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The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of
phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of
bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted
phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were
also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact
that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial
infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial
invasion.

Citation: Gaidelytė A, Vaara M, Bamford DH (2007) Bacteria, Phages and Septicemia. PLoS ONE 2(11): e1145. doi:10.1371/journal.pone.0001145

INTRODUCTION
Septicemia is a serious medical condition where bacteria present in

the blood circulatory system provoke an amplified and dysregu-

lated immune response in the individual. The most common

infection sites leading to bacterial entry into the circulatory system

are bacterial infections in the lungs, urinary tract, abdominal

cavity, and primary infections of the bloodstream [1]. Rapid

antibiotic intervention is currently the only way to treat septicemia

(as well as other bacterial infections). However, many bacterial

pathogens have become resistant to antibiotic regimens, resulting

in an urgent health problem worldwide [2,3]. One potentially

useful method for the treatment of antibiotic resistant bacterial

infections employs bacterial viruses called bacteriophages (also

known as phages) capable of killing bacteria [4–7]. They were

widely used to treat bacterial infections since their discovery in the

beginning of the twentieth century, but their use was neglected in

western countries after the discovery of antibiotics [6,8]. The

modern application of phages in parts of the world that require

documented and scientifically controlled clinical experiments is

limited to the protection of ready-to-eat meat and poultry products

[9]. Phage derived enzymes lytic to Gram-positive bacteria are the

most promising candidates to enter the markets for therapeutic use

[10,11].

In contrast to virulent phages, which kill bacteria immediately,

temperate phages integrate their genomes into bacterial chromo-

somes to establish a prophage state. Prophages and other genetic

elements such as transposons, plasmids, and pathogenicity islands

encode virulence factors [12]. Temperate phages disseminate

virulence genes and thus contribute to the evolution and

emergence of new pathogenic bacteria. Only the most virulent

bacterial clones are capable of tissue invasion possibly leading to

septicemia, as the bacteria have to overcome anatomical and host

immune system barriers to enter the circulatory system. Although

there is considerable information regarding prophages [13,14] and

phage-encoded virulence factors in bacterial pathogens [15], few

studies have investigated microbial ecology in clinical bacterial

infections. Here we surveyed the phage ecology in septicemia, the

most severe type of bacterial infection. We observed that the

majority of septicemia-causing bacteria could be induced to

produce phages active against other isolates of the same bacterial

strain. Such phages were also detected in the initial blood cultures,

indicating that phages are circulating in the blood at the onset of

sepsis. Further characterization of the phage isolates revealed that

the virus detected in the blood culture was the same as induced

from the bacterium isolated from that particular blood culture

sample.

RESULTS

The Majority of Septicemia-Causing Bacteria Can Be

Induced to Produce Phages
In this report we investigated Escherichia coli (Ec), Pseudomonas

aeruginosa (Pa), Staphylococcus aureus (Sa) and Klebsiella pneumoniae (Kp)

isolates from septicemia patients. Two sets of bacterial isolates and

blood culture samples were obtained (Set I 150 and Set II 30

bacterial isolates, Table S1). Set I samples were analyzed by

plating the blood culture sample (stored at –80uC) with the

homologous bacterial strain. (Homologous strain refers to the

strain originally isolated from that particular blood culture sample.

Heterologous strains are other bacterial strains isolated from blood

culture samples or elsewhere.) None of the blood culture samples

contained plaque-producing viruses, indicating that no virulent

phages were present. However, eight Pa strains produced plaques

when plated without the blood culture sample (102–104 PFU/ml)

(Table S1). These strains were likely lysogens that spontaneously

released viruses and were sensitive to their own viruses. This result

suggested that prophages resided in the bacterial isolates. Ten

randomly selected heterologous strains from Set I and elsewhere

were then used as indicators to test for spontaneous phage

induction. Prophages were also induced with UV and mitomycin

C (MitC) under conditions that reduced the host cell viability by

several orders of magnitude. Mid-logarithmic cell culture super-

natants were then probed for phage induction by plaque assay.

Academic Editor: Floyd Romesberg, The Scripps Research Institute, United States
of America

Received July 16, 2007; Accepted October 16, 2007; Published November 7, 2007
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Phages were detected in 91 out of 150 culture supernatants

(Table 1) ranging from 10 to 107 PFU/ml. Plaques appeared only

on one indicator strain in about half of the cases, suggesting that

a larger indicator set could result in the detection of more phage-

producing strains. Three virus-producing clones were tested for

the type of phage or phages released for all four bacterial strains

using the sensitivity pattern of the indicator strains. Only a single

pattern was detected in most of the test cases. These data indicate

that the bacterial clones released one or only a few types of phages.

We next tested if antibiotics commonly used to treat septicemic

infections could induce plaque formation in clinical bacterial

isolates. We selected five strains (3 Ec and 2 Sa) that did not

produce plaques spontaneously but did so after treatment with

MitC or UV, to test this idea. Indicator strains (one indicator

strain per bacterial isolate) were selected based on data from the

experiment described above. We did not observe plaque formation

when the cells were treated with tobramycin. However, cipro-

floxacin induced phage release from one of the Sa strains. It has

been shown previously that ciprofloxacin treatment causes

prophage induction (and virulence modulation) in S. aureus from

patients with cystic fibrosis [16] as well as in shiga-toxin producing

E. coli strains of human origin [17–19]. In some cases, like

infections with enterohemorrhagic E. coli O157:H7, antibiotic

treatment is controversial because of prophage induction, in-

creasing the risk of the hemolytic-uremic syndrome [18,20].

Selected Phage-Sensitive Septicemia-Causing Hosts

Allowed to Detect High Virus Titers in Original Blood

Culture Samples
Results described above indicate that most (if not all) of the

bacteria studied here are lysogenic, suggesting that there should be

phages present in the original blood culture samples due to

spontaneous or induced induction. Using the indicator bacterial

strains identified in the lysogeny screening, blood culture samples

from Set I (Table S1) were subjected to plaque assay. Plaques were

detected in 10 of the 149 samples (,7%, Table 2). This assay was

performed several months after the blood collection and the

samples had been frozen and thawed. Freezing has an adverse

effect on the virus viability. To eliminate this discrepancy we

collected another set of samples (Set II, n = 30) and screened them

for possible plaque-forming phages two days after sample

collection (Table S1). We also increased the number of possible

indicator strains used in the analyses. We observed plaque

formation in 10 of the 30 (33%) blood culture samples, with titers

ranging from 10 to 106 PFU/ml (Table 3). In most cases when

phages were detected in the blood culture samples the correspond-

ing bacterial isolate spontaneously released phages capable of

infecting the same indicator strain (Table S1).
The Virus Induced from a Septicemic Bacterium Is

Always the Same as Detected in the Original Blood

Culture Sample
Attempts to grow the isolated phages to high titer and to purify

them using polyethylene glycol precipitation and rate zonal

sucrose gradient centrifugation succeeded in 36 cases (24 from

Set I and 12 from Set II, Table S2). Phage morphology was

determined by negative staining electron microscopy, and the

virion structural protein pattern was determined by electrophoresis

(SDS-PAGE). Thirty-four of the phages showed a typical tailed

dsDNA phage morphology characteristic of myo-, sipho-, or

podoviruses, with a head diameter often about 50 nm. Two of the

phage isolates were filamentous. We did not detect any other

morphotypes. For eleven of the samples both the blood culture

Table 1. Number of Set I bacterial isolates producing
spontaneous or induced plaques.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bacteria Spontaneous MitC UV Total unique /all isolates

E. coli 25 40 45 57/90

S. aureus 7 13 8 16/26

P. aeruginosa 16 16 15 16/16

K. pneumoniae 2 2 2 2/18

Total: 91/150

doi:10.1371/journal.pone.0001145.t001..
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Table 2. Phage titer of Set I blood culture samples detected
on selected indicator strains.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blood culture sample (Set I) Indicator strain Titer (PFU/ml)

E. coli (6/90) ,7%

05vv1387 Ec1457 26104

05vv1522 YMC 16105

05vv1558 Ec1522 26103

05vv1809 YMC 26102

05vv1999 Ec2424 16102

05vv2388 Ec1643 26103

S. aureus (0/26) 0%

P. aeruginosa (3/16) ,19%

05vv1315 Pa1400 66103

05vv1400 Pa1414 26103

05vv1973 Pa1651 56104

K. pneumoniae (1/18) ,6%

05vv2343 Kp1752 16104

doi:10.1371/journal.pone.0001145.t002..
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Table 3. Phage titer of Set II blood culture samples detected
on indicator strains with the best efficiency of plating.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Blood culture sample (Set II) Indicator strain Titer (PFU/ml)

E. coli (4/14) ,29%

06vv2974n Ec1457 ,26103

06vv2987a YMC 26104

06vv3183n Ec1522 1.46106

06vv3242 Ec1522 16105

S. aureus (5/12) ,42%

06vv2986a Sa1912 ,46103

06vv3106a Sa1912 101

06vv3133n Sa1912 46101

06vv3189n Sa1912 36105

06vv3244 Sa1263 16103

P. aeruginosa (0/3) 0%

K. pneumoniae (1/1) 100%

06VT145a Kp1752 26103

doi:10.1371/journal.pone.0001145.t003..
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phage isolate and the phage isolate induced from homologous

lysogenic bacterium were recovered (designated as a phage pair).

Interestingly, the pairs were always identical when the morphol-

ogies and structural protein patterns of these phage pairs were

analyzed (Figure 1). We also detected identical (based on structural

protein patterns) phage isolates (not pairs) from the blood culture

samples or induced from lysogenic bacteria. The highest number

(seven) of identical isolates was detected from Ec. All these isolates

infected the same bacterial strain (YMC). Likewise, the two

filamentous Pa phages had the same structural protein pattern and

morphology. These data indicated that common phage strains

were circulating in this hospital setting.

DISCUSSION
Many bacterial genomes carry both defective and functional

prophages [13,14]. These greatly contribute to the bacterial

phenotype and can alter important biological properties.

Bacterial cells carrying prophages usually are immune to the

infection of the same phage type. Interestingly, we observed that

eight auto-induced Pa phages and two staphylococcal phages

(Phi05_1554 and Phi05_1912a) infected their homologous hosts.

When several potential heterologous hosts (of the same bacterial

strain) were used, a spontaneous or induced phage production was

detected in 95 out of 180 isolates. Since more phages were detected

when the indicator test set was increased, it is possible that the

observed inducible phages (and lysogenic bacteria) represent only

a minimal estimate of the actual total. Similarly, the number of

phages detected in the blood culture samples is also likely a minimal

estimate because of virus decay and possible suboptimal indicator

host usage. The observation that the induced phages were

consistently identical to those found in the homologous blood

culture sample indicates that there are both bacteria and phages

circulating in the blood of septicemic patients. The fact that most of

the sepsis-causing bacteria carry functional prophages suggests an

active role of phages in bacterial infections. Phages released from

majority of septicemic bacterial isolates are active against other

isolates of the same bacterial strain, but not to the strain causing the

disease. Apparently, prophages present in sepsis-causing bacterial

clones play a role in clonal selection during bacterial invasion. A

similar concept has been proposed for Streptococcus pneumoniae isolated

from the nasopharynx [21]. Prophage MM1 improves bacterial

adherence to the surface of pharyngeal cells and thus contributes to

the pathogen fitness and its persistence in humans. It is also likely that

bacteriocins are induced from sepsis-causing bacteria. Our pre-

liminary studies on the filamentous Pa phages isolated here show that

large amounts of pyocins (Pa bacteriocins) are released upon phage

production. Obviously a complex ecosystem is generated in

septicemia where the human immune system and bacteria, phages

and possibly bacteriocins operate simultaneously with fatal con-

sequences to the infected individual.

The observations made here support the idea that viruses are

found in practically all ecological niches, including bacterial

infections. Therefore, the therapeutic use of phages in septicemic

patients relies on the understanding of the ecosystem created by

the patient, pathogenic bacteria, phages, and possible bacteriocins.

MATERIALS AND METHODS

Study design
The samples used in this study consisted of E. coli, K. pneumoniae, S.

aureus and P. aeruginosa strains originating from septicemic patients

isolated from consecutive blood cultures taken from those patients.

They also consisted of fluid samples taken from the corresponding

blood cultures. Only one sample per patient was included to

Figure 1. Characterization of phage isolates grown to high titers. Upper panel, electron micrographs of negatively stained phage preparations. Bar,
100 nm. Lower panel, SDS-PAGE analysis of the same phage preparations. The first and last lanes of the gel contain protein size standards (BioRad).
Molecular weights of protein standards are indicated on the left.
doi:10.1371/journal.pone.0001145.g001
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exclude duplicates. All samples are listed in Table S1. Personal

data were removed from all material related to the study to protect

the anonymity of the patients. According to ethical principles stated

in the Declaration of Helsinki this survey did not involve identifiable

human material or identifiable patient data and thus ethical approval

was not deemed necessary. Isolates and blood culture samples were

collected in the Helsinki University Hospital laboratory during two

time periods (April 27 through August 5, 2005 and August 29

through September 25, 2006). During the first time period, 149

blood culture samples and 150 bacterial strains were collected and

frozen at –80uC until use (Set I). During the second time period 30

blood culture samples and 30 bacterial isolates were obtained and

processed immediately (Set II). Three different specimens with the

same origin were marked with the same four-digit number: blood

sample (05vv or 06vv), bacterial isolate (Ec for E. coli, Sa for S. aureus,

Pa for P. aeruginosa, or Kp for K. pneumoniae), and phage (Phi).

Common laboratory strains including E. coli K12 YMC, P. aeruginosa

K, O5(R18), O(pJB10), O1(pLM2), and O were also used. Bacteria

were cultivated in Luria-Bertani broth (LB) at 37uC with aeration.

Cell density was measured using a Klett colorimeter (A540)

manufactured by Bel-Art Products.

Phage quantitation
To quantitate virulent phages in blood culture samples, the sample

was cleared by centrifugation for five min at 13,000 rpm at 22uC
(Heraeus Biofuge) and plated with a suspension of the bacterium

originally isolated from that sample (homologous bacterium). To

quantitate temperate phages, cleared blood culture samples were

diluted up to 100-fold and plated with selected indicator strains

(see below). To detect spontaneous phages in culture supernatants

of bacteria originally isolated from blood culture samples, bacterial

isolates were grown to 200 Klett units at 37uC with aeration,

sedimented by centrifugation for five min at 13,000 rpm at 22uC
(Heraeus Biofuge), and serial 10-fold dilutions of supernatants

were plated with selected indicator strains.

Selected potential indicator strains for Set I
For E. coli, Ec1255, Ec1457, Ec1522, Ec1643, Ec1685, Ec1758,

Ec1809, Ec1910, Ec2311, Ec2424, and YMC were used as potential

indicator strains. For S. aureus, Sa1252, Sa1303, Sa1433, Sa1469,

Sa1582, Sa1631, Sa1742, Sa1808, Sa1896, Sa2320, and Sa1987

were used as potential indicator strains. For P. aeruginosa, Pa1315,

Pa1400, Pa1414, Pa1499, Pa1641, Pa1651, Pa1786, Pa2302,

Pa2371, K, O5(R18), O(pJB10), O1(pLM2), and O were used as

potential indicator strains. For K. pneumoniae, Kp1447, Kp1468,

Kp1473, Kp1586, Kp1627, Kp1752, Kp1823, Kp1897, Kp2329,

Kp2362, and Kp2385 were used as potential indicator strains.

Selected potential indicator strains for Set II
Cleared blood culture samples infected with E. coli from Set II

were plated with the following 25 strains: Ec1255, Ec1321,

Ec1457, Ec1507, Ec1522, Ec1572, Ec1643, Ec1675, Ec1685,

Ec1748, Ec1758, Ec1798, Ec1809, Ec1816, Ec1905, Ec1910,

Ec1998, Ec1999, Ec2000, Ec2311, Ec2392, Ec2400, Ec2407,

Ec2424, and YMC. Samples infected with S. aureus or K. pneumoniae

were plated with all S. aureus or K. pneumoniae strains from Set I (see

Table 1), respectively. Samples infected with P. aeruginosa were

plated with the following strains: Pa1315, Pa1400, Pa1414,

Pa1641, Pa1651, Pa1786, Pa2302, Pa2371, O5(R18), and K.

Spontaneous plaque production by Set II bacterial isolates was

tested using the same indicator strains as listed for Set I except that

some additional strains were verified based on results obtained

with blood culture samples.

Phage induction
For UV induction, bacteria were grown to 200 Klett units and

collected by centrifugation for 10 min at 6,000 rpm using a Sorvall

SS-34 rotor at 4uC. Bacteria were suspended in the same volume

of M9-broth and transferred to a glass Petri dish. The bacterial

suspension was irradiated for 42 sec at A254 followed by dark

storage on ice for 1 h. Cells were collected by centrifugation for

5 min at 13,000 rpm using a Heraeus Biofuge at 22uC. Bacteria

were suspended in 3 volumes of LB and the number of plaques

was determined after additional two h incubation at 37uC.

For MitC induction experiments, cells were grown to 200 Klett

units and induced with MitC at a final concentration of 5 mg/ml.

Cells were incubated for 15 min at 37uC and the growth medium

was then replaced with fresh LB. Plaques were determined after

additional two h incubation at 37uC.

To test if antibiotics could induce phage production, the same

procedure was used as in the previous paragraph with the following

modifications. Three different antibiotic concentrations were tested

depending on the antibiotic used and bacterial strain employed. For

E. coli strains, 1, 10, and 30 mg/ml final concentrations of tobramycin

(tomycin, Orion Pharma) and 0.03, 0.3, and 3 mg/ml of ciprofloxacin

(Bayer) were used. For S. aureus strains, 1, 10, 20 mg/ml final con-

centrations of tobramycin and 1, 10, 30 mg/ml of ciprofloxacin were

used. Viable counts of cell suspensions were determined to evaluate

the antibacterial activity of UV, MitC or antibiotic treatment.

Phage purification
Phage stocks were obtained as follows. Soft agar from semi-

confluent plates was collected and mixed with LB at 3 ml per

plate, and incubated for 2 h at 37uC with aeration. Debris was

removed by centrifugation for 20 min at 8,000 rpm using a Sorvall

SS-34 rotor at 5uC. Phage particles were concentrated with 10%

polyethylene glycol 6000 and 0.5 M NaCl and were purified twice

by rate zonal centrifugation in a linear 5–20% (w/v) sucrose

gradient prepared in 20 mM Tris, pH 7.2, 1 mM MgCl2, and

0.2 mM CaCl2 [22]. Protein composition of purified virus

preparations was determined by SDS-PAGE [23].

Electron microscopy
Purified virus specimens were applied to carbon-coated grids and

were stained with 1% (w/v) potassium phosphotungstate (pH 6.5).

Micrographs were obtained with a JEOL 1200 EX electron

microscope (Institute of Biotechnology, University of Helsinki)

operated at 60 kV.

SUPPORTING INFORMATION

Table S1 Blood culture samples and original bacterial isolates

collected from the Helsinki University Hospital laboratory

Found at: doi:10.1371/journal.pone.0001145.s001 (0.12 MB

DOC)

Table S2 Characterized phage isolates

Found at: doi:10.1371/journal.pone.0001145.s002 (0.07 MB

DOC)
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