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Abstract

Social insects exhibit a variety of caste-specific behavioral tendencies that constitute the basis of division of labor within the
colony. In termites, the soldier caste display distinctive defense behaviors, such as aggressively attacking enemies with well-
developed mandibles, while the other castes retreat into the colony without exhibiting any aggressive response. It is thus
likely that some form of soldier-specific neuronal modification exists in termites. In this study, the authors compared the
brain (cerebral ganglion) and the suboesophageal ganglion (SOG) of soldiers and pseudergates (workers) in the damp-wood
termite, Hodotermopsis sjostedti. The size of the SOG was significantly larger in soldiers than in pseudergates, but no
difference in brain size was apparent between castes. Furthermore, mandibular nerves were thicker in soldiers than in
pseudergates. Retrograde staining revealed that the somata sizes of the mandibular motor neurons (MdMNs) in soldiers
were more than twice as large as those of pseudergates. The enlargement of MdMNs was also observed in individuals
treated with a juvenile hormone analogue (JHA), indicating that MdMNs become enlarged in response to juvenile hormone
(JH) action during soldier differentiation. This enlargement is likely to have two functions: a behavioral function in which
soldier termites will be able to defend more effectively through relatively faster and stronger mandibular movements, and a
developmental function that associates with the development of soldier-specific mandibular muscle morphogenesis in
termite head. The soldier-specific enlargement of mandibular motor neurons was observed in all examined species in five
termite families that have different mechanisms of defense, suggesting that such neuronal modification was already present
in the common ancestor of termites and is significant for soldier function.
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Introduction

Social insects are characterized by highly organized social

behavior, which is facilitated by an elaborate caste system. Colony

members are differentiated into various castes, which all

contribute to the fitness of the colony through the division of

labor. Different castes exhibit a variety of morphological and

behavioral characteristics that facilitate specific tasks in the

division of labor [1]. In addition to immature individuals (larvae),

termite colonies are composed of reproductive, worker and soldier

castes. In instances when the colony is being threatened or

damaged, such in the event of invasion by predators, workers

escape deep into the colony and exhibit building behavior while

soldiers employ specific defensive behaviors related to attacking

their enemy aggressively [2]. Soldiers position themselves scattered

about the nest, or they may patrol the nest surface antennating or

attacking. There are numerous interspecific differences in the

methods used by soldiers to attack; they may bite or ‘‘snap’’ with

their mandibles, discharge defensive chemical secretions from their

frontal glands, or plug the nest with their heads [2]. One common

feature of all soldiers, however, is that they are characteristically

aggressive and exhibit specific defense behaviors, which suggests

that the specific control of these soldier-specific defense behaviors

occurs in the nervous systems of soldiers.

Generally, the central nervous system (CNS) of insects consists

of a brain (cerebral ganglion), a suboesophageal ganglion (SOG),

three thoracic ganglia, and abdominal ganglia that are joined from

the anterior to posterior of the body by two major connective

nerves [3]. The brain plays an important role in integrating

behavior, while the SOG controls the salivary ducts, certain

muscles of the head-thorax junction, and the mouthparts,

including mandibles [4], which are one of the distinguishing

characteristics of soldier morphology.

Comparison of the CNS between castes provides important

clues for understanding the types of nervous system specialization

in social insects that are responsible for caste-specific behavior.

Recent studies have demonstrated that certain regions of

hymenopteran brains are modified and that this affects behavioral

differentiation in these holometabolous insects [5–11]. It was

found that the mushroom body changed according to the age or

foraging experience of honeybees [5,6]. The macroglomerulus of

the antennal lobes are enlarged in large-bodied workers of the leaf-

cutting ant, involved in the detection of the trail pheromone [7].

Other studies on hymenopterans suggest that the presence of the

queen, mating experience, or age could also influence the

concentration of biogenic amines or the expression of their

receptors [8–11]. However, few studies have elucidated the

mechanism underlying behavioral differentiation in hemimetabo-
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lous social insects such as termites, aphids, and thrips that have

independently acquired eusociality [12]. To understand the

general mechanisms underlying the elements of social behavior

shared by social insects, increased knowledge of the nervous

systems of hemimetabolous social insects is required. Caste-specific

anatomical differences in size and allometry have been reported

for the nervous systems of certain termite species [13], however,

most of the information collected to date consists of fragmentary

descriptions.

To further elaborate on soldier-specific modifications of the

central nervous system, the authors undertook anatomical and

histological examinations of the brains and SOGs of termites. The

focal species was a damp-wood termite, Hodotermopsis sjostedti

(Family Termopsidae; Order Isoptera), which have ‘‘biting-type’’

soldiers. This species was selected because they have large bodies

and are thus well suited to anatomical examinations. In addition,

‘‘biting-type’’ soldier are considered to represent the evolutionarily

ancestral condition [14]. After they hatch, larvae undergo six

molts before becoming pseudergates, which function as workers.

Pseudergates can subsequently differentiate into either soldiers or

alates, although many remain pseudergates by repeating stationary

molts [15]. Individuals that enter the alate line become nymphs

first, before molting into alates, while individuals in the soldier line

become soldiers through presoldiers [16,17]. It has been widely

reported that juvenile hormone (JH) plays an important role in

termite soldier differentiation [18–20]. In H. sjostedti, soldier

differentiation can be induced by applying a juvenile hormone

analogue (JHA). To demonstrate how the CNS is modified during

soldier determination, a method employing this hormonal control

was used in this study. It was shown that there was a distinct

nervous specialization accompanying the soldier differentiation in

H. sjostedti, and that this phenomenon was common in all termite

species so far examined.

Results

Morphometry of brain and SOG
While morphometric analyses showed that SOGs of the soldiers

were significantly larger than those of the pseudergates (Length

p,0.001, Width p,0.001; Student’s-T test), no detectable

difference in brain (cerebral ganglion) size was detected (Fig. 1A–

E). In addition, measurements of mouthpart nerves innervated

from the SOG revealed that, unlike maxillary nerves (MxNs), the

mandibular nerves (MdNs) were thicker in soldiers than in

pseudergates (Fig. 1F). We therefore expected for there to be

some neuronal modification involved with the mandibular motor/

sensory systems of soldiers.

Retrograde tracing study using mandibular muscles in H.
sjostedti

Since the SOG is known to control the mouthparts and soldiers

have markedly larger mandibles than pseudergates, we hypothe-

sized that the large SOG in soldiers was related to the

development of mandibular motor neurons (MdMNs). To prove

this hypothesis, retrograde staining from mandibular closer

muscles was performed. As a result, 17 MdMN somata and

neurites were efficiently stained in the antero-ventral region

(Fig. 2). Of these, five somata were located around the axon tract

of the MdMNs, all of which showed variability with respect to

position (anterior cluster; Fig. 2B, D, F, H, indicated in grey). The

patterns of the neuronal branches were similar; moving backwards

along their respective axons first before turning back on themselves

to the mandibular nerve (MdN) together with remaining 12

neurons. The remaining 12 somata were stained in the ventro-

median region of the anterior part of the ganglion, and were

markedly less varied with respect to their positions (posterior

cluster; Fig. 2B, D, F, H, colored in black). These axons extend to

the dorsal region before turning orthogonally to the MdN. Most of

the dendrites were restricted to the ipsilateral side, with only a few

reaching the contralateral side. No significant difference was

observed in the number of stained MdMNs between castes (data

not shown).

The size of the mandibular closer motor neurons appeared to

differ between soldiers and pseudergates (Fig. 3). The average

cross-sectional areas of the maximal MdMN somata sections in

pseudergates and soldiers were 297.56108.5 mm2 (mean6SD)

and 638.36168.0 mm2 (mean6SD), respectively. Consequently,

the somatal size of the MdMNs in soldiers were approximately

twice that observed in pseudergates, while those of the maxillary

motor neurons showed no significant difference between castes

(Fig. 3). The motor neurons innervating the mandibular opener

muscles were also stained and were also found to be larger in

soldiers than in pseudergates (data not shown). Hence, the soldier-

specific enlargement of MdMNs was generally recognized.

Similarly, while the corresponding neurons in alates (or imagos)

were enlarged to some degree, they were smaller than those

observed in soldiers (data not shown).

Comparison of MdMNs during soldier differentiation
To determine when the MdMNs become enlarged during

soldier differentiation, backfill staining using fluorescent dye at

several stages during differentiation was performed. We used the

artificial induction method of soldier differentiation by JHA

(juvenile hormone analog; pyriproxyphen) in H. sjostedti according

to Ogino et al. [21]. Two stages were focused on during the

differentiation process: ‘‘whitening pseudergates’’, which were

pseudergates with abdomens that had turned white 2 weeks after

the application of JHA due to the gut purge preceding presoldier-

molting, and ‘‘presoldiers’’, which were 24 hours after presoldier-

molting. The size of the MdMN somata in whitening pseudergates

and presoldiers were 492.86146.4 mm2 and 398.56119.7 mm2,

respectively (Fig. 4), indicating that the MdMNs became enlarged

before presoldier molting and they then decreased in size after

molting. The MdMNs then increase in size and attain their

maximum size in the mature soldiers. These results for H. sjostedti

show two important characteristics: (I) neuronal modifications are

initiated before presoldier molting and, (II) the modification of the

nervous system in soldier differentiation can be induced by JHA

application as well as morphological changes associated with

molting.

Comparison of MdMNs in termites from other families
To examine whether the enlargement of MdMNs in soldiers is a

common phenomenon shared with other termite species, retro-

grade tracing of the MdMNs in soldiers and workers in other

termite species was also performed. These termite families

included Mastotermes darwiniensis (Mastotermitidae), Coptotermes

formosanus (Rhinotermitidae), Neotermes koshunensis (Kalotermitidae)

and Nasutitermes takasagoensis (Termitidae). Those MdMNs that

exhibited characteristics similar to H. sjostedti were stained and the

somata of these soldiers were also generally found to be larger than

those of workers (Fig. 5). Nasutitermes soldiers, which have reduced

mandibles and attack with frontal glands, had also several enlarged

neurons. In nasute soldiers, interestingly, smaller neurons than

those of minor workers, which can differentiate into nasute

soldiers, were also stained (Fig. 6A). The MdMNs of N. takasagoensis

soldiers could be divided into two groups based on their size,

whereas the MdMNs of H. sjostedti and N. takasagoensis workers had

The MdMNs in Termite Soldiers
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unimodal size distributions (Fig. 6A, B). At least five enlarged

neurons were recognized in N. takasagoensis soldiers, all of which

were positioned anterior to smaller neurons (Fig. 6A, inset). The

enlargement of MdMNs during soldier differentiation was

demonstrated to be a common phenomenon over the termite

lineages examined.

Discussion

Caste in social insects is a special case of polyphenism in which

colony members with similar (sometimes identical) genetic

background have different morphologies and behaviors [22]. This

polyphenic differentiation of caste contributes to the task allocation

that increases the inclusive fitness of social insect colonies

[1,23,24]. In order to understand the evolution of social insects,

it is important to elucidate the proximate mechanisms of

behavioral differentiation that are responsible for the development

of elaborate social behavior [1,15,25]. Termites are hemimetab-

olous social insects with soldiers, workers (pseudergates) and alates.

Comparisons of the nervous systems of soldiers and workers

showed that soldiers have larger SOGs which process sensory

information from the mouthparts and control their motion. The

MdMNs in the SOG were observed to become enlarged during

soldier differentiation and this feature was common to all of the

termite lineages examined. The present study is the first report of

neural modification in social insects, including social hymenop-

terans, in which motor neurons are morphologically altered during

caste differentiation.

The soldiers of H. sjostedti have a well defined defensive behavior

that involves turning their head to face intruders or predators,

opening their mandibles, and then closing them quickly, while

moving their bodies forward then backward [2]. The termite

soldiers have markedly larger heads than pseudergates [26], which

implies that soldiers have more developed mandibular muscles

than pseudergates. When soldiers attack intruders, these developed

muscles (most of which are closer muscles) will be contracted

Figure 1. A comparison of size measurements for the brain and suboesophageal ganglion (SOG) of the cranial central nervous
system (CNS) of soldier (S) and pseudergate (PE) castes in the damp-wood termite Hodotermopsis sjostedti. A, B: Anterior view of CNS
from a soldier (A) and a pseudergate (B). C, D: Dorsal view of SOG from a soldier (C) and a pseudergate (D). Anterior end of SOG facing up (C, D).
Scale bars indicate 1 mm (in A and B) and 0.5 mm (in C and D). e: The size comparison of brain width (Brain W), brain length (Brain L),
suboesophageal ganglion width (SOG W), and suboesophageal ganglion length (SOG L) shown as a mean6SD (n = 10). F: Size comparison of the
mandibular nerve (MdN) and maxillar nerve (MxN) shown as a mean6SD (n = 10). The size of the SOG from soldiers is larger than those from
pseudergates. Moreover, the mandibular nerve of soldiers is thicker than it is in pseudergates. Asterisks indicate significant differences in the size
between soldiers and pseudergates (Student’s T-test: ***p,0.001).
doi:10.1371/journal.pone.0002617.g001
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repeatedly through the action of neurotransmitters, which are

diffused from synaptic vesicles found at the end plates of motor

neurons [27]. This suggests that the relatively thicker muscles of

soldiers require relatively more neurotransmitters. Consequently,

the MdMNs of soldiers with their larger somata would likely

produce more neurotransmitters for the contraction of mandibular

muscles. Given that soldiers have thicker nerve roots innervating

the mandibular muscles compared to pseudergates (Fig. 1F), and

because neurons with large somata tend to have large axons [28],

the MdMNs of soldiers should be concurrent with thick axons.

Larger axon trunks tend to increase conduction velocity because of

the decrease in electric resistance [27], and several examples have

been reported in which neurons with thick axons have high pulse

conduction [29,30]. These neurons elicit fast and strong muscle

movements, such as crayfish motor giant neurons (MoGs) that

elicit tail-flip escape behavior. Similarly, the enlargement of

MdMNs contributes to fast and strong mandibular movements of

soldier defense behavior. We uniquely demonstrated that the

Figure 2. The mandibular motor neurons (MdMNs) stained by the retrograde tracing from the mandibular closer muscles of a
soldier (A–D) and a pseudergate (E–H) in H. sjostedti. The somata of MdMNs are located in the anterior region of the SOG and constitute the
anterior cluster which contained 5 neurons (colored in grey), and the posterior cluster which contained 12 neurons (colored in black). Confocal
images (A, E) and schematic images (B, F) in the dorsal view are shown. Anterior end of SOG facing up (A, B, E, F). Confocal images (C, G) and
schematic images (D, H) in the lateral view are also shown. Anterior is right (C, D, G, H). Scale bars in A, C, E and G show 200 mm and those in B, D,
F and H show 100 mm. Asterisks indicate mandibular nerves.
doi:10.1371/journal.pone.0002617.g002

Figure 3. Size comparisons of MdMNs between soldiers and pseudergates in H. sjostedti (n = 5 for each caste). The areas of MdMN
somata were measured and averaged, and MdMNs of soldiers were found to be twice as large as those of pseudergates. As opposed to the distinctive
size difference in MdMNs (***p,0.001, Student-T test), the maxillary motor neurons show no significant difference in size (p.0.01, Student’s T-test).
doi:10.1371/journal.pone.0002617.g003
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MdMNs of soldiers and pseudergates elicit the contraction of

developmentally identical muscles, however, only MdMNs of

soldiers exhibit an increase in size and morphological changes

during postembryonic development.

Furthermore, the developmental significance of MdMN enlarge-

ment may be considerable; MdMN enlargement occurs prior to the

presoldier molt and it is possible that the larger neurons play a

functional role in soldier differentiation. In the case of metamor-

phosis of holometabolous insects, it is known that the reconstruction

of adult muscles (cf. thoracic muscles) requires the presence of

certain motor neuron secretions innervating the muscles [31].

Similarly, in the course of soldier differentiation in termites, the

muscles in the head capsule are first degenerated before presoldier

molt and then reconstructed to produce thicker muscles after soldier

molt (data not shown). Therefore, there is a possibility that the

enlargement of MdMNs contributes to muscle reconstruction

during the morphogenesis associated with soldier differentiation.

Koshikawa et al. showed that the application of JHA induced

soldier-specific morphogenesis, such as the enlargement of head

and mandibles in H. sjostedti [26], and extensive research has been

conducted to date to show that JHAs induce soldier morphs in

both lower and higher termite species [32]. Furthermore, their

findings suggest that a high JH titer is effective for soldier

differentiation [32]. The present study revealed that the

application of JHA induced the enlargement of MdMNs indicating

and that neuronal modification is also likely to be associated with a

high JH titer. There are two possible explanations of the direct or

indirect relationships: JH affects MdMNs hormonally, or due to

other mediators like the muscle growth. The fact that neuronal

enlargement preceded presoldier molting suggests that a high JH

titer affects the relatively early stages of nervous modification as

well as morphogenesis. Associated with soldier morphogenesis,

behavioral changes may also be induced by JHA application.

Previous studies have demonstrated that JH titer is involved in

modulating various insect nervous systems (cf. in Drosophila [33,34]

and Apis melifera [35]). Similarly, in termites, a high JH titer may

also modify other neuronal systems involved with aggressiveness or

decision-making.

Given that all Isopteran families have soldiers, the soldier caste

is considered to be an acquired condition of the common termite

ancestor [36,37]. In this study, the observed enlargement of

MdMNs in soldiers was conserved in the representative species of

all the major isopteran families examined, indicating that evidence

of JH-dependent MdMN enlargement is likely to be important for

soldier differentiation. This finding also suggests that, in addition

to soldier aggression, this soldier-specific MdMN enlargement was

only acquired once in the common ancestor of the taxa examined.

Interestingly, the enlargement of motor neurons was not only

observed in mandibulate soldiers, but also in nasute soldiers, which

attack enemies with substances secreted from their frontal glands.

It is known that nasute soldiers use their mandibular closer muscles

to contract the frontal glands when they discharge defense

secretion [38]. As in this report, the MdMNs of nasute soldiers

occur as both partly enlarged and reduced in size. The partly

enlarged MdMNs are thought to control the contraction of the

frontal gland during defensive behavior and the latter may be used

to close their small mandibles, although this still needs to be

demonstrated. The finding that MdMNs of minor workers had

MdMNs of intermediate size suggests that the nasute soldiers have

enlarged neurons associated with defense behavior but degenerate

MdMNs for the other neurons. In conclusion, despite the variety

morphs and defensive mechanisms, the enlarged MdMNs are

conserved in all termite species and are considered to be important

for soldier evolution.

Figure 4. The transition of MdMN size during the course of soldier differentiation in H. sjodtedti (n = 5 for each caste). The areas of
MdMN somata were measured and averaged. The MdMNs were already enlarged before the presoldier molt, initially decreasing in size, before
attaining the maximum size after differentiation. The different letters on the error bars indicate significant differences among stages/castes (one-way
ANOVA followed by the Tukey-Kramer test, p,0.05).
doi:10.1371/journal.pone.0002617.g004
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Materials and Methods

Insects
Hodotermopsis sjostedti (Family Termopsidae) is distributed

throughout the Satsunan Islands of the Kagoshima Prefecture in

southern Japan [39,40]. Colonies were sampled from rotten wood

in primary evergreen forests on Yakushima Island, Kagoshima

Prefecture, in May 2004–2006. Colonies were kept in the labora-

tory as stock at approximately 25uC under constant darkness. To

compare different species within the termite order (Isoptera), the

following termite species from various families were collected:

Mastotermes darwiniensis (Mastotermitidae) from Queensland, Aus-

tralia, Neotermes koshunensis (Kalotermitidae) from Okinawa Prefec-

ture, Japan, Coptotermes formosanus (Rhinotermitidae) from Tokyo,

Japan, Nasutitermes takasagoensis (Termitidae) from Iriomote Island,

Okinawa Prefecture. Japan. In M. darwiniensis, N. koshunensis and C.

formosanus, normal workers and soldiers were examined. In N.

takasagoensis, soldiers and minor workers were used. Minor workers

of N. takasagoensis can differentiate into soldiers.

Morphometric Study
To clarify the morphological differences in the CNS of H.

sjostedti soldiers and pseudergates, the size of the brain (cerebral

ganglion) and SOG, as well as the thickness of the mandibular and

maxillary nerves were measured (N = 10, for each caste). Insects

were anesthetized on ice, and the brain and SOG were removed

from the head capsules by dissection in phosphate buffer saline

(PBS), where after they were fixed in FAA fixative (formalin: acetic

acid: ethanol = 6:1:16) and then transferred to 70% ethanol. The

sizes (height and width) of the brain and SOG were measured

using an image analysis system with a CCD camera (HIM-1,

HOGA, Kyoto, Japan). The SOG length was defined as the

distance from the rostral to the distal edges of the ganglion, and

SOG width as the distance along the transversal axis between both

edges of the ganglion. The brain width was defined as the distance

between basal parts of both optic nerves of the brain, and the brain

length as the distance between rostral-end of the brain to the basal

part of the antennal lobe. The sizes of SOG and brain were

compared using these parameters.

Neuroanatomy
To compare the sizes of MdMNs, retrograde staining using

fluorescent dye from mandibular muscles was performed [41]. In

H. sjostedti, we used 5 specimens for each caste and measured 74,

74, 75 and 78 stained neurons (summation of 5 individuals) in

pseudergate, whitening pseudergate, presoldier and soldier,

Figure 5. The size comparisons between soldiers and workers in other species belonging to various termite families (n = 4 for each
caste in Coptotermes formosanus and n = 5 for each caste in other termite species). The areas of MdMN somata were measured and
averaged. The enlargement of MdMNs was generally recognized in all termite lineages. The size differences between soldiers and workers
(pseudergates) were significant in all of the species examined (**p,0.005 and ***p,0.001, Student’s T-test). The dendrogram of termites is based on
Eggleton et al. [37].
doi:10.1371/journal.pone.0002617.g005
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respectively. The maxillary motor neurons were also stained and 5

neurons that were positioned on the lateral side of SOG and which

stained consistently were also measured. For comparisons among

termite species, 4 individuals (for each caste) of C. formosanus and 5

individuals for each caste of M. darwiniensis, N. koshunensis and N.

takasagoensis were also examined. The termites were anesthetized

on ice. To stain motor neurons innervating mandible closer

muscles equally, the right hemisphere of the head capsule was cut

transversely at half of head length with a sharp scalpel, and a small

crystal of a fluorescent dextran (Fluororuby; Molecular Probes,

Carlsbad, USA) was placed onto the surgically treated region. The

fluorescent tracer was transported retrogradedly through the

neurons of the CNS over 20–24 hours in relatively larger termites

(H. sjostedti and M. darwiniensis), or 4–12 hours in the relatively

smaller termites (N. koshunensis, C. formosanus and N. takasagoensis).

The dissected termites were placed in Petri dishes lined with wet

filter paper. After several hours, termites were decapitated and

their heads were fixed in 4% paraformaldehyde overnight at 4uC
and dehydrated using an ethanol series (70%, 90%, 100% for

10 min each). Samples were cleared with methyl salicylate before

being observed with a confocal laser scanning microscope

(FLUOVIEW FV1000 and FV300, OLYMPUS, Tokyo, Japan).

The confocal images of each preparation were captured using a

1.0 mm stack in N. koshunensis, C. formosanus and N. takasagoensis and

a 1.5 mm stack in H. sjostedti and M. darwiniensis. Images were

stored as TIFF files for the somata size measurement. The section

containing the most soma for each MdMN was removed for

analysis using Image J software (http://rsb.info.nih.gov/ij/), and

the soma area were averaged.

Treatment with Juvenile Hormone Analogue
To observe the modification processes of the nervous system in

the course of soldier differentiation, presoldiers were artificially

induced by JHA treatment. In order to induce molting from

Figure 6. The size distributions of MdMNs in N. takasagoensis (A) and H. sjostedti (B). While the MdMNs exhibited a unimodal distribution in
minor workers of N. takasagoensis (A) and in soldiers and pseudergates of H. sjostedti (B), the MdMNs in N. takasagoensis soldiers exhibited a bimodal
distribution (A), indicating there are two size groups. Inset (A) shows a schematic lateral image of MdMNs in an N. takasagoensis soldier. Scale bar
represents 100 mm.
doi:10.1371/journal.pone.0002617.g006
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pseudergates to presoldiers, pyriproxyfen (Sigma-Aldrich, St.

Louis, USA) was used as a JHA. The experimental procedure

employed for JHA application to termites was the same as that

described in [21], in which presoldiers were efficiently induced in

H. sjoestedti. The JHA pyriproxyfen, diluted in acetone, was

aliquoted into filter paper-lined Petri dish with 70 mm diameter at

a final concentration of 10 mg/dish. After evaporating the acetone,

the filter paper was moistened with distilled water and 10

pseudergates of H. sjostedti were placed in each dish. Control

dishes without JHA were also prepared. Filter papers with JHA

were replaced after one week. Whitening pseudergates, identified

by a whitening of the abdomen due to a gut purge before

presoldier molting [21], and presoldiers within 24 hours after

molting, were examined by retrograde staining using a fluorescent

dextran.

Acknowledgments

We thank S. Koshikawa and R. Cornette for their assistance and valuable

comments in this study. T. Matsumoto, K. Maekawa, A. Ishikawa, K.

Kawabata, Y. Ikemoto, M. Ikeda and H. Goto for their assistance with

field sampling. In addition, K. Maekawa, K. Sugio, Y. Miyaguni, A. Fujita,

O. Kitade, and N. Lo kindly provided termite samples.

Author Contributions

Conceived and designed the experiments: TM YI HA. Performed the

experiments: YI. Analyzed the data: YI. Contributed reagents/materials/

analysis tools: YI HA. Wrote the paper: TM YI HA.

References

1. Wilson EO (1971) The Insect Societies. Cambridge, Massachusetts: The
Belknap Press of Harvard University Press. 548 p.

2. Stuart AM (1969) Social behavior and communication. In: Krishna K,

Weesner FM, eds. Biology of Termites. New York: Academic Press, Inc. pp
193–232.

3. Gillott C (1995) Entomology. New York and London: Prenum Press. 798 p.
4. Snodgrass RE (1935) Principles of Insect Morphology. Ithaca, New York:

Cornell University Press. 667 p.
5. Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related

outgrowth of intrinsic neurons in the mushroom bodies of the adult worker

honeybee. J Neurosci 21: 6395–6404.
6. O’Donnell S, Donlan NA, Jones TA (2004) Mushroom body structural change is

associated with division of labor in eusocial wasp workers (Polybia aequatorialis,

Hymenoptera: Vespidae). Neurosci Lett 356: 159–162.

7. Kleineidam CJ, Obermayer M, Halbich W, Rossler W (2005) A macroglomer-

ulus in the antennal lobe of leaf-cutting ant workers and its possible functional
significance. Chemical Senses 30: 383–392.

8. Sasaki K, Nagao T (2002) Brain tyramine and reproductive states of workers in
honeybees. J Insect Physiol 48: 1075–1085.

9. Humphries MA, Mustard JA, Hunter SJ, Mercer A, Ward V, et al. (2003)

Invertebrate D2 type dopamine receptor exhibits age-based plasticity of
expression in the mushroom bodies of the honeybee brain. J Neurobiol 55:

315–330.
10. Kurshan PT, Hamilton IS, Mustard JA, Mercer AR (2003) Developmental

changes in expression patterns of two dopamine receptor genes in mushroom
bodies of the honeybee, Apis mellifera. J Comp Neurol 466: 91–103.

11. Harano K, Sasaki K, Nagao T (2005) Depression of brain dopamine and its

metabolite after mating in European honeybee (Apis mellifera) queens.
Naturwissenschaften 92: 310–313.

12. Crespi BJ, Yanega D (1995) The definition of eusociality. Behav Ecol 6:
109–115.

13. Richard G (1969) Nervous system and sense organs. In: Krishna K,

Weesner FM, eds. Biology of Termites. New York: Academic Press, Inc. pp
161–192.

14. Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM, eds.
Biology of Termites. New York: Academic Press, Inc. pp 19–48.

15. Miura T (2004) Proximate mechanisms and evolution of caste polyphenism in
social insects: From sociality to genes. Ecol Res 19: 141–148.

16. Miura T, Hirono Y, Machida M, Kitade O, Matsumoto T (2000) Caste

developmental system of the Japanese damp-wood termite Hodotermopsis japonica

(Isoptera: Termopsidae). Ecol Res 15: 83–92.

17. Miura T, Koshikawa S, Machida M, Matsumoto T (2004) Comparative studies
on alate wing formation in two related species of rotten-wood termites:

Hodotermopsis sjostedti and Zootermopsis nevadensis (Isoptera, Termopsidae). Insect

Soc 51: 247–252.
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