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Abstract

Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement
varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral
measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here
we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded
at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These
predictions explained more than half of the variance in learning success among individuals, suggesting that individual
differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training
in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the
dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior
than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in
the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-
switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data
collected in the early training phase may have far-reaching implications for the assessment of candidates for specific
training programs as well as the study of populations that show deficiencies in learning new skills.
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Introduction

People vary in their ability to improve cognitive and

psychomotor performance with practice and training. Cognitive

tests predict who will benefit from training [1,2], but they usually

account for only a small proportion of the variance among

individuals [3]. Here we use brain magnetic resonance imaging

(MRI) data to predict individual learning success with unprece-

dented accuracy. Specifically, we show that patterns of time-

averaged T2*-weighted images in the dorsal striatum at the start of

training in a complex video-game account for more than half of

the variance in the amount of subsequent learning among

individuals.

In our analysis we focused on the dorsal striatum, consisting of

the caudate nucleus and the putamen, and on the nucleus

accumbens in the ventral striatum because of these structures’

involvement in learning and execution of complex responses. The

dorsal striatum plays a role in procedural and habit learning and

in carrying out or initiating complex goal-directed tasks such as

task-switching or reaction-time tasks [4,5,6,7,8,9,10]. The ventral

striatum, typically related to reinforcement and motivation

[8,11,12], is also recruited during early stages of learning

[13,14,15]. Both the dorsal and ventral striatum show increased

release and binding of dopamine, which has been associated with

better performance in a video game [16]. Furthermore, an

increase in the functional activity in the striatum has been

associated with the transfer of updating skills in working memory

tasks, possibly regulated by dopaminergic modulation [17].

With a few exceptions (e.g., the volumetric study by Erickson et

al. [6]), learning has so far mostly been investigated with functional

MRI (fMRI), making use of contrasts in the blood-oxygen-level

dependent (BOLD) effect [18]. Measured with gradient-echo echo

planar imaging (EPI), functional BOLD activity is obtained by

contrasting the EPI images of an experimental condition of interest

with those of a baseline condition. This emphasizes the differences

between the two conditions and eliminates the part of the BOLD

signal that they have in common. Here we focus on the common

part, which we obtain by averaging the EPI volumes over time.

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16093

4



The result is a time-averaged T2*-weighted image. Unlike the T1-

weighted magnetization prepared rapid acquisition gradient echo

(MPRAGE) image, which reflects the tissue’s proton density, the

T2*-weighted image depends mostly on the magnetic susceptibility

of the tissue. Using multi-voxel pattern analysis (MVPA) we

identified patterns of time-averaged T2*-weighted activity that

predict subjects’ future improvements in playing a complex video

game with high accuracy.

Results

Thirty-four young adults with little experience in playing video

games were trained to play Space Fortress (Figure 1A), a complex

video game developed as a test bed to study skill acquisition and

learning [19,20] (see details in the Materials and Methods

section). After an initial instruction session to familiarize

participants with the game controls and objectives, they played

Space Fortress inside an MRI scanner with an MR-compatible

joystick. We recorded high-resolution anatomical T1-weighted

MRI scans with an MPRAGE sequence as well as T2*-weighted

images with a gradient-echo EPI sequence. The total game score

during this first session inside the scanner was used as a measure

of participants’ abilities prior to extensive training. Over the

course of the next three to eight weeks (38 days on average)

participants completed ten two-hour training sessions playing

Space Fortress outside the scanner (Figure 1B). Following these

20 hours of training, participants underwent a second MRI

session identical to the first. The score improvement from the first

to the second MRI session, i.e., the difference between the game

scores in MRI sessions 2 and 1, served as a measure of individual

learning success. Note that we only consider game performance

during the two MRI scans in this paper, since the main focus of

the paper is on predicting learning success from imaging data.

For details of the progression of training outside the scanner see

reference [21].

The T2*-weighted images acquired for each participant during

MRI session 1 were registered linearly (7 degrees of freedom) to

the T1 volume recorded in the same session. Next, a non-linear

transformation was computed from the high-resolution T1

volumes to the standard Montreal Neurological Institute (MNI)

space. The concatenation of these two transformations was then

applied to register each subject’s T2*-weighted images into MNI

space. This registration was followed by a normalization step to

account for variations of scanner settings between runs. The

resulting T2* volumes were averaged over 16 minutes of active

game play in order to suppress signal variations due to functional

activity and other sources of noise. We then performed two

different types of region-of-interest (ROI) based analysis with this

average T2* signal to predict subjects’ score improvement: spatial

mean activity analysis and multi-voxel pattern analysis (MVPA).

Unlike the spatial mean analysis, MVPA utilizes the distributed

pattern of voxel activity within an ROI.

For the spatial mean activity analysis, we averaged the intensity

of all voxels inside an anatomically defined region. As a first test,

we divided subjects into groups of good and poor learners based

on a median split of their score improvements. We found

significantly higher mean activity for good than poor learners in

the dorsal striatum (p = 0.011), but not in the ventral striatum

(p = 0.75, two-sample t tests with n1 = n2 = 17). To determine the

relationship between subjects’ numerical score improvements and

mean activity within an ROI we computed their Pearson

correlation. In the dorsal striatum, the correlation was significant

(r = 0.47, p = 0.0053; see Figure 2A), but again not in the ventral

striatum (r = 20.09).

Although analysis of spatial mean activity can predict score

improvements to some extent, it provides merely summary

statistics of the activity in an ROI, ignoring subtle differences in

activity patterns. Indeed, after subtracting out each individual’s

average activity, good and poor learners differed in the multi-voxel

patterns of time-averaged T2* activity in the dorsal striatum

Figure 1. Space Fortress game, experimental time line and pre-processing flow. (A) Schematic interface of the Space Fortress video game.
The objective of the game is to destroy the space fortress (yellow, center of the display) by shooting missiles at it from a space ship (yellow, upper-left
corner), while moving the space ship inside the hexagon with thruster commands to evade mines (red diamond) and to collect resources (‘$’ sign). (B)
Timeline of the experiment for a typical participant. After initial instructions, participants played Space Fortress in the MRI scanner while their brain
activity was recorded. Next, participants underwent a total of 20 hours of training, followed by a second MRI session. We used the difference in total
game score between the two MRI sessions (i.e. the score improvement) as a measure of learning success. (C) MRI preprocessing workflow: EPI volume
series (1st MR session) of different subjects are registered to the common space (MNI space) by linear and non-linear registration. After normalization,
temporal averages of the EPI volumes are used for the subsequent analysis.
doi:10.1371/journal.pone.0016093.g001
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(Figure 3). The color patches in Figure 3 suggest a subdivision of

the dorsal striatum roughly along the anterior-posterior line. In

other words, good and poor learners not only differ in their level of

mean activity in the dorsal striatum, but also in the local activity

patterns within the dorsal striatum. These differences allow us to

predict learning success for individual participants from the

patterns of the temporally compounded EPI images recorded at

the beginning of training with much higher accuracy than from

the spatial mean of activity alone.

To exploit these differences in a multivariate analysis, we first

excluded data from one subject and used activity patterns of the

voxels from the remaining subjects, together with their score

improvements, to train a support vector regression (SVR)

algorithm [22,23]. The algorithm then generated a prediction

for the performance improvement of the excluded subject from

her or his pattern of time-averaged T2*-weighted activity. The

procedure was repeated so that each subject was excluded once in

a leave-one-subject-out (LOSO) cross validation procedure,

thereby generating predictions for each subject based on the

performance and activity patterns of the other subjects. Details

about the SVR algorithm and the LOSO procedure can be found

in the Materials and Methods section.

The algorithmically predicted score improvements were then

correlated with the actual performance improvements in Space

Fortress to determine the prediction accuracy. Figure 2B shows

that the predictions based on pre-training activity patterns in the

dorsal striatum were highly correlated with the actual improve-

ments that resulted from 20 hours of training (Pearson correlation

coefficient r = 0.74, p = 6.1?1027). Activity patterns before training

accounted for more than half of the variance (R2 = 0.55) among

individuals in how much they benefited from training. This

represents a substantial improvement in prediction accuracy

compared with the spatial mean analysis over the same regions

of interest, which explained less than a quarter of the variance

(22%; r = 0.47; Figure 2A).

Within the dorsal striatum, predictions based on the pattern of

activity in the caudate nucleus (r = 0.77, p = 1.3?1027) were more

accurate than those based on activity in the putamen (r = 0.47,

Figure 2. Predicting score improvement from MRI activity in the dorsal striatum. (A) Correlation of measured score improvement with the
spatial mean of the time-averaged T2*-weighted signal in the dorsal striatum. Mean activity of 34 subjects is significantly correlated with score
improvement. (B) Correlation of measured score improvements with score improvement predicted from multi-voxel patterns of the T2*-weighted
signal in the dorsal striatum. It shows an even higher correlation than in A). The dashed lines show the least-squares best linear fits in figures A and B.
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0016093.g002

Figure 3. Pattern of differences between good and poor learners. Differences in activation patterns in the dorsal striatum between good and
poor learners overlaid on top of six anatomical slices with z-coordinates respectively, 214, 26, 2, 10, 18, and 26. For this visualization the group of 34
subjects was split into 17 good and 17 poor learners based on the median of score improvements in Space Fortress over the course of 20 hours of
training. Each subject’s mean activity was subtracted from her or his activity in the dorsal striatum. The activity patterns were then averaged
separately for good and poor learners. The figure shows the difference between the average patterns of good and poor learners.
doi:10.1371/journal.pone.0016093.g003
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p = 0.0046; Figure 4), with a marginally significant difference

(p = 0.051). Furthermore, the left dorsal striatum (r = 0.80,

p = 1.0?1028) showed significantly higher (p = 0.0037) predictive

power than the right dorsal striatum (r = 0.36, p = 0.039). Since all

subjects were right-handed and controlled the movements of the

space ship with their right hand, this may be related to motor

learning in the contralateral (left) hemisphere. In contrast to good

predictions from the dorsal striatum, predictions based on activity

patterns in the ventral striatum (nucleus accumbens) were not

correlated with measured score improvements (r = 0.08).

The score of the Space Fortress game was composed of four

sub-scores: Control of the space ship’s position; maintaining ship

Velocity within a predefined range; Speed with which subjects

discriminated between and responded to different types of mines;

and Points for successfully destroying the fortress. We repeated the

SVR analysis separately for each of the sub-scores. As shown in

Figure 5, the speed sub-score shows the same pattern of results as

the total score, including the high correlation of predicted and

measured score improvement in the left but not the right dorsal

striatum, the higher correlation in the caudate nucleus than the

putamen, and the low correlation in the ventral striatum (nucleus

accumbens). This suggests that learning success with respect to

discrimination and working memory (needed to identify a mine as

friendly or hostile and to react to it quickly) is best predicted by

time-averaged T2* activity in the dorsal striatum. Improvement in

motor control, which is reflected in the control and velocity sub-

scores, is not predicted to the same extent by the dorsal striatum,

although both of these sub-scores are predicted at some level by

T2* activity in the left nucleus accumbens. Improvements in the

points sub-score are not predicted by activity in the striatum, except

for a small but significant correlation of predicted and measured

score improvement in the left caudate nucleus.

Previously, striatal brain volume was reported to predict score

improvement to some extent [6], and volume of an area and its

time-averaged T2* signal may be related. Another potential

predictor for score improvement could be the initial score from the

games played during the first MRI session. On the one hand,

participants with high initial scores may already have reached

ceiling performance, showing little further improvement. On the

other hand, higher initial score could indicate higher cognitive

abilities, enabling participants to benefit more from extensive

training. To account for these factors, we used the volume of

regions as reported in [6] and the initial score as two additional

explanatory variables (covariates) of measured score improve-

ments, in addition to the score improvements predicted by the

SVR analysis. We used a second-order partial correlation analysis

for each of the three explanatory variables to assess the unique

predictive power of each of them irrespective of the other two.

Table 1 shows the correlation of the SVR prediction with

measured score improvement to be highly significant, even after

removing the effects of striatal volume and initial score. Note that

for this analysis, only those 32 of our 34 subjects were used for

whom the volumetric data were available from [6]. Also, one

might wonder about the use of improvement in game score during

the first MRI session (e.g., from game 1 to game 4) as another

predictor. However, we found no significant correlation between

improvement within the first MRI session and the improvement

from the first to the second MRI session (r = 20.17).

It is important to emphasize that although we recorded the

same kind of T2*-weighted EPI images that are used for functional

MRI, the time-averaged EPI volumes that we used for our MVPA

analysis are unlikely to be functional, because here we consider the

part of the EPI images that is common across the time course rather

than modeling the differences of BOLD activity over different

stimulus conditions. Therefore, our signal is more likely to capture

individual differences in some aspect of neuroanatomy or

persistent physiology, such as differences in blood supply to the

dorsal striatum or the iron concentration in this region. This view

is further supported by the observation that it is not necessary to

use the EPI images recorded during active game play. We

obtained almost identical accuracies of predicting score improve-

ment in Space Fortress when we use EPI images from blocks with

an acoustic oddball task (r = 0.75, p = 2.9?1027) or from blocks of

passively watching Space Fortress games (r = 0.74, p = 5.6?1027).

Contrast in MR images can be obtained based on the transverse

relaxation time T2 (or T2* in the case of field inhomogeneity) or

the longitudinal relaxation time, T1. These two contrasts are

determined by intrinsic properties of the imaged tissues. In fact,

different T1 and T2 (or T2*) values help to differentiate white and

gray matter in anatomical images. To test if we can predict score

improvement just as well based on T1-weighted as T2*-weighted

images, we subsampled the MPRAGE images that were acquired

during the first scanning sessions to the same resolution as the EPI

images (3.4375 mm63.4375 mm64 mm) and performed the

MVPA analysis as described above. Correlation of predicted

score improvements with measured score improvement was

significantly lower for T1-weighted than T2*-weighted images

(p = 0.031), although at 0.38 it was still significantly above zero

(p = 0.027; Figure 6). The higher prediction accuracy in T2*

compared to T1 images might hint at the importance of magnetic

susceptibility of the tissue, which affects T2* but not T1. One

possible source of susceptibility variations could be iron in the

tissues, for instance in supplied blood [24].

Both white and gray matter contain blood vessels. In the white

matter, capillaries are embedded in the myelin sheaths of axons

that project over relatively long distances. In the gray matter,

vessels supply mostly the somas and dendrites of neurons.

Determining which tissue contributes more to the patterns that

Figure 4. Accuracy of predicting individual score improvement
from MVPA of the time-averaged T2*-weighted signal. In the
dorsal striatum, correlation of predicted and measured score improve-
ment for 34 subjects was highly significant. Within the dorsal striatum,
correlation for pattern analysis was just as high in the caudate nucleus,
but lower in the putamen. Predictions were even less accurate in the
ventral striatum (nucleus accumbens). In the dorsal striatum, predic-
tions were significantly more accurate based on activity patterns in the
left than in the right hemisphere. The caudate nucleus showed similar
lateralization, whereas the putamen did not show strong lateralization.
{p = 0.051, *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0016093.g004
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let us predict individual learning success could elucidate the

anatomical and/or physiological phenomena underlying our

effects. We used FSL’s FAST automatic segmentation tool to

separate white from gray matter in the T1 image of each

individual. We then performed the LOSO cross validation analysis

separately on the white matter and on the gray matter voxels

(Figure 6). Correlation of predicted with observed score improve-

ment was significantly higher (p = 0.0026) in the white matter

Figure 5. Accuracy of predicting improvements in sub-scores from the time-averaged T2*-weighted signal. (A) Improvement in the
control sub-score is predicted to a limited extent by the time-averaged T2* activity in the left ventral striatum (nucleus accumbens). (B) The velocity
sub-score shows small but significant correlations in the left caudate nucleus and the left nucleus accumbens. (C) Improvement in the speed sub-
score is predicted highly significantly by time-averaged T2*-weighted activity in the dorsal striatum, in particular the caudate nucleus, but not by the
ventral striatum. Correlation of predicted and measured score improvements is higher in the left than the right hemisphere. This pattern of results
matches that of the total score shown in figure 4. (D) The points sub-score shows no significant prediction except for a small but significant
correlation of predicted and measures score improvement in the left caudate nucleus. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0016093.g005

Table 1. Zero and second order partial correlations.

Explanatory Variables Zero-order Pearson correlation (no covariates) Second-order partial correlation (two covariates)

SVR 0.73 (p = 1.8?1026) 0.72 (p = 3.7?1026)

Volumetric data 20.12 (p = 0.5) 0.06 (p = 0.7)

Initial score 20.23 (p = 0.2) 20.09 (p = 0.6)

Zero (Pearson correlation) and second-order partial correlations are calculated for a linear regression model with measured score improvements as the predicted
variable and three explanatory variables: score improvement predicted by the SVR algorithm from time-averaged T2*-weighted activity in the dorsal striatum, volume of
the dorsal striatum, and initial score.
doi:10.1371/journal.pone.0016093.t001
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(r = 0.65, p = 2.8?1025) than in the gray matter (r = 0.02). This

suggests that the long-range, myelinated connections in the white

matter are critical for our ability to predict score improvement in

Space Fortress.

In Figure 3 we had noted an apparent anterior/posterior

organization of the dorsal striatum based on the difference in

activity patterns between good and poor learners. To investigate

this organization further, we split the left dorsal striatum in each

participant with a coronal plane such that approximately equal

numbers of voxels were anterior as posterior of the division. We

then repeated the LOSO cross validation analysis separately for

the anterior and the posterior half. Prediction accuracy was

significantly higher (p = 0.0024) from the anterior (r = 0.82,

p = 2.4?1029) than the posterior (r = 0.38, p = 0.028) half of the

left dorsal striatum (Figure 6), accounting for 68% of the variance

among individuals. This result substantiates the qualitative

observation in Figure 3 with a quantitative difference between

anterior and posterior parts of the dorsal striatum.

Discussion

In this study we have found that patterns of time-averaged T2*-

weighted signal in the dorsal striatum recorded before the start of

extensive training are highly predictive of individuals’ future

learning success in a complex video game (Space Fortress). Activity

patterns in the dorsal striatum were by far more predictive than

average activity levels (Figure 2A and 2B). Furthermore, activity

patterns showed higher prediction accuracy in the left than in the

right hemisphere (Figure 4), and within the left hemisphere, the

anterior half of the dorsal striatum was more predictive than its

posterior half (Figure 6).

The participation of the dorsal striatum in learning to play

Space Fortress is consistent with its involvement in procedural and

habit learning in the execution of learned behaviors (caudate

nucleus) and motor learning (putamen) in non-human primates

[4,7,8] and humans [6,25,26,27]. Activity in the dorsal striatum

has also been associated with tasks requiring cognitive flexibility

[28] such as task-switching [9,29] and transfer of training to

untrained tasks [17]. Being associated with reward and motivation,

the nucleus accumbens in the ventral striatum has also been

reported to participate in early stages of learning [13,14,15].

However, we found patterns of time-averaged T2*-weighted signal

in the nucleus accumbens not to be predictive of individual

learning success.

Better performance in a video game has previously been related

to an increase in dopamine release in both the dorsal and ventral

striatum [16]. However, a study about the depletion of dopamine

in rats [10,30] suggested that the dopamine level in the caudate

nucleus but not the nucleus accumbens was related to the initiation

of complex goal-directed responses or performance, as measured

by reaction time. In accordance with these reports we find that the

T2*-weighted signal in a region associated with learning new skills

and procedures (caudate nucleus) is more predictive of learning

success than the T2*-weighted signal in sub-cortical regions

associated with motor learning (putamen) or motivation and

reinforcement (nucleus accumbens). As further evidence for this

weighting of skills we find that improvement in the speed sub-score,

which is related to speeded discrimination and working memory, is

predicted much better by the T2*-weighted signal in the dorsal

striatum than improvement in the control and velocity sub-scores,

which are related to motor control.

In a previous study our group has demonstrated a link between

the size of structures in the dorsal striatum and performance

improvements by individual subjects [6]. Here we show that

patterns of pre-learning time-averaged T2*-weighted signal can

explain as much as 68% of the variance among individuals (in the

anterior half of the left dorsal striatum), while volumetric analysis

based on automated segmentation of these anatomical regions

could explain at most 23% of the variance. However, since the

volumetric measurements in [6] and the time-averaged T2*-

weighted patterns used in this work both measure aspects of the

same region, the dorsal striatum, they may be related. Accord-

ingly, a partial correlation analysis of score improvement predicted

by time-averaged T2*-weighted activity versus measured score

improvement showed almost no additional gain by introducing

two additional explanatory variables, the volume of the dorsal

striatum and initial game scores (Table 1).

The ability to predict who will benefit the most from training

has ramifications beyond the realm of video games. Indeed,

training on Space Fortress has been associated with enhanced

flight control proficiency in novice pilots [31]. In many contexts,

training can be prohibitively costly and time consuming, with high

attrition rates (e.g., military pilots, air traffic controllers). Pre-

training MRI scans could potentially mitigate such costs by

predicting who will improve at a higher rate as a result of training

or to identify groups of learners who might benefit from either

extended programs of training or different types of training

strategies. The superior prediction power of MVPA compared to

behavioral tests may justify the additional cost of MRI scans. Of

course, it might also be possible, in future studies, to uncover

behavioral correlates of the MRI differences, which in turn could

be used to predict learning of new skills. Furthermore, our

technique of applying MVPA to the temporal mean of the T2*-

weighted EPI signal to predict individual differences in learning

can be applied in other domains, possibly allowing for the

understanding and prediction of learning as a function of

development, aging, and neurodegenerative disorders. The fact

that we use the gradient-echo EPI brain images, which are

routinely used to measure functional activity, could make this new

analysis technique especially attractive, because no new scans

Figure 6. Comparison of prediction accuracy for various signal
sources. Predictions based on patterns of T1-weighted images
(MPRAGE) in the dorsal striatum were significantly less accurate than
those based on time-averaged T2*-weighted images (EPI). Voxels
located in white matter allowed for much better predictions than those
in gray matter within the dorsal striatum. Finally, decoding was
significantly better from the anterior than the posterior half of the left
dorsal striatum. Error bars indicate the 95% confidence interval for the
Pearson correlation coefficients. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0016093.g006
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would need to be added to established experimental protocols. In

fact, if successful in other learning contexts, the technique could be

used to analyze existing data retrospectively.

Finally, the T2* signal allowed for significantly more accurate

predictions than the T1 signal. This fact, along with the higher

prediction rates for white than gray matter, suggests that individual

differences among subjects may be due to differences in anatomical or

persistent physiological features such as vascularization rather than

differences in functional activation. We have recently replicated our

results with an independent data set, using a similar experimental

paradigm. Further experiments, including more explicit measure-

ments of tissue susceptibility, are underway to determine the exact

nature of the signal that allows for such an accurate prediction of

individuals’ learning success. We invite readers to comment on the

possible physical and physiological interpretation of the time-

averaged T2*-weighted signal that we have used in this paper.

Materials and Methods

Ethics Statement
The University of Illinois internal review board (IRB) approved

this study, and all participants provided written informed consent

according to the principles of the Declaration of Helsinki.

Participants
Forty-two participants were recruited from the local communi-

ties of Urbana and Champaign, Illinois. All participants were

young, right-handed adults between the ages of 18 and 28 with

little experience with video games (less than 3 hours per week). Of

the 42 participants, 39 completed the experiment, and of those 5

were excluded from the analysis because of incomplete data. The

final sample consisted of 34 young adult participants (mean age

= 22, SD = 3, 8 males) with normal or corrected-to-normal visual

acuity, normal color vision, and normal hearing. At the time of

data collection none of the participants were on any medications

that might affect cognitive abilities. To be accepted into the study,

participants were required to pass an aiming task to ensure that

they were able to use the joystick.

Space Fortress
Space Fortress (Figure 1A) was developed as a tool to study

training strategies [19,20]. Playing Space Fortress requires

complex procedural learning of second-order motion control in

a frictionless environment while simultaneously completing a

number of other challenging tasks, including target detection and

discrimination, memory updating, and resource management.

Total game score is composed of four sub-scores, respectively

measuring: 1. control: maneuvering the space ship in a predefined

allowable area (big hexagon in Figure 1A) with thrusters, which

amounts to second-order motion control in a frictionless

environment without braking system; 2. velocity: keeping the

velocity of the space ship within a predefined range; 3. speed:

quickly and accurately handling mines, which can either be

friendly or hostile; and 4. points: successfully destroying the

fortress with ten missile hits with at least 250 ms separation, while

preventing one’s own ship from being destroyed by missiles from

the space fortress or by a mine. In parallel with controlling the

space ship, maintaining velocity, and handling mines and missiles,

players always needed to monitor a stream of symbols for a dollar

sign ($), whose second appearance indicates a bonus in the form of

extra missiles or game points. In addition, players needed to retain

three letters in their working memory that identified mines as

friendly or hostile. The sum of these four sub-scores served as a

measure of a subject’s performance.

Training procedure
Once participants had passed the aiming test, they watched an

instructional video on how to play Space Fortress. After a minimal

amount of practice to ensure they understood the operation of the

game, participants played four 4-minute blocks of Space Fortress

as part of a two-hour MRI session in a 3-Tesla Siemens Allegra

MRI scanner at the Biomedical Imaging Center at the University

of Illinois at Urbana-Champaign (the first MRI session).

Subsequently, they played the game in two-hour training sessions

(total of 20 hours), each of which consisted of 36 three-minute

games. Participants underwent another MRI session identical to

the first after they finished the training period (the second MRI

session). The imaging data from the second MRI session were not

used in any analysis described in this paper.

Score improvement was calculated as the absolute difference

between the total scores of the games in the two MRI sessions.

Note that it is not straight-forward to compute relative (e.g.,

percent) improvement, since game scores can be negative, and

adding a constant offset to the score is bound to be arbitrary. We

have attempted to compute relative score improvements by

computing percentile ranks (R) for the game scores at time 1,

and then using the mean and variance of time 1 scores to compute

the percentile ranks at time 2. Relative score improvement was

computed as [R(time 2) – R(time 1)]/R(time 1). Note, however,

that due to the transformation to percentiles the relationship

between this relative score improvement and the absolute score

improvement is non-linear. Relative score improvements comput-

ed in this manner are not predicted as well by T2* activity in the

dorsal striatum as absolute score improvements (r = 0.28, p = 0.11).

MRI data acquisition
During each MRI session, an MPRAGE T1-weighted high-

resolution structural volume (voxel size 1.33 mm61.33 mm61.3-

0 mm, 16061926144 voxels) was recorded for each subject.

Subsequently, 13 blocks of T2*-weighted EPI images (time to echo

(TE), 25 ms; repetition time (TR), 2 s; flip angle, 80u; 28 slices,

64664 voxels matrix; voxel size, 3.4375 mm63.4375 mm64 mm)

were acquired. The 13 blocks consisted of seven 46-second blocks

of passively watching (PW) a sample video game played by an

expert, interleaved with six active blocks. The six active blocks

included two blocks of an odd-ball task (OB), which required

counting the number of high-pitch tones among low-pitch

distracters, two blocks of playing the Space Fortress game (SF

block), and two blocks of playing Space Fortress while also

performing the odd-ball tasks (SO block). Each active block was

four minutes long. The 13 blocks were arranged in the following

order: PW-OB-PW-SF-PW-SO-PW-SO-PW-SF-PW-OB-PW.

Pre-processing
EPI data from the first MRI session were corrected for motion

and slice-timing and registered linearly to the MPRAGE using

FSL [32]. No explicit spatial smoothing was applied (Figure 1C).

Each subject’s MPRAGE image was nonlinearly registered into

MNI (Montreal Neurological Institute) space using FSL’s FNIRT

tool. The concatenation of the linear registration from EPI to

MPRAGE and the nonlinear registration from MPRAGE into

MNI space was then applied to all EPI images for this subject,

followed by resampling back to the resolution of the original EPI

scans (3.4375 mm63.4375 mm64 mm). Activity in each EPI

volume was divided by the mean activity in the brain of this

volume to compensate for drift in scanner adjustments and

differences between MRI runs and between subjects. This

normalized activity was averaged over the four blocks (16 minutes)

of active game play (two SF blocks and two SO blocks, 480
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volumes in total). Consequently, for each subject we had one brain

volume with the T2*-weighted signal aggregated over the entire

period of game play inside the MRI scanner as well as the score

improvement for these games.

As a control, the analysis was repeated with data from the two

OB blocks as well as from the seven PW blocks. In another control,

analysis was performed on the T1-weighted data. For this analysis

the MPRAGE images for each subject were registered into MNI

space, sub-sampled to the same resolution as the EPI images, and

intensity-normalized as described above. Anatomical structures in

the striatum were identified based on brain atlases included with

the FSL analysis software [32].

Support vector regression (SVR) and leave-one-out cross-
validation

Support vector regression (SVR) [23] is a machine learning

technique to learn the functional relationship between two types of

data, x (in our case intensity of d MRI voxels) and y (in our case

improvement in game score). Specifically, our goal here is it to use

training data (x1,y1), . . . ,(xl ,yl)5Rd|R to find the coefficients w

and offset b of a linear function f (x)~vw,xwzb (w[Rd and

b[R) so that flatness of the coefficients w is maximized (i.e.

minimize wk k2
), and so that no error is greater than a limit e:

yi{f (xi)j jƒe. However, in order to solve the optimization

problem we allow for this error condition to be relaxed by

allowing some error ji (‘‘soft margin’’), which is then penalized in

the optimization. In short, we would like to solve the following

optimization problem:

Minimize
1

2
wk k2

zC
Xl

i~1

(jizj�i )

Subject to

yi{vw,xiw{bƒezji

vw,xiwzb{yiƒezj�i
ji,j

�
i §0

8><
>:

where Cw0measures the trade-off between the flatness of w and

the tolerance for deviations greater than e.
The equivalent dual formulation of this primal objective

function using Lagrange multipliers is easier to solve:

Maximize

{
1

2

Xl

i,j~1

(ai{a�i )(aj{a�j )vxi,xjw{e
Xl

i~1

(ai{a�i )z
Xl

i~1

yi(ai{a�i )

Subject to
Xl

i~1

(ai{a�i )~0 and ai,a
�
i [ 0,C½ �, where ai,a

�
i §0 are

Lagrange multipliers.

Solving the dual optimization problem, one obtains

w~
Xl

i~1

(ai{a�i )xi and b from: b~yi{vw,xiw{e for ai[(0,C)

or b~yi{vw,xiwze for a�i [(0,C) (note that ai,a
�
i cannot be

simultaneously non-zero).

As in any machine learning technique, generalization of the

model parameters derived from the training data to an independent

validation data set is not guaranteed. Although it is usually not

possible to calculate the true error, its upper bound has been shown

to be the sum of the training error and the complexity of the sets of

models. For the set of hyperplanes f (x)~vw,xwzb, minimizing

model complexity is equivalent to minimizing wk k2
[22]. Hence,

SVR allows for the derivation of the functionf (x), which achieves

the lowest bound of the true error.

To avoid biases in the training process, the available data have

to be partitioned into non-overlapping training and validation sets.

This associated process of splitting the data for training and

evaluating the learning is known as cross validation. Here we split

the data allowing only one observation to be in the validation set.

This special case of cross validation is called leave-one-out.

Although this method is computationally expensive, it allows for all

data to be used for training and validation in turn, while

maintaining integrity of the separation of training and validation

sets, thus avoiding biases in the modeling.

Multi-voxel pattern analysis (MVPA)
We used the pre-processed imaging data and score improvements of

33 of our 34 subjects to train an SVR algorithm [22,23] with a linear

kernel. We used all voxels within an anatomical region as input features

for the SVR, without any further voxel selection. Once trained with the

imaging data and score improvements of the 33 training subjects, the

SVR generated a prediction for the score improvement of the excluded

subject based on her or his imaging data. This procedure was repeated

34 times such that each subject was excluded once. Thus, we obtained

predicted score improvements for each subject in a leave-one-subject-

out (LOSO) cross validation. We determined accuracy of the

predictions by computing the Pearson correlation between the

predicted and the measured score improvement for all 34 subjects.

To test significance of correlations as well as differences between

correlations we first transformed the correlation coefficients using

Fisher’s z transform and then performed t tests on the transformed

results. The transformation is necessary, because correlation coeffi-

cients are not normally distributed, so that standard least-squares

statistics cannot be applied directly. Fisher’s z transform converts

correlation coefficients to normally distributed z scores:

z~
1

2
ln

1zr

1{r

Segmentation of white and gray matter
We used FSL’s FAST tool to automatically segment the high

resolution anatomical (T1-weighted) volume of each subject into

white matter, gray matter, and cerebrospinal fluid (CSF). At each

voxel location, FAST determined the proportion of white matter,

gray matter, and CSF represented in this voxel. These partial

volume maps were computed for each subject separately and then

registered into MNI space at the resolution of the EPI volumes.

Taking the average of these volumes over subjects gave us common

segmentation maps for each of the three types of tissue. We only

accepted a voxel as being white or gray matter or CSF if the

respective partial volume was greater than 50% after averaging over

subjects. At the end of this process we had some unassigned voxels

left, for which none of the three partial volumes exceeded the 50%

threshold. These voxels were excluded from further analysis. All

CSF voxels lie in the cerebrospinal fluid of the lateral ventricle,

whose anterior horn is immediately superior to the caudate nucleus.

We did not include them in our analysis.
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