
In Vitro HIV-1 Selective Integration into the Target
Sequence and Decoy-Effect of the Modified Sequence
Tatsuaki Tsuruyama1*, Tonau Nakai2, Takuya Hiratsuka3, Guang Jin4, Takuro Nakamura4, Kenichi

Yoshikawa2

1 Department of Forensic Medicine and Molecular Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto Prefecture, Japan, 2 Department of Physics,

Graduate School of Science, Kyoto University, Kyoto, Kyoto Prefecture, Japan, 3 Laboratory of Pathology, Noe-saiseikai Hospital, Osaka, Osaka Prefecture, Japan, 4 Division

of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan

Abstract

Although there have been a few reports that the HIV-1 genome can be selectively integrated into the genomic DNA of
cultured host cell, the biochemistry of integration selectivity has not been fully understood. We modified the in vitro
integration reaction protocol and developed a reaction system with higher efficiency. We used a substrate repeat, 59-
(GTCCCTTCCCAGT)n(ACTGGGAAGGGAC)n-39, and a modified sequence DNA ligated into a circular plasmid. CAGT and ACTG
(shown in italics in the above sequence) in the repeat units originated from the HIV-1 proviral genome ends. Following the
incubation of the HIV-1 genome end cDNA and recombinant integrase for the formation of the pre-integration (PI) complex,
substrate DNA was reacted with this complex. It was confirmed that the integration selectively occurred in the middle
segment of the repeat sequence. In addition, integration frequency and selectivity were positively correlated with repeat
number n. On the other hand, both frequency and selectivity decreased markedly when using sequences with deletion of
CAGT in the middle position of the original target sequence. Moreover, on incubation with the deleted DNAs and original
sequence, the integration efficiency and selectivity for the original target sequence were significantly reduced, which
indicated interference effects by the deleted sequence DNAs. Efficiency and selectivity were also found to vary
discontinuously with changes in manganese dichloride concentration in the reaction buffer, probably due to its influence
on the secondary structure of substrate DNA. Finally, integrase was found to form oligomers on the binding site and
substrate DNA formed a loop-like structure. In conclusion, there is a considerable selectivity in HIV-integration into the
specified sequence; however, similar DNA sequences can interfere with the integration process, and it is therefore difficult
for in vivo integration to occur selectively in the actual host genome DNA.
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Introduction

Integration into the host cell genome is an important process in

the life cycle of HIV-1. Once integrated, the retroviral genome

becomes a stable part of the host genome, and is subsequently

duplicated as a provirus during host cell division. The integration

reaction is catalyzed by integrase, which is encoded in the

retroviral genome. Recent therapeutic developments to combat

AIDS have focused on integrase inhibitors such as Raltegravir in

order to reduce side effects[1,2] and second-generation HIV-1

integrase inhibitoers have been developed [3]. The development of

IN inhibitors aims to combat viral resistance to earlier drug classes.

On the other hand, understanding of the molecular mechanisms of

integration is insufficient, although the translocation process of the

pre-integration complex in the nucleus and integration selectivity

are being extensively studied. Schroeder et al. performed a

genome-wide screening of integration sites using a cell culture

system with HIV-1 infection and identified integration sites

throughout whole chromosome [4]. Following statistical analysis,

they reported that integration preferentially occurred at transcrip-

tionally active genes, and similar data on murine leukemia

retroviral integration were reported [5–7]. Several mechanisms

have been proposed that chromatin accessibility influence the

integration site selection [8]. Recent data provide evidence that

selective integration can occur via a tethering mechanism through

the recruitment of the lentiviral integrase by the cellular LEDGF/

p75 protein, which have been recognized as the target of anti-

integration therapy [2].

On the other hand, Yoshinaga et al. reported an in vitro

integration assay method and confirmed the terminal oligonucle-

otide motif at the HIV-1 genome end as an integration signal

sequence motif (RSS). The RSS consisted of heptamer 59-

AGCAGT-39, and replacement of one nucleotide in RSS

significantly suppressed the integration of HIV-1 [9]. We believe

that HIV-1 integrase has the potential to select the integration site

because RSS is expected to favor its complementary sequence in

the target sequence. Their study suggested that HIV-1 integrase

has the potential to select the integration site. In the present study,

we modified their method in order to identify the precise HIV-1

integration sites and improve the efficiency of in vitro integration.
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In this study, we used a repeat DNA sequence, 59-(GT-oligo-

puCAGT) 6(ACTG oligopy-AC) 6-39, with a repeat element

identical to the sequence at the HIV-1 39-terminus, and included

the CATG integration signal sequence. In the previous method-

ology, such specified sequence motif DNAs have not been used.

Thus, we applied our modified protocol using a repeat sequence

for efficiency and selectivity of the in vitro integration.

Materials and Methods

In vitro integration assay
We modified previously reported protocol for in vitro integra-

tion[9,10,11]. First of all, although little attention has been given

to the target sequence motifs, we performed in vitro integration

assay using the repeat sequence (59-GTGGAGGGCAGT-39)6(59-

ACTGCCCTCCAC-39)6, basic sequence. CAGT and ACTG,

shown in italics in red, originated from the LTR end of the

HIV-1 provirus. The repeat sequence units 59-GTGGAGGG-

CAGT-39 and 59-ACTGCCCTCCAC-39 are indicated by x and y,

respectively, with the complete target sequence being x6y6. In

addition, we designated the 6 repeat unit sequences starting from

the 59 end as nx (n = 1, 2, 3, 4, 5, 6) and ny (n = 1, 2, 3, 4, 5, 6),

respectively. We also synthesized four random 144-bp sequences

designed by a random number generator and ligated them into the

circular DNA in the same manner to serve as controls. In order to

prevent non-specific reactions at the target DNA sequence, we

ligated the target sequence DNA to circular plasmid DNA

(invitrogen pCR2.1 TOPO vector) and used the whole DNA as

the substrate DNA in the present assay (Fig. 1). Other modified

sequences, CA-TG- and modified sequences I and II, are also

listed under the basic sequence. In these modified sequences, the

red letters in italics represent the four replaced nucleotides in the

basic sequence.

In our protocol, the prepared HIV-1 U3 in 59-LTR and U5 in

59-LTR DNA were mixed and incubated with integrase prior to

integration, and the prepared pre-integration complexes were then

reacted with substrate DNA. During in vivo integration, dinucle-

otides at the 39 ends of the (+) strand in the 59-LTR and 39-LTR

are removed by integrase in the initial step prior to integration

reaction[12]. Here, we used HIV-1-cDNA with dinucleotides that

had already been removed. Following incubation, we performed

PCR using primers for the HIV-1 U3 in 59-LTR and U5 in 59-

LTR, and a primer for the substrate DNA consisting of the target

DNA ligated with the circular DNA. This control sequence used in

the assay of a co-existing modified target sequence was completely

random as a result of its preparation with the use of a table of

radon numbers in the absence of a palindromic or inverted repeat.

The sequence motifs were calculated by GENETYX Ver10

software (Genetyx Co., Ltd., Tokyo, Japan). We prepared ten

types of sequences, and the data is the average of the results.

Figure 1. Integration into target sequence. Scheme of in vitro integration. Sequences of HIV-1 proviral 59- and 39-ends are shown. Grey segment
in the circular plasmid represents the target 144-bp DNA, and the black line represents the remainder of the circular plasmid DNA used for ligation.
Red letters in the HIV-1 DNA sequence represent the dinucleotides that were removed in the course of integration. Following incubation of the
proviral LTR sequence DNAs with integrase, the resultant re-integrase complexes were reacted with the substrate DNA. PCR amplification was
performed using primers in the proviral ends and circular DNA in the substrate DNA and the integration sites were analyzed by direct sequencing.
The arrowhead in the PCR product indicates the junction between the provirus and target DNA.
doi:10.1371/journal.pone.0013841.g001
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Recombinant HIV-1 integrase was kindly provided by Dr.

Yoshinaga. HIV-1 in vitro integration was devised as follows. First,

75 ng of U59-LTR (long terminal repeat) sequence cDNA from

HIV-1, (+) 59-TGT GTG CCC GTC TGT TGT GTG ACT

CTG GTA ACT AGA GAT CCT CAG ACC TTT TTG GTA

GTG TGG AAA ATC TCT AGC A-39 and (-) 59-ACT GCT

AGA GAT TTT CCA CAC TAC CAA AAA GGG TCT GAG

GGA TCT CTA GTT ACC AGA GTC ACA CAA CAG ACG

GGC ACA CA-39, was incubated with 50 ng recombinant HIV-1

integrase in 10 ml of binding buffer for 1 h at 30uC. The binding

buffer consisted of 1-0.1 mM MnCl2, 5 mM MnCl2, 80 mM

glutamate potassium glutamate, 10 mM mercaptoethanol, 10%

DMSO, and 35 mM MOPS (pH 7.2). Similarly, U39-LTR

sequence cDNA (75 ng) from HIV-1, (+) 59-ACT GGA AGG

GTT AAT TTA CTC CAA GCA AAG GCA AGA TAT CC

TTG ATT TGT GGG TCT ATA ACA CAC AAG GCT ACT

TCC CA-39 and (-) 59-ACTG GGA AGT AGC CTT GTG TGT

TAT AGA CCC ACA AAT CAA GGA TAT CTT GCC TTT

GCT TGG AGT AAA TTA ACC CTT CCAGT-39, was

incubated with the recombinant retroviral integrase. After

incubation, the individual double-stranded (ds) U59-LTR DNA

was combined with the ds U39-LTR DNA for 1 h at 30uC, and the

LTR DNA further incubated with the target DNA for 1 h at 30uC.

The proportion of the weight of the LTRs and target DNAs was

optimalized for the prevention of a non-specific reaction and of

multiple integation due to an excess of LTRs. The DNA in the

buffer was purified using a QIA quick column. PCR amplification

was then performed using the retroviral primers HIV-1 U59-LTR

59-GTG TGC CCG TCT GTT GTG TGA CTCTGG-39, or

HIV-1 U39-LTR primer 59-CTG GGA AGT AGC CTT GTG

TGT TAT AG-39, and a TOPO vector primer 59-TCA CTC

ATG GTT ATG GCA GC -39 for nucleotide position 2222 in the

TOPO-pCR2.1 vector. Single PCR product was analyzed by

Genome Sequencer FLX System (Roche Diagnostics, Mannheim,

Germany). The mean read number was 3.2x104. The copy

number of amplicon was quantified following identification of

HIV-1-substrate DNA junction.

Statistical analysis
An unpaired t-test test was calculated using SPSS software

(SPSS, Chicago, IL, USA). P values ,0.05 were considered

statistically significant.

Results

Evaluation of in vitro integration efficiency and selectivity
Here, we describe the result of the in vitro integration assay. The

amplification product is referred to below as a post-integration

amplification product (PIAP). Direct sequence analysis of individual

PIAPs was then performed in order to identify the integration site.

The ratio of PIAP copy numbers to the total PCR amplification

product reached approximately 5 times the percentage of the base

length of the target 144 bp to the total DNA substrate base length

of 4.1 kbp (3.5%). In contrast, we found that the ratios of the PIAP

copy numbers into the random sequences of 144 bp were not

significantly different from the base length percentage. The copy

numbers of PIAPs arising from the target sequence were

significantly greater than those when applying random sequences

(Fig. 2A, B). When using random sequences 1 and 4, although a

relatively higher, but not significantly, copy number of PIAP was

obtained due to the greate copy number of amplicons of non-

specific integration into the cloning vector sequence, the number

was significantly lower than that of PIAI when using the target

sequence.

On the other hand, when the integration reaction was carried

out by a previous method using only the 59 LTR or 39 LTR

sequence of HIV-1, the PIAP copy ratio was less than the base

length percentage (Fig. 2B). Interestingly, even though the same

sequence units (six x-segments and six y-segments) were repeated

in the target sequence, we learned that high frequency integration

occurs at site {6x, 1y} located at the middle of the repeat unit

sequence (Fig. 2C).

CA and GT dinucleotides were preferred for HIV-1
integration

Next, target DNA was prepared comprising 4421 = 255

combinations without the 4 bases at the CAGT site on the 39

end of unit 6x in the integration target sequence (see sequences,

Fig. 3A), and PCR was carried out after insertion into circular

DNA by using the primer set including the HIV-1 U59-LTR, or

the HIV-1 U39-LTR primer and the TOPO vector primer in the

TOPO-pCR2.1 vector. We took the average of the CA-, GT-, and

CA-GT- PIAP for the calculation by the dividing the total copy

numbers by the whole copy numbers of PCR products. The results

revealed that the integration product copy number into the target

sequence that contained both CA and GT was significantly greater

than the copy numbers into sequences that lacked CA, GT, or

both (Fig. 3A, B).

Correlation between target sequence length and
integration efficiency and selectivity

We then varied the repeat number of x- and y- segments in the

target sequence and investigated PIAP copy number and ratio vs.

whole PIAP products. The repeat number of the target sequence

was positively correlated with the copy number and percentage

(Fig. 4). The square of the correlation coefficients was 0.901 and

0.874, respectively.

Co-existing modified target sequence DNAs interfered
with integration into the original target sequence

We then investigated whether the palindromic sequences

flanking the 59-CAGT-39 motif increased the number of PIAP

copies. We prepared two modified DNA sequences in which 59-

CA-39 and 59-GT-39 were removed from the 6x segment: modified

sequence I and modified sequence II (Fig. 1, modified I and II). In

vitro integration using modified sequence I or II revealed significant

reductions in the number of PIAP copies. In addition, integration

selectivity was not evident when using the modified DNA

sequences (P.0.05) (Fig. 5A).

Next, we mixed substrate DNA containing the original target

sequence and substrate DNA containing modified sequence I or II

in equal amounts, and examined the number and ratio of PIAP

copies originating from integration into the original target

sequence.

Integration into the original target sequence DNA in the

substrate DNA was significantly reduced when the substrate DNA

including modified sequence was mixed. In contrast, the

integration was not reduced when substrate DNA including

random 144 bp sequence was mixed (Fig. 5B, C).

Correlation between concentration of manganese
dichloride and integration efficiency/selectivity

We digested circular DNA in buffer containing various

concentrations of manganese dichloride and measured the band

intensity of linearized DNA following electrophoresis. On the basis

of our observation, both the upper and lower fragments in the

absence of MnCl2 were probably identical to the conformational

HIV-1 Integration Model
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Figure 3. Presence of CA and TG motifs and integration ratio. (A) Number and (B) percentage of PIAP copies from integration into target
sequences or sequences lacking 59-CA-39 or 59-GT-39 dinucleotide motifs (*p,0.001; target vs. CA-; **p,0.001 vs. GT- ; ***p,0.001 vs. CA-GT-;
**** p,0.001; target vs. CA-, GT-, CA-GT-). Error bars represent standard deviation (S.E.). The sequences shown display the 6x1y segment of the target
DNA. The sequence CA-TG- in Figure 1 indicates an example of CA-TG- sequences.
doi:10.1371/journal.pone.0013841.g003

Figure 2. In vitro integration efficiency and selectivity. (A) Copy number of PCR products with using primers for the HIV-1 LTR and substrate
DNA following integration into the target sequence or random sequences in the substrate DNA, referred to as post-integration amplified products
(PIAP). The vertical axis represents log PIAP. Error bars indicate standard deviation (S.E.) (*P,0.001). Plasmid DNA lacking the target sequence was
used as a control. (B) Percentages of PIAP copies from the integration into the target sequence or random sequences vs. the total number of PIAP.
Dotted line shows the ratio when integration was thought to occur uniformly in the 4-kb substrate DNA. Error bars represent standard deviation (S.E.)
(**P,0.001). (C) Number of PIAP copies from integrations into individual segments in x6y6. Vertical axis indicates log PIAP copy number. Error bars
represent standard deviation (S.E.) (***P,0.001, 6x&1y vs. other segments).
doi:10.1371/journal.pone.0013841.g002
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isomer of undigested circular DNA that was was comprised of the

plasmid sequence DNA and the target DNA. In the presence of

MnCl2, the apparent fragment appeared, and this new fragment

was digested by the linear DNA. Fluctuations in the mobility of

digested DNA increased significantly when the concentration of

MnCl2 exceeded 40 mM (Fig. 6A). Moreover, to quantitatively

evaluate the fluctuations in mobility, we calculated the area of

electrophoresed DNA bands by normalizing the area of electro-

phoresed DNA bands that were digested in buffer containing

10 mM of MnCl2 to 1.0. The relative area discontinuously

increased when the concentration of MnCl2 exceeded 40 mM,

indicating that higher concentrations of MnCl2 induced hetero-

geneity in the secondary structure of substrate DNA(Fig. 6B)

(*P,0.001).

Similarly, the copy number of PIAP from integration into the

target sequence DNA was found to increase significantly when the

concentration of MnCl2 exceeded 40 mM (Fig. 6C)(**P,0.001).

Moreover, the ratio of copy number of PIAP from integration into

the target sequence DNA to the total copy number of PIAP was

found to increase significantly when the concentration of MnCl2
exceeded 40 mM (Fig. 6D) (***P,0.001).

Discussion

The finding shown in Fig. 2A, B reveals that the integration rate

into the target sequence used in this study was significantly greater

than the integration rate into the random sequences. If the

integration occurred at equivalent frequency in the whole target

sequence, the percentage was nearly the base length ratio, e.g.,

144 bp to 144 plus 3894 base. Of course, the percentage was

influenced by the PCR primer setting, the value was one of the

standards use to evaluate the integration selectivity.

Thus, we showed that HIV-1 integration favors a specified

sequence at least. Such data in Fig. 2A–C and Fig. 3 clearly show

that both the nucleotides serving as the reaction target and their

adjacent segments affect reaction efficiency. In Fig. 2A and B, the

ratio of the PIAP copy numbers into the random sequences of

144 bp was lower than that predicted for at least the random

sequences 1 and 4. There were probably differences in the

frequency of appearance of 59-CA and 59-TG in the sequence. In

random sequences 1 and 4, these dinucleotide motifs appear 5 and

7 times, individually, i.e., 10 and 9 times less than those in random

sequences 2 and 3. The lower frequence probably influences the

copy number, eg., integration efficiency. This data is suggestive of

the following evaluation shown in Fig. 3. In addition, data shown

in Fig. 2C demonstrated that the combined presence of the 59

LTR terminus and the 39 LTR terminus promotes integration into

the target sequence. This combination is found to be critical in in

vitro integration, suggesting a possibility that similar co-operation

of the 59 LTR terminus and the 39 LTR terminus contributes to in

vivo integration. In Fig. 3, we showed that 59-CA and 59-GT are

apparently favored in in vitro integration. As Yoshinaga et al.

already suggested, the identical dinucleotide motifs are observed in

the LTR and are ctirical motifs for integration. Therefore, we

supposed that HIV-1 pre-integration complex including LTR

favors 59-CA and 59-GT in target sequences that are complemen-

tary to the dinucleotide.

The data of close correlation between integration efficiency/

selectivity with the repeat number shown in Fig. 4 suggest that the

flanking sequences actually influences reaction efficiency in

addition to target nucleotides. Moreover, the whole repeat

sequence or secondary structure may be target of integration.

Especially, our findings of interference by sequences similar to

the target DNA sequence suggest that such effects actually

interfere with integration selectivity (Fig. 5). The modified DNA

can act as a decoy for the target DNA.

In the present study, integration efficiency and selectivity were

highly sensitive to MnCl2 concentration in the reaction buffer. In

particular, when increasing MnCl2 from 30 mM to 40 mM, the

integration efficiency and selectivity increased significantly.

Similarly, fluctuations in electrophoretic mobility of substrate

DNA also increased. This suggests that there is a threshold

concentration of MnCl2 for in vitro integration, probably because

MnCl2 induces instabilities in secondary structure and phase

transition of the host DNA strand may occur [13,14]. As presented

in Fig. 6B, the change remained in the fluctuation of electro-

mobility as the MnCl2 concentration became higher. Probably,

target DNA cannot generate the specified stable conformation

under this condition. Taken together with these data and those

Figure 4. In vitro integration using modified or variable-length target sequences. Number of PIAP copies from integration into variable-
length repeat sequences (left). Line represents a linear regression between the logarithm of copy number and number of repeated x, y units. The
correlation coefficient was equivalent to 0.96. Repeat number 0 indicates that plasmid DNA was used as the substrate. Error bars represent standard
deviation (S.E.). Percentage of PIAP copies from integration into the variable repeat sequences against that from integration into the whole sequence
(right). Line represents linear regression between the percentage and number of repeated x, y units. The correlation coefficient was equivalent to
0.92. Error bars represent standard deviation (S.E.) (*P,0.001).
doi:10.1371/journal.pone.0013841.g004
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shown in Fig. 4, we supposed that there are close correlations

between structural changes in substrate DNA, and integration

selectivity and efficiency. We have been studying in vitro integration

using magnesium chloride because this salt is more appropriate for

the regeneration of in vivo integration. We will report the result

elsewhere.

In actual integration into the host genome, numerous DNA-

binding proteins and metal ions regulate the reaction in a complex

manner. Therefore, the present data cannot be immediately

applied to in vivo systems and further investigation using cell culture

systems are necessary. However, this report is expected to facilitate

understanding of the pathogenicity of HIV-1.

Figure 5. Interference effects of coexisting modified DNA sequences. (A)Number and percentage of PIAP copies from integration into the
target sequence or into modified sequences I or II. Control was plasmid DNA. Error bars represent standard deviation (S.E.) (*P,0.001).
(B)(C) Individual bars show logarithms of number of PIAP copies (B) and percentage of PIAP copies (C) using substrate DNA including the target
sequence alone, target plus modified sequence I (left), or target plus modified sequence II (right). The amounts of target and modified sequences
were equivalent. Plasmid DNA was used as a control. The percentage was calculated from the ratio of PIAP copies from integration into the target
sequence against that from integration into the whole substrate DNA (*, **P,0.05). Error bars represent standard deviation (S.E.).
doi:10.1371/journal.pone.0013841.g005

HIV-1 Integration Model
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