladogenetic

events, biogeographic areas were optimized onto internal nodes

in the most parsimonious cladograms using the Fitch Parsimony

algorithm, which provides a framework to interpret speciation

mode at individual speciation events [14,55]. Speciation mode was

determined from taxon area cladograms for the three clades

described above and the crustacean Subclass Archaeostraca [27–

29]. Each node on the optimized taxon-area cladograms was

examined for evidence of speciation by vicariance or dispersal

following criteria of [12,14]. Biogeographic shifts between ancestor

and descendant taxa were identified as due to vicariance at nodes

where descendant taxa occupy only a subset of the ancestral range

or dispersal at nodes where descendant taxa occupy geographic

regions additional to or different from the ancestral range.

Supporting Information

Figure S1 Stratocladograms. Species-level phylogenetic hy-

potheses from [26-27] modified into stratocladograms. Solid lines

indicate a species observed range, while dashed lines indicate ghost

lineage range extensions. Absolute age dates and relative time

scale modified from [44].

(TIF)

Figure S2 Additional speciation, extinction, and biodi-
versity rates. Upper two series illustrate instantaneous determin-

istic rates calculated using phylogenetically constrained species

ranges by clade (top row) and for all three clades combined (second

row). Vertical bars indicate 95% confidence intervals. Lower two

series illustrate instantaneous per-capita rates for speciation,

extinction, and biodiversity change calculated from raw species

range data by clade (third row) and for all three clades combined

(fourth row). Instantaneous per-capita rates could not be calculated

for Leiopteria in any interval or Schizophoria, Floweria, or the combined

data sets in select intervals due to values of 0 in the data distribution

(Table S1). Regardless of rate calculation method, all analyses

indicate a significant decline in speciation rate during the Frasnian

coupled with extinction rates that are not elevated beyond those of

the Middle Devonian during the crisis interval.

(TIF)

Figure S3 Comparison of instantaneous rates versus
clade or average rates. Calculated rates for individual temporal

bins are compared with the clade rate or average of the rate during

the study interval. 95% confidence intervals were constructed for

both clade rates and deterministic rates (see Methods) but not per-

capita rates and average rate values. If calculated per-capita rates

are above the 95% CI for the clade rate or above the average rate,

the box is shaded red, rates that fall below were shaded blue, and

those that are indistinguishable were coded gray. Shading of the

deterministic rate versus clade rate indicates statistical significance

of T-test comparison; blue indicates temporal bin rate significantly

lower than the clade rate (p,0.05); red indicates temporal bin rate

significantly higher than the clade rate (dark red: p,0.05, light red:

p,0.01). Results of all five comparisons are highly congruent. Both

speciation and extinction levels are low in the Late Devonian

relative to Middle Devonian values.

(TIF)

Table S1 Rate calculations. Instantaneous per-capita and

deterministic rates calculated as described in Methods. Raw

observed turnover data includes only the observed stratigraphic

ranges of species while phylogenetically constrained data incorpo-

rates ghost ranges as outlined in Methods. Rates are calculated

from species turnover data to the left of the rate columns. Dt is the

temporal duration of the interval determined from [44] (Fig. S1).

NbL indicates the number of species that cross the lower interval

boundary but become extinct during the interval, NFt indicates the

number of species that originate within the interval and cross over

the upper interval boundary, Nbt indicates the number of species

that cross both the upper and lower interval boundaries. N0

indicates the number of species extant at the beginning of the

interval tn, Nf indicates the number of species extant at the end of

interval of time tn, # sp indicates number of speciation events that

occur during that interval, # ext indicates the number of species

that become extinct during the interval. Rate and standard

deviation values derived from equations in Methods.

(XLS)

Table S2 Clade rates. Clade rates are calculated from the

deterministic equation described in Methods for each clade during

the Devonian and all clades combined during the study interval.

(XLS)

Acknowledgments

Discussions with M. Foote, D. Hembree, B. Lieberman, and N. Stevens

improved this paper.

Author Contributions

Conceived and designed the experiments: ALS. Performed the experi-

ments: ALS. Analyzed the data: ALS. Contributed reagents/materials/

analysis tools: ALS. Wrote the paper: ALS.

Invasive Species Linked to Speciation Decline

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15584



References

1. McGhee GR, Jr. (1989) The Frasnian-Famennian extinction event. In:
Donovan SK, ed. Mass Extinctions: Processes and Evidence New York,

Columbia Univ. Press. pp 133–151.
2. McGhee GR, Jr. (1996) The Late Devonian mass extinction; the Frasnian/

Famennian crisis. New York: Columbia Univ. Press. 303 p.
3. Bambach RK, Knoll AJ, Wang SC (2004) Origination, extinction, and mass

depletions of marine diversity. Paleobiology 30: 522–542.

4. Droser ML, Bottjer DJ, Sheehan PM, McGhee GR, Jr. (2000) Decoupling the
taxonomic and ecologic severity of Phanerozoic marine mass extinctions.

Geology 28: 675–678.
5. Alroy J (2008) Dynamics of origination and extinction in the marine fossil

record. Proc Natl Acad Sci 105(s1): 1536–11542.

6. Rode AL, Lieberman BS (2005) Integrating biogeography and evolution using
phylogenetics and PaleoGIS: A case study involving Devonian crustaceans.

J Paleontol 79: 267–276.
7. Peters SE, Foote M (2005) Determinants of extinction in the fossil record. Nature

416: 420–424.

8. Alroy J, Marshall CR, Bambach RK, Foote M, Fürsich FT, et al. (2001) Effects
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