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Abstract

Seabirds integrate information about oceanic ecosystems across time and space, and are considered sensitive indicators of
marine conditions. To assess whether hypothesized long-term foodweb changes such as forage fish declines may be
reflected in a consumer’s life history traits over time, I used meta-regression to evaluate multi-decadal changes in aspects of
egg production in the glaucous-winged gull (Larus glaucescens), a common coastal bird. Study data were derived from
literature searches of published papers and unpublished historical accounts, museum egg collections, and modern field
studies, with inclusion criteria based on data quality and geographic area of the original study. Combined historical and
modern data showed that gull egg size declined at an average of 0.04 cc y21 from 1902 (108 y), equivalent to a decline of
5% of mean egg volume, while clutch size decreased over 48 y from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009.
There was a negative relationship between lay date and mean clutch size in a given year, with smaller clutches occurring in
years where egg laying commenced later. Lay date itself advanced over time, with commencement of laying presently
(2008–2010) 7 d later than in previous studies (1959–1986). This study demonstrates that glaucous-winged gull investment
in egg production has declined significantly over the past ,50–100 y, with such changes potentially contributing to recent
population declines. Though gulls are generalist feeders that should readily be able to buffer themselves against food web
changes, they are likely nutritionally constrained during the early breeding period, when egg production requirements are
ideally met by consumption of high-quality prey such as forage fish. This study’s results suggest a possible decline in the
availability of such prey, and the incremental long-term impoverishment of a coastal marine ecosystem bordering one of
North America’s rapidly growing urban areas.
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Introduction

Life history theory predicts that long-lived organisms such as

seabirds will maximise fitness by reducing reproductive output

during periods of environmental stress, trading off between current

and future reproduction. One potential way for birds to reduce

reproductive investment when foraging conditions are poor early

in the breeding season is by decreasing the size or number of eggs

produced. Female protein and energy requirements during egg

production are substantially higher than those during the non-

laying period, making egg production costly [1–3] (but see [4]).

Indeed, for many avian species there is strong evidence that under

poor food conditions, egg size, number or both are reduced,

though lay date responds to food supply more consistently than do

egg or clutch size [5–7]. Trade-offs reduce reproductive

performance in a given year; therefore, repeated poor years, for

example due to environmental factors including climatic variation

and/or competition with humans for prey [8], can mean that adult

survival is traded off against a better future that never materialises,

with population numbers ultimately affected. Thus, ongoing poor

conditions will also have long-term population consequences, and

understanding the mechanisms driving such changes can have

important conservation implications [9].

The world’s oceans are now strongly affected by human

activities, with most marine food webs simplified and impoverished

by drivers such as pollution, climate change, and overfishing [10].

Like many other coastal areas over the last century or more, the

inshore waters of southern British Columbia (BC) and northern

Washington (WA; hereafter, the Salish Sea) have seen removal of

upper trophic predators such as whales and sequential overfishing

of forage fishes such as Pacific herring (Clupea pallasii) [11]. This, in

combination with other factors such as climate change and

pollution, means that this area is now among those globally

estimated to be suffering very high levels of human impacts [10];

thus, ecosystem productivity and function in the region is

potentially very different than it was prior to the start of industrial

activity [11–13]. Marine systems worldwide have responded in

varying ways to removal of predators and prey [14,15], and as

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e22027



common meso-predators, marine birds are considered to be

sensitive indicators of such changes in oceanic food webs,

particularly given the long-term nature of some colonial seabird

studies (e.g., [16]). The glaucous-winged gull (Larus glaucescens) is a

conspicuous marine bird that breeds at accessible coastal nesting

colonies in the northern Pacific, and as such it represents a strong

potential source of indicator data: ecologists and naturalists have

been researching its reproductive biology, conducting colony

counts, and collecting its eggs for museums for over 100 years.

During the nesting season glaucous-winged gull diet in the study

area consists of small forage fishes such as herring and sandlance

(Ammodytes hexapterus), trash, and invertebrates, with diet currently

(2008 – present) appearing to consist primarily of marine foods

[17,18]. Though trash is frequently available, it is not clear

whether it is beneficial to gulls. In some parts of the world gull

populations have declined in apparent response to the covering of

landfills and loss of anthropogenic foods [19], and trash has also

been implicated in glaucous-winged gull population trends in the

Salish Sea [17]. However, glaucous-winged gulls eating only

herring were able to raise larger broods than were those whose diet

included trash [20], and for congeneric Western gulls (L.

occidentalis) the most successful breeders avoided eating refuse

and instead fed themselves and their young mainly on fish prey

[21]. Reduced productivity and poorer body condition was also

documented in breeding female herring gulls (L. argentatus) that

subsisted primarily on a trash-based diet relative to those subsisting

primarily on fish foods [22]. The availability of Pacific herring,

currently the principle forage fish in the Salish Sea, has likely

declined in recent years, with factors such as pollution, climate

change and historical overfishing believed responsible; herring

were heavily exploited as early as 1910 and a stock collapse

occurred in the 1960s [11]. Although some regional herring

populations increased between about 1970 and 2002, others have

decreased by up to two orders of magnitude over this period

[13,23–25]. Herring size-at-age has also declined since the 1970s

at various eastern Pacific sites including the Salish Sea [13],

indicating a potential decrease in food value of individual forage

fish (cf. [26]). In addition, the spatial and temporal extents of

spawning events in at least some parts of the study area have been

decreasing, with a contraction of locations since the late 1980s,

and a loss of early (January – early February since about 1970) and

late (April–May since the early 1980s) spawners (Fig. 2 in [13]). In

the Salish Sea, glaucous-winged gulls begin to arrive at their

colonies in February and commence egg laying in mid- to late

May.

The purpose of this study was to assess whether hypothesised

long-term food web changes in this relatively under-studied coastal

ecosystem might affect a consumer’s life history traits over time.

Because large-bodied single brooded birds obtain the resources

necessary for egg production in advance of the breeding season as

well as during it (i.e., they are primarily ‘‘capital’’ breeders; [6,27]),

and as the nutritional and energetic costs of egg production seem

to be relatively high in larids [1,28,29], I predicted that glaucous-

winged gulls would be sensitive to long-term decreases in food

availability prior to the breeding season as well as during egg

formation, and that they would respond to this by decreasing egg

or clutch size over time. To test this prediction I used a meta-

analytical approach and multiple data sources, including published

records and museum egg collections, to examine long-term trends

in egg (108 years) and clutch (48 years) sizes. Because clutch size

progressively decreases with lay date in most single-brooded

species [6], I also tested whether clutch size was correlated with

timing of breeding in the study population. Researchers often

record avian clutch size and lay date, and a number of studies have

used longitudinal data to report long-term trends in these traits.

Egg size has been studied less often, however, with few studies

reporting long-term patterns in egg size variation [30–32]. Though

avian eggs have been collected by naturalists and biologists for

about 200 years, no studies have yet used museum collections to

report on long-term trends in egg size (but see [33]). Lastly,

because food availability is believed to influence lay date in bird

species more consistently than it affects egg production [7], I also

investigated changes in timing of breeding (over 52 y), predicting

that if overall food availability had decreased in the Salish Sea this

would result in delayed lay dates.

Methods

Study area
Field data for these analyses came from studies carried out

between 1902 and 2010 at glaucous-winged gull colonies in the

Salish Sea, i.e., the inshore coastal waters of the Strait of Georgia,

BC, Canada, and adjacent waters, including northern Puget

Sound, WA, USA and the adjacent eastern Strait of Juan de Fuca

(range: 47.91u–50.02u N, 121.95u–125.24u W). Earlier banding

studies, physical geography, and patterns of hybridization support

the selection of this entire region, as does the colonies’ shared

history of 19th century exploitation and subsequent recovery

[34,35] and their modern existence on the edge of some of the

most rapidly-growing areas in Canada [36]. These boundaries

ensured that I included all of the large colonies found in the

region’s inshore sea, but excluded the more westerly colonies that

are strongly influenced by the open Pacific Ocean.

Data sources and inclusion criteria
I compiled published data on glaucous-winged gull egg size,

clutch size and first egg date obtained from a literature search

using ISI Web of Science and keywords ‘‘glaucous-winged gull’’

and ‘‘Larus glaucescens’’, the sources provided in the Birds of

North America species account [37], and additional references

cited in publications located via these searches. ‘‘Grey literature’’

(e.g., government reports) was included in these citations, and

incorporated into the study accordingly. I applied no English-

language or publication year restrictions. In the literature search,

I included publications on glaucous-winged gulls that were not

specifically about their reproduction because some authors

(particularly in papers and reports prior to 1960, presumably as

a result of older stylistic conventions) included appendices of

miscellaneous biological data on the species. I supplemented

published data with those I collected from 2008 to 2010 at

Mandarte Island, BC (48.63uN, 123.28uW) and Arbutus Island,

BC (48.70uN, 23.43uW), using methods comparable with those

from earlier studies. For egg size, I also searched museum

databases (ORNIS and institutions’ own records) for egg sets

collected from the study area, and obtained egg length and width

measurements from five museum collections (specific museums

listed in Acknowledgements section). To ensure that the

published studies had taken place in the study area, I screened

them by geographical region and then reviewed them against

inclusion criteria related to research design and reporting of data

(below).

In screening published studies of egg size, I only included those

reporting measurements for entire clutches, i.e., those where every

egg in a nest was measured. I excluded egg measurements for 2-

egg clutches, reported separately in all studies, because eggs from

these clutches are smaller on average than those from the modal 3-

egg clutch [37] and the proportion of 2-egg clutches reported

varied by study. I only included annual egg size means (from

Declines in L. glaucescens Egg Production
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published studies and museum specimens) derived from more than

a single clutch, and assumed that eggs collected by museums

represented a random subsample of those available at a given

colony because their volumes showed an approximately normal

distribution, i.e., data were non-skewed. For clutch size, I required

that studies had monitored their nests throughout a colony every

1–2 d for the duration of the laying period, i.e., I excluded studies

reporting clutch sizes from opportunistic colony visits because

clutch size is variable over the season. Two early studies provided

no data but stated that ‘‘normal’’ clutch size was three (with 2-egg

clutches ‘‘occasionally’’ found; [38,39]); as I encountered only one

actual measurement of clutch size prior to the 1980s, I retained

these additional studies for comparative purposes and considered

that their estimates represented a clutch size of 2.8, but did not

include them in the analysis itself. Similarly, I required that

published data on first egg date were collected using systematic

colony monitoring protocols rather than opportunistic visits. All

author-collected egg size, clutch size and lay date data (i.e., those I

collected from 2008–2010; see above) were collected so as to be

consistent with these literature-screening criteria.

No studies needed to be discarded due to a lack of essential

meta-analytical data such as sample size. After screening of

published studies and museum specimens, and addition of author-

collected data, I ended up with five separate studies from which I

derived seven annual means of egg size, as well as measurements

from 329 eggs held in museum collections, representing an

additional 14 annual means of egg size (‘‘egg-years’’; n = 21); each

egg-year was treated as a sample unit (Table 1). These egg size

data spanned more than a century (1902–2010) and represented at

least 14 glaucous-winged gull colonies in the study area. I did not

consider study area localities that had been recorded by museum

collectors as ‘‘unnamed’’ to be additional colonies. I retained six

studies from four Salish Sea colonies reporting nine annual mean

clutch sizes, and 18 estimates of first egg date from six colonies

(Table 1). As with egg size, each clutch-year was a sample unit. For

a measure of timing of breeding, I chose first egg date rather than

median lay date because my nest search effort was consistent

through to the late laying season, but did not continue for long

enough to record the latest nests; other included studies appeared

to have followed a similar protocol. While first egg date is probably

more subject to stochastic variation or sampling error than is

median lay date, it is nonetheless considered a reliable indicator of

timing of breeding [40]. All annual means were independent (i.e.,

they were not collected as repeated measures series at study sites),

and as study sites were all located in or around the same inland

body of water (the Salish Sea) I assumed no effect of site on vital

rates, based on published inter-site comparisons of these

parameters [41–44]. Standard meta-analyses address the possibil-

ity of publication bias (publication of studies showing an effect vs.

non-publication of those showing no effect) but as my study simply

assessed mean measures of egg production, consideration of such

bias was unnecessary.

Table 1. Summary of studies used in standard and meta-analyses.

Num. Data source Nesting colony Location Year(s) data collected
Response
variable

N (effect size
estimates)

1 Museum collections1 Various2 Throughout study area3 1902–1946 Egg size 14

2 Schultz 1951 San Juan Islands Puget Sound/Strait of
Juan de Fuca, WA4

1948 Egg size 1

3 James-Veitch & Booth 1954 Williamson Rock Puget Sound/Strait
of Juan de Fuca, WA

1951 Egg size 1

4 Drent et al. 1962 Mandarte Island Haro Strait, BC5 1959, 1960 Lay date 2

5 Vermeer 1963 Mandarte Island Haro Strait, BC 1961, 1962 Lay date 2

6 Vermeer 1963 Mandarte Island Haro Strait, BC 1962 Clutch size 1

7 Hunt & Hunt 1976 Mandarte Island Haro Strait, BC 1971, 1973 Lay date 2

8 Verbeek 1986 Mandarte Island Haro Strait, BC 1976, 1977, 1979, 1980 Lay date 4

9 Verbeek 1986 Mandarte Island Haro Strait, BC 1979, 1980 Clutch size 2

10 Verbeek 1986 Mandarte Island Haro Strait, BC 1980 Egg size 1

11 Reid 1987 Protection Island Strait of Juan de Fuca, WA 1984 Lay date 1

12 Vermeer 1988 Vancouver Harbour Strait of Georgia, BC 1986 Lay date 2

13 Vermeer 1988 Vancouver Harbour Strait of Georgia, BC 1986 Clutch size 2

14 Vermeer 1988 Vancouver Harbour Strait of Georgia, BC 1986 Egg size 2

15 Hooper 1988 Victoria Harbour Strait of Juan de Fuca, BC 1986 Lay date 1

16 Hooper 1988 Victoria Harbour Strait of Juan de Fuca, BC 1986 Lay date 1

17 LK Blight, unpubl data Mandarte Island Haro Strait, BC 2008–2010 Lay date 3

18 LK Blight, unpubl data Mandarte Island Haro Strait, BC 2008, 2009 Clutch size 2

19 LK Blight, unpubl data Mandarte Island Haro Strait, BC 2008, 2009 Egg size 2

20 LK Blight, unpubl data Arbutus Island Haro Strait, BC 2010 Lay date 1

1See Acknowledgements for list of contributing museums.
2See Table S1 for colony details.
3See text.
4WA – Washington, USA.
5BC – British Columbia, Canada.
doi:10.1371/journal.pone.0022027.t001
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Statistical analyses
I used meta-analysis rather than a standard statistical approach

because disparate datasets derived from a group of primary studies

must be properly weighted to yield correct standard errors and p-

values and meta-analysis has been developed specifically to

perform these weightings correctly, increasing the power of

significance tests while retaining robustness [45,46]. I used meta-

regression, with fit assessed using Q-tests [45,46], to analyse trends

in glaucous-winged gull egg and clutch size over time and to

examine the relationship between clutch size and first egg date. I

used random-effects meta-analytical models as these assume that

component studies differ not only by within-study sampling error

(as fixed-effects models do), but also by a genuine difference in

effect sizes among studies [45,46]. Random-effects models thus

incorporate among-study (here, equivalent to inter-year) variance

in their estimates, and thereby generate wider confidence intervals

and more conservative results than do fixed-effect models. All

meta-analyses require that the results of each study be distilled to a

measure of the magnitude of the effect of the measured variable –

the ‘‘effect size’’. As I wished to ask whether egg and clutch size

had decreased over time in response to declining availability of

food, the effect sizes selected here for meta-analysis were mean

annual egg volume and number of eggs per clutch. Variance is

required to compute meta-analytical weightings and was provided

in publications or calculated from raw data for all but five annual

means of egg sizes, and one study reporting clutch size; for these, I

imputed standard deviation (SD) from the pooled SD from all raw

data for the study [47], using the formula

SDpooled~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(ni{1)=SD2

iP
(ni{1)

s

and egg volume was calculated as

vol(cc)~
length|width2|k

1000

where length and width are in mm and k is the constant 0.476,

determined by Harris [48] for another Larus gull.

I used the statistical software package Comprehensive Meta-

Analysis v. 2.0 to perform all weightings and meta-analyses [49].

Welch’s analysis of variance (robust to unequal sample size and

variance) was used to compare mean first egg date in historical vs.

current studies (1959–1986; 2008–2010).

Results

Egg size
From 1902–2009, mean glaucous-winged gull egg volume

decreased in the Salish Sea study area, with the random-effects

model showing a significant negative relationship between year

and egg volume (Q = 7.211; p = 0.007; Fig. 1a) and volume

decreasing at an average of 0.04 cc y21 (95% CI = 20.06–20.01;

egg volume range 78.52–88.36 cc; See Table S1 for a list of effect

sizes) over the study period. This equates to an overall decrease of

circa 5% (4.3 cc) in mean egg volume since 1902 (108 years).

Clutch size and first egg date
As with egg size, average clutch size decreased during the study

period (Q = 27.30, p,0.001; Fig. 1B), declining from a mean of

2.82 eggs per clutch in 1962 to one of 2.25 in 2009 (Table S1).

Though not included in the analysis, qualitative descriptions of

clutch size from the 1950s are consistent with these results (Fig. 1B).

There was a negative relationship between first egg date and mean

clutch size in a given year (Q = 12.91, p,0.001; Fig. 2), with

smaller clutches occurring in years where egg laying commenced

later. Timing of clutch initiation also retreated over time. For

historical data collected between 1959 and 1986 the mean first egg

date was 15 May (range 4–28 May). From 2008–2010 the average

first egg date was 22 May, 7 d later than in earlier decades (range

21–23 May; F = 20.12, p,0.001; Fig. 3).

Discussion

Egg size, clutch size and lay date
These results reveal long-term declines in egg and clutch sizes of

glaucous-winged gulls in the Salish Sea, likely as a result of

reductions in availability of food. Mean egg size decreased by circa

5% from 1902–2009. Similarly, mean clutch size has declined to

the lowest ever recorded for the region. Five of nine studies

reporting clutch size took place at a single site (Mandarte Island),

Figure 1. Meta-regression of glaucous-winged gull egg and
clutch size vs. year, Salish Sea (SW Canada & NW USA). Meta-
regression of glaucous-winged gull egg and clutch size vs. year, Salish
Sea (SW Canada & NW USA). Symbol size represents meta-analytical
weightings for each data point. Note different temporal scales on x-
axes. (A) Egg volume decreased over the study period (1902–2009;
Q = 7.211, p,0.01), with eggs now 5% smaller on average than at the
turn of the 20th century. (B) Clutch size decreased between 1962 and
2009 (Q = 27.30, p,0.001). Two data points from the 1940s–50s
(represented by 6) are not included in the meta-analysis due to
inadequate reporting criteria (see text), but are plotted here to further
illustrate robustness of trend.
doi:10.1371/journal.pone.0022027.g001
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including 21st century clutch sizes, so that the Mandarte data may

have had a large influence on the results. However, opportunis-

tically-collected data from other Salish Sea colonies appear to

support the hypothesis of a regional clutch size decline over time:

population counts at 17 colonies recorded a mean clutch size of

2.29 in 2010 (LKB unpubl. data). Though these additional data

represent only a snapshot of the number of eggs per nest (and were

thus not incorporated into the analysis), they provide a good proxy

for mean annual clutch size as they were collected immediately

prior to hatching, when most gulls should be incubating an entire

clutch. These concurrent egg and clutch size declines are

noteworthy because although gulls lack an obligate clutch size, a

mode of three is a well-known feature of most Larus gulls’ biology,

and egg size reduction is a flexible mechanism that allows birds to

accommodate limited decreases in energy availability while main-

taining offspring number [5]. Visual inspection of the egg and

clutch size data suggests the possibility of an opposing strategy –

the maintenance of somewhat larger eggs on average as clutch size

began to decline – but post-1980 egg size data were too sparse to

pursue this possibility. I suggest this study’s egg and clutch size

results are consistent with a decline in availability of high-quality

fish prey pre- and during the breeding season. The actual cost of

egg production to breeding birds in general is controversial [4] but

for gulls at least there is good evidence that food input, particularly

in the form of protein, affects egg size and clutch number

[3,6,22,29,50,51]. California gulls (L. californicus) breeding at Mono

Lake, California have been reduced to laying 2-egg clutches since

the early 1900s (with eggs also smaller than those from other

populations); this is apparently due to regional food shortages [52].

In red-billed gulls (L. novaehollandiae), egg and clutch size over 41

years were positively correlated with the availability of their

preferred prey, the euphausiid Nyctiphanes australis [53]. Decreasing

egg and clutch sizes are predictable in growing populations of

birds, a response hypothesised as being due to increased

competition for food [54–56]. However, though this study

population of glaucous-winged gulls grew through approximately

the 1930s–1980s [57] it has subsequently been decreasing [58] but

egg and clutch sizes have not increased in response.

Similarly, as predicted based on numerous other studies [6], I

found a negative relationship between clutch size and first egg

date, with smaller clutches produced on average in years when

laying commenced later. The relationship between food supply

and lay date in birds is well established, including in some gull

populations [6,7,53,59]. Gulls are capital breeders that, like many

waterbirds, depend partly on endogenous reserves acquired prior

to initiation of breeding [27,60]. A primary source of late winter

and early spring food for gulls as well as other waterbirds in the

study region has been the considerable influx of nutrients provided

by the sequential spawning of herring at sites along the north-

eastern Pacific coast [61,62]. For example, surf (Melanitta

perspicillata) and white-winged scoter (M. fusca) mass gains in

March and April are related to presence of spawning herring [63].

However, stock declines and temporal contraction of spawning

herring in the Salish Sea (most herring there now spawn in March)

[13,24] means that access to this prey resource has declined for

pre-breeding gulls over at least the past 40 years; other forage

fishes such as pilchard (Sardinops sagax) were rendered commercially

extinct in the study area as early as the 1940s [11]. A decrease in

Salish Sea herring size-at-age suggests a possible decline in quality

as well as availability of this favoured prey since the 1970s, and

declines in forage fish food value has been shown to negatively

affect seabird productivity in other systems [26].

First egg dates of glaucous-winged gulls have become later since

1959, from a mean date of 15 May in previously-published

literature (1959–1986) to one of 22 May in my 2008–2010 field

study. This response is largely unexpected in terms of global trends

as breeding season phenology has been advancing in the majority

of bird species studied worldwide, with a relationship found

between lay date and climate [64–66]. While most seabirds

examined in other studies also demonstrate advancing laying

dates, their responses have been more variable, with some species

or populations instead exhibiting significant delays in initiation of

breeding over recent decades, and warming sea surface temper-

ature (SST) invoked to explain both advancing and delaying trends

[66,67]. It is therefore possible that gulls’ delayed lay dates are a

response to changing climate. However, I found no relationship

between glaucous-winged gull first egg date and local mean annual

SST (from archived data recorded at Race Rocks Lighthouse

Station, 48.30u W, 123.53u N; F = 0.006, p = 0.94) for the years

Figure 2. Meta-regression of glaucous-winged gull clutch size
vs. year. Meta-regression of glaucous-winged gull clutch size vs. year.
Clutch size decreased with delayed onset of breeding (first egg date;
Q = 12.91, p,0.001; 1962–2009 data). Symbol size represents meta-
analytical weightings for each data point.
doi:10.1371/journal.pone.0022027.g002

Figure 3. First egg date retreated significantly from 1959–
2010. First egg date retreated significantly from 1959–2010 (p = 0.03,
m: n = 2 observations), with mean commencement date 7 d later in
2008–2010 than in earlier decades (F = 20.12, p,0.001).
doi:10.1371/journal.pone.0022027.g003

Declines in L. glaucescens Egg Production
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over which phenological data were available, despite a warming

trend in regional SSTs since 1970 [68]. The observed delay in

laying thus supports the hypothesis of gulls responding to an

overall food decline, rather than to climate. Delayed laying has

also been associated with food availability in other larids, e.g., red-

billed gulls laid later when euphausiid availability was low.

This study shows that glaucous-winged gull egg and clutch size

have decreased over time in the Salish Sea, but these changes are

biologically unimportant if lifetime reproductive success is

unaffected. Though I lacked the data to analyse reproductive

success per se over time, my results are suggestive of biologically

meaningful changes that may in part explain ongoing population

declines [58]. The most important effect of increased egg size in

birds overall seems to be improved survival in the days post-

hatching, allowing young chicks to weather temporary food

shortages [5,7,69,70]. However, evidence from multiple studies

also shows egg size to be positively related to hatching success,

growth rate and chick survival [71]. The relationship between egg

size and ongoing fitness seems best established in seabirds [70]

with a handful of studies demonstrating that egg size is correlated

with overall reproductive success and that chick size at fledging

affects future survival [53,72,73]. Based on the importance of high-

quality fish prey during egg formation, and the egg size, clutch size

and lay date patterns documented here, I hypothesise that recent

marine food web changes may be affecting gull population

dynamics in the Salish Sea study area. Though reduced access to

trash via modern landfill management practices may conceivably

have also affected some aspects of this population’s dynamics over

time, it appears likely that forage fish declines are playing an

important role in recent population declines that are trending

toward early 1900 levels, when gull numbers were locally

depressed by egging and persecution [74]. This response hints at

the potential for limits to the resilience of even generalist foragers.

Alternative hypotheses
While food-related explanations are the most parsimonious for

trends observed here, other possible causes exist. For example,

pollutants such as PCBs and PBDEs also affect avian reproduction

including egg and clutch size in birds [72]. It is unlikely that

contaminants are a causative factor here, however, as DDE and

other chlorinated hydrocarbons levels have mostly decreased in

eggs of avian indicator species in the region since the late 1970s

[75,76]. Though other contaminants such as PBDEs are

increasing, their occurrence is more recent (since the 1980s;

[77]), and thus out of phase with observed egg and clutch declines.

Two recent studies have documented body size declines and

morphological changes in North American birds over the past 50–

100 y, likely related to climate change [78,79]; body size changes

might also affect reproductive output. I was unable to rule out this

explanation and suggest it would be a fruitful direction for further

study, but note that female body size explains only a small

proportion of egg size variability [7]. The Salish Sea also lies

within the glaucous-winged gull 6western gull hybrid zone [37],

and it may be that increasing introgression of western gull genes

has been altering the foraging ecology of the Salish Sea

population, leading to ongoing effects on egg and clutch size.

However, in the Canadian portion of the Salish Sea at least,

western gull introgression does not yet appear well-advanced, with

the region far beyond the edge of the hybrid zone [37] and only a

handful of obvious hybrids (i.e., birds with dark-coloured

primaries) observed in a 2010 survey of the breeding glaucous-

winged gull population (LKB, pers. obs.). Finally, direct and

indirect pressures from increasing numbers of bald eagles

(Haliaeetus leucocephalus) have been suggested as a factor in gull

population declines in the region [58], and it may be that a shift in

energy allocation from egg production to increased vigilance has

led to declining egg and clutch sizes. Though egg size declines are

out of synch with eagle population increases [58], this nonetheless

represents an interesting possibility that remains to be explored.

Conclusions
Birds should ultimately alter reproductive traits and phenology

to respond to shifts in underlying features of their food webs.

There is experimental evidence for supplemental food increasing

gull egg and clutch size in years of poor food availability, but not in

good years, indicating the ultimate limits to reproductive output as

well as the potential for proximate adjustments based on diet [80].

Nutritional requirements prior to egg laying (and possibly during

certain phases of chick rearing; [21]) are likely precise and may

require birds to consume high quality fish prey at this time. Thus,

glaucous-winged gulls may be unable to use alternative food

sources (e.g., trash) to buffer against consistent shortages of natural

foods during certain periods of their breeding cycle, and could be

undergoing an ongoing trade-off of their own survival against

production of offspring. It is possible that the study population

may be shifting toward a modal 2-egg clutch, as has occurred in

another food-limited population of gulls in the 20th century [52].

Experimentally testing whether gulls in the Salish Sea respond to

increased high-quality fish prey by increasing egg or clutch size

would provide more conclusive evidence for or against natural

food supply as a mechanism driving observed trends. Though

glaucous-winged gulls are generalist feeders that are expected to

buffer themselves against ecological change, the shifts in

reproductive traits identified here suggest a significant impover-

ishment of a coastal marine ecosystem bordering one of the most

rapidly growing areas in North America. Interestingly, in 2008

glaucous-winged gull egg and clutch size (and reproductive

success; LKB unpubl. data) remained low despite north-eastern

Pacific waters being the coolest in 50 years of records and

productivity being the highest ever viewed via satellite in August

[25], suggesting that the study area’s coastal sea may be more

strongly affected by regional than by basin-wide factors (cf. [12]).

Future studies should investigate details of long-term trends in gull

diet, possibly using a stable isotope approach. Finally, I suggest

that eggs in museum collections represent an underutilised

resource for observing effects of environmental change on avian

demography over time.
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