
Approximating Optimal Behavioural Strategies Down to
Rules-of-Thumb: Energy Reserve Changes in Pairs of
Social Foragers
Sean A. Rands*

Centre for Behavioural Biology, University of Bristol, School of Veterinary Science, Langford, Bristol, United Kingdom

Abstract

Functional explanations of behaviour often propose optimal strategies for organisms to follow. These ‘best’ strategies could
be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple
heuristics or ‘rules-of-thumb’ that approximate these optimal strategies may instead be performed. From a modelling
perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of
individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules
that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging
game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two
members of a foraging pair, who instead followed a rule-of-thumb approximation of the game’s output. The original game
generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb
also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes
unpredictable. There was some agreement between both modelling techniques, but some differences arose – particularly
when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb
perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-
based models of group behaviour.
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Introduction

Animals can gain many benefits from living in groups [1,2],

such as an enhanced ability to find food [3,4], avoid predation [5–

8], or make accurate decisions [9–13]. However, group living

brings costs too, such as enhancing the risks of parasitism and

infection [14,15], increasing competition for resources [4], or

increasing detectability of the group to predators [16,17]. In order

to understand why individuals of a particular species behave the

way they do when they are in a group involves understanding how

these costs and benefits are traded off against each other. If we are

interested in exploring the group behaviour of species using a

modelling framework, we therefore need to be careful to reflect

those trade-offs that are the most important within the model.

Models of social behaviour typically attempt either to identify

behaviours for a given set of environmental or social conditions, or

else simulate the behaviour of the individuals within the group to

explore how the group behaviour changes in response to

parameter manipulation. In the former approach, it is assumed

that the behaviours that will be shown by individuals are optimal

(maximising some measure of fitness), by considering these

behaviours from a functional perspective [18–20]. In contrast, a

simulation approach may incorporate an individual’s presumed

rule-set within a group simulation, and explore how changing

these rule-sets affect the behaviour of the group (e.g. [13,21–25],

where the rules used can come from careful characterisation of

biological systems, e.g. [26–29]). These two approaches explore

social behaviour from two different perspectives. The former

approach explores social behaviour from one direction, where the

best behaviour of an individual is calculated in response to the

environment and the group. The latter explores the phenomenon

from the opposite direction, and considers how individual

behaviours lead to behaviours at the level of the group. Although

complementary, many studies focus solely on one or other of these

approaches. Using the two together may lead to a deeper

understanding of a given system’s behaviour and evolution

[30,31].

In a series of models examining social foraging behaviour that

combined both approaches, Rands et al. firstly constructed a

dynamic game which identified optimal rule-sets for a pair of

foragers, based upon a trade-off between energetic intake and

predation risk when foraging alone or together [30,32]. Simplified

variations on the optimal rule-sets from these models were then

adapted to be used within individual-based simulations exploring

group behaviour [33,34]. Simplified ‘rule-of-thumb’ versions of

the rules were necessary, not only because the original optimal

rule-sets were only derived for a pair of animals foraging together,

but also because the optimal rules generated by the dynamic

games were not necessarily simple to describe, although their

salient features could broadly be approximated to a rule-of-thumb
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[30,32]. In a thorough exploration of the dynamic game [30], it

was demonstrated that changes in the overall behaviours and

energetic gains by individual group members weren’t necessarily

predictable relative to changes in the initial parameters of the

system. This suggests that there may be a confounding relationship

between the finer, non-predictable components of the optimal

rule-sets and the outputs of these models. These unpredictable

relationships might be removed if simpler, rule-of-thumb approx-

imations of the optimal rule-sets are followed, such as those

explored in [33,34]. Here, we therefore run some very simple

individual-based simulations where pairs of individuals follow the

type of rule-of-thumb described by Rands et al. [30,32], to explore

whether the level of complexity seen in [30] is due to the finer

details of the true optimal rule-sets, or whether a much simpler

rule-set will generate a similar level of complexity in the behaviour

of a foraging pair.

Methods

Model outline
Each simulation followed the changes in state of a pair of

individuals over a series of consecutive periods of time. The state of

an individual i at time t was characterised by xi(t), a level of energy

reserves which could fall anywhere between 0 and xmax. At the

beginning of a period, an individual i could choose to either forage

or rest, based upon its energetic reserves. If it RESTED, it was

assumed to use energy such that at time t+1 its state was reduced

by a randomly selected amount kt drawn from a normal

distribution with mean loss ki and standard deviation si (bounded

such that if any random loss generated was less than zero, a zero

value was returned). If it FORAGED, it also incurred a loss kt with

mean ki and standard deviation si, but then increased its state by a

randomly selected amount gt drawn from a normal distribution

with mean gain ci and standard deviation ri (again, where any

randomly generated gain less than zero was reported as a zero

value). In summary, if an individual with state xi(t) at time t rested,

its state at time (t+1) was xi(t) 2 kt. If it foraged, its state at time t+1

was xi(t) 2 kt+gt.

However, if xi(t+1) fell at or below 0, the individual was assumed

to have starved, and its state remained at 0 for all subsequent

periods. If foraging pushed the individual’s state above xmax, it was

assumed that xi(t+1) = xmax.

At each timestep, the behaviour of each individual was

determined by a rule-of-thumb that depended upon the value of

its own state and that of its colleague (sketched in Figure 1).

Following the rule-set described proposed by Rands et al. [30,32],

each individual i had a switchpoint si, bounded between 0 and xmax.

If its state at time t fell below this switchpoint, it foraged during the

period (in order to avoid starvation). If its state at time t fell at or

above this switchpoint, it rested unless its colleague j was foraging

(determined by whether the colleague’s state xj(t) was below the

colleague’s switchpoint sj), in which case individual i foraged.

Therefore, the actions of the pair were determined by the individual

that was most at risk of starvation [32]. If an individual’s colleague

had starved, it foraged if its reserves fell below si, and rested

otherwise. Summary statistics were collected as described below.

As well as considering pairs of individuals following behavioural

rules that paid attention to the state of each other at a given

moment in time (referred to as a ‘paired’ rule), a set of

simulations with identical parameters to the above were

conducted, but where both individuals within a pair followed a

‘solo’ rule. Here, they foraged if their reserves fell below their own

switchpoint, and rested otherwise (identical to the rule described

above if an individual’s colleague had starved).

Parameterising identical pair members
For the cases where both pair members were considered to be

identical in their metabolic requirements and expenditures, model

exploration was conducted by generating 5,000 randomised sets of

the five parameters, where parameters were randomly drawn from

the following ranges: ci: [0, 3]; ri: [0,2]; ki: [0, ci]; si: [0, 2]; and si:

[0, xmax] (assuming that xmax = 100 for both members of a pair).

Holding the other four parameters constant, each parameter in

turn was systematically altered in 24 equal steps across the

following ranges (which doubled the ranges that fixed parameters

were drawn from): ci: [1/4, 6]; ri: [1/6,4]; ki: [ci/12, 2ci]; si: [1/

6, 4]; and si: [4, 96]. A full set of simulations was run for each of

the 24 alterations. Each set of simulations followed 10,000 pairs of

individuals over 2,500 timesteps, where each individual was

independently allocated a state drawn for a uniform distribution

between 0 and xmax at the first timestep.

Parameterising non-identical pair members
For the cases where differences were considered between the

members of a pair, the five parameters used by individual A were

first randomly drawn from similar ranges to above, using: ca: [0,

3]; ra: [0,2]; ka: [0, ca]; sa: [0, 2]; and sa: [0, xmax]. The parameters

for individual B were assumed to be identical to those of individual

A, apart from one single parameter which was systematically

altered in 24 steps over the following ranges: cb: [ca/24, ca]; rb:

[ra/24, ra]; kb: [ka/24, ka]; sb: [sa/24, sa]; and sb: [sa/24, sa].

During the systematic alteration of each single parameter, the

other four parameters were held constant, and 5,000 sets of

constant parameters were considered. Again, each set of

simulations followed 10,000 pairs of individuals over 2,500

timesteps, where each individual was independently allocated a

state drawn for a uniform distribution between 0 and xmax at the

first timestep.

Data collected
The proportion of simulations where both members of the pair

survived was recorded. If both pair members survived through to

the end of a simulation, the mean difference in energy reserves was

calculated by taking the mean absolute difference in energy

reserves between the pair members across all 2,500 of the

timesteps simulated. From these pair means, a population mean

difference in state was then calculated. Similarly, the identity of the

individual within a surviving pair that was heaviest was tracked

throughout the 2,500 steps of the simulation, and the number of

times that the identity changed was calculated. The mean number

of times that switching occurred was calculated across all the

surviving pairs for each set of simulations.

Using these criteria, the proportion of pairs surviving, the mean

energetic differences within the pairs, and the mean number of

switches in heaviness were calculated for pairs following the

‘paired’ behavioural rule and the ‘solo’ behavioural rule. Also, the

number of times each individual foraged or rested, and the

number of times the pairs foraged together, rested alone, or

conducted differing behaviours was calculated, and the proportion

of the time they were doing the same thing (their ‘synchronisation’)

was also recorded.

All simulations were conducted using code written to double-

point precision within C++. Output data were visualised using R

2.11.1 [35], with the aid of R Commander 1.5–6 [36].

Comparison to earlier results
Although very similar in final output to the current

exploration, the dynamic game described in detail by Rands
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et al. [30] was parameterised differently to the current

simulations. Rather than an overall metabolic cost regardless of

activity which was countered by energetic gain when foraging (as

assumed in the current model), the dynamic game considered

potentially different metabolic costs of foraging and of resting, in

addition to the energetic gain whilst foraging. The model

presented here therefore uses a simplification of the costs outlined

in the dynamic game. The energetic cost framed here should be

directly compared to the resting cost framed in [30]: the foraging

cost in the dynamic game has no direct comparison, as this has

been absorbed into the net gain that occurs in the current model.

The switchpoint considered here was not considered in [30]. In

the game results, synchronisation was calculated differently to the

way it was quantified here, and so the results presented here are

compared with the changes in the C and S statistics of

synchronisation initially proposed in [37], that were used to

characterise synchronisation in the dynamic game (and were

argued to be more accurate than the ‘synchronisation’ coefficient

D9 that was also presented in [30]).

Note that the results reported in [30]’s Table 2 that are repeated

here may not appear identical to those in the original version, as

trends were calculated in a different manner. To correct for this,

the following changes were made. For the non-identical results

concerning energetic gain, ‘player one’ in [30] corresponds to the

current individual B, whilst for the non-identical results concern-

ing energetic loss, ‘player one’ in [30] corresponds to the current

individual A. Furthermore, the results presented for energetic gain

in [30] represents what happens when the difference in parameter

values between the pair members is increased (rather than

decreased, as discussed here), and therefore the trends for

energetic gain described in [30] have been reversed for their

presentation here.

Results

Tables 1 and 2 describe the trends for all the parameter

manipulations examined. Figures illustrating these trends are given

in the Supporting Information.

Identical pair-members
Pair survival was very predictable according to parameter

manipulation for both paired and solo foragers: increasing gain

or the range of gain seen enhanced survival, and increasing costs

led to a fall in survival. Increasing the switchpoint had a similar

effect to increasing gain, as the baseline energy reserves of the

pair was moved further and further away from the point of

starvation. Although the paired individuals were always the

most likely to survive (because their behaviour was driving them

to avoid starvation by putting on extra reserves), the exact

difference in survival between paired and solo individuals

modelled using the same parameters did not show a simple

increase or decrease, but was largely similar between the two

behavioural types (see Figure S1).

The amount of switching in reserves from heaviest to lightest

between behaviours was less predictable, with distinct intermediate

minima or maxima being seen for both mean gain and mean cost,

but increasing the variation of these terms had some effect on

switching between heaviest and lightest (Table 1, Figure S2).

Increasing the behavioural switchpoint caused paired individuals

to increase the number of times they swapped over, but reduced

the times that solo individuals changed. In all cases, it was the solo

individuals that swapped their position more often, which makes

sense – both individuals should be near their behavioural

switchpoint most of the time, and should therefore swap more

often than if one individual is heavier than the other. For further

discussion, see [30,32]. Similarly, the mean difference in the

energy reserves between the pair members tended to be

unpredictable (Table 1, Figure S3), in contrast to the clear trends

given by the game predictions in [30]. Switching behaviours also

showed similarly indistinct trends, in contrast to the results from

[30] (Table 1, Figure S4).

The actual behaviours shown by individuals showed similar

trends to [30], with a distinct reduction in time spent foraging if

gain (or variance in gain) fell, and a distinct increase in foraging if

energy expenditure or its variance increased (Table 2, Figure S5).

Increasing the switchpoint value led to an increase in foraging

behaviour as well. Paired individuals tended to forage slightly

Figure 1. Sketch of an individual’s rule set. This is the rule set used by an individual when paying attention to both its own state, and that of its
neighbour.
doi:10.1371/journal.pone.0022104.g001
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more often (evident in the black lines appearing above the red lines

in Figure S5), again being driven by either their own or their

colleague’s proximity to the switchpoint value.

The proportions of times individuals foraged together or

rested together showed similar trends to what individuals tended

to be doing, and this is reflected in the synchrony changes of

paired individuals, but not in the synchrony changes of

individuals following solo rules (Table 2, Figure S6). It may

therefore seem unusual that the asynchronous activities shown

by paired individuals followed any sort of trend, but there were

changes that echoed those of the proportion of times pairs

foraged together (Table 2, Figure S7). Solo individuals again

didn’t coordinate their activities, and therefore didn’t show any

predictable trends. In general, the paired behaviours of

individuals in this simulation followed the game results given

in [30].

Table 1. Effects of model parameters on measures of identical and non-identical foraging pairs.

IDENTICAL FORAGERS NON-IDENTICAL FORAGERS

direction of change in property
in response to increase in:

comparative
results
from [30]

direction of change in
property in response to increase in:

comparative
results from
[30]

gain cost gain cost

PROPERTY mean s.d. mean s.d. switchpoint gain cost mean s.d. mean s.d. switchpoint gain cost

proportion of population
where both members of
a pair are alive after 2,500
timesteps (see also
Figure S1)

using ‘paired’ rule qq qq QQ QQ qq qq qq QQ Q qq

using ‘solo’ rule qq qq QQ QQ qq qq qq QQ Q qq

larger value pair pair pair pair pair pair pair pair pair pair

mean number of times
pair members switch
between being lightest and
heaviest (see also Figure S2)

using ‘paired’ rule >> qq >> qq qq q q qq qq <<

using ‘solo’ rule >> QQ >> >> QQ qq QQ >> > qq

larger value solo solo solo solo solo solo solo solo solo shift

mean difference in energetic
reserves between pair members
throughout simulation
(see also Figure S3)

using ‘paired’ rule QQ 6 << q >> QQ qq >> > QQ Q >> 6 Q

using ‘solo’ rule << 6 << qq << > 6 << < QQ

larger value pair pair pair pair pair pair pair pair pair shift

mean number of times
player A switches
behaviour
(see also Figure S4a)

using ‘paired’ rule >> QQ >> QQ << QQ qq 6 QQ q 6 6 6 Q

using ‘solo’ rule >> QQ >> QQ QQ >> QQ 6 6 >>

larger value pair pair shift pair pair shift pair pair pair pair

mean number of times
player B switches
behaviour (see also Figure S4b)

using ‘paired’ rule identical to player A qq Q >> >> 6 6 QQ

using ‘solo’ rule qq QQ >> >> >>

larger value pair shift pair shift pair

Details refer to the direction of change seen when the value of a given parameter was increased. In the case of the non-identical simulations, the parameter value for
individual A was fixed, and that of the focal individual B was assumed to increase from a low value upwards to eventually equal that of individual A. ‘qq’ indicates a
strict increase in the statistics measured relative to the increase in the altered parameter, ‘QQ’ indicates a strict decrease, ‘<<’ indicates a strict intermediate minimum,
‘>>’ indicates a strict intermediate maximum, and ‘6’ indicates no simple pattern. Single characters (‘q’, ‘Q’, ‘<’ and ‘>’) indicate similar trends, but with more noise in
the results explored. In comparing the effects of paired or solo foraging to identify which of these yielded the larger value, ‘pair’ means that the paired foragers had the
higher values, ‘solo’ meant the unpaired foragers had the highest values, and ‘shift’ indicates that there was a change between paired and unpaired individuals having
the higher values as the parameter itself changed. See the Methods section for information about how the comparative results from [30] are presented here.
doi:10.1371/journal.pone.0022104.t001
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Non-identical pair-members
The effects of changing parameter values on the survival of non-

identical pairs had similar effects to identical pairs. There was

more predictability in the switches of individuals between being

heaviest and lightest, which tended to increase with increasing

gains or costs. The mean difference in energetic reserves between

pair members did not yield many obvious relationships, although

reducing the difference between the energetic costs of the two

Table 2. Effects of model parameters on behaviours of identical and non-identical foraging pairs.

IDENTICAL FORAGERS NON-IDENTICAL FORAGERS

direction of change in property in
response to increase in:

comparative
results
from [30]

direction of change in property in
response to increase in:

comparative
results from
[30]

gain cost gain cost

PROPERTY mean s.d. mean s.d. switchpoint gain cost mean s.d. mean s.d. switchpoint gain cost

proportion of times
player A forages
(see also Figure S5a)

using ‘paired’ rule QQ QQ qq qq qq QQ qq q 6 6 6 6 qq qq

using ‘solo’ rule QQ QQ qq qq qq q << 6 6 qq

larger value pair pair pair pair pair pair pair pair pair pair

proportion of times
player B forages
(see also Figure S5b)

using ‘paired’ rule identical to player A >> << qq qq << qq qq

using ‘solo’ rule > 6 qq qq qq

larger value pair pair pair pair pair

proportion of time
players are synchronised
(see also Figure S6)

using ‘paired’ rule qq QQ << QQ QQ QQ qq < 6 qq qq >> qq qq

using ‘solo’ rule << << << << << 6 6 qq qq <<

larger value pair pair pair pair pair pair pair pair pair pair

proportion of time players
forage together
(see also Figure S7a)

using ‘paired’ rule QQ QQ qq qq >> QQ qq > 6 qq qq qq qq qq

using ‘solo’ rule QQ QQ qq qq qq > 6 qq qq qq

larger value pair pair pair pair pair pair pair pair pair pair

proportion of time
players rest together
(see also Figure S7b)

using ‘paired’ rule qq qq QQ QQ QQ qq QQ << 6 Q 6 6 QQ QQ

using ‘solo’ rule qq qq QQ QQ QQ 6 6 QQ QQ QQ

larger value pair pair pair pair pair pair pair pair pair pair

proportion of time player
A forages and player B rests
(see also Figure S7c)

using ‘paired’ rule QQ qq >> qq qq Q 6 6 6 QQ QQ QQ qq QQ

using ‘solo’ rule >> >> >> >> >> << 6 QQ QQ QQ

larger value solo solo solo solo solo solo solo solo solo solo

proportion of time
player A rests and player B
forages (see also Figure S7d)

using ‘paired’ rule identical to previous > > q q 6 Q q

using ‘solo’ rule > > qq qq qq

larger value solo solo solo solo solo

See the legend to Table 1 for full details of content.
doi:10.1371/journal.pone.0022104.t002
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individuals did mean that their energetic reserves differed less, as

would be expected. These patterns (or lack of them) reflected the

game results in [30].

The patterns of behaviour shown by both single individuals and

by pairs yielded very few trends when energetic gains and

variation in gain were considered, which does not reflect the clear-

cut results in [30]. Increasing costs yielded much more obvious

quantifiable changes, and most of these followed the patterns given

in [30]. Changing the switchpoint values tells us little about the

behaviours expected between non-identical pair members.

Discussion

The simulations conducted here used a rule-of-thumb approx-

imation of the rules described by Rands et al. [30,32]. These

original rule-sets, calculated as optimal solutions to evolutionary

dynamic games, were more complex than the rules-of-thumb

described here, and yielded complex changes in results that were

difficult to relate to simple changes in the parameters that the

foragers were faced with [30]. Here, we demonstrate that even if

the rules of interaction between the pair members are reduced to a

much more straightforward form than that suggested by the

optimal policies of the dynamic game, the combined behaviours of

the pair are still difficult (or impossible) to predict without having

to simulate their behaviour given a particular parameter set. This

lack of obvious relationships is especially true where non-identical

pairs of foragers are considered. Some of the results shown here

agree with those given by the dynamic game model [30] – in

particular, the behavioural proportions of individuals and pairs for

both identical and non-identical pair members tended to follow

game predictions, but there was much less agreement when

considering energetic gain in non-identical individuals, or the

number of times individuals tended to switch from one behaviour

to the other.

We should expect that using two differing modelling techniques

with different assumptions is likely to yield differing results. The

original dynamic game models presented in [30,32] are based on a

few simple biologically-motivated assumptions, but it is not

possible to predict the exact form of the optimal rule sets they

generate for a given set of parameters without having to calculate

them computationally. Here, I have demonstrated that creating a

rule-of-thumb approximation of these optimal rules that would be

simpler to implement yields results that are just as difficult to relate

to the initial parameterisation of the system. Which of these two

techniques is the most biologically relevant is debatable. The

former game theoretic technique is based on a simple set of

ecologically-grounded assumptions, but yield policy sets which are

heavily reliant on recognising subtle physiological differences in

both self and foraging partner. Although the latter rule-of-thumb

simulation technique is much less reliant on an individual having

an exact knowledge of the energetic state of both itself and its

partner, but the assumptions behind the rules used are arguably

not shaped by the effects of the social and physical environment on

the fitness of individuals, but are rather guessed by the modeller as

being ‘good enough’ rules (arguably in much the same way as

many of the rule-sets that go into simulations of the collective

behaviours of individuals [31]). This suggests that using estimated

rules-of-thumb should by less justifiable if we intend to capture

biologically-appropriate behaviour within a model. However, from

a modelling perspective, rules-of-thumb are much more straight-

forward to both parameterise and implement within simulations,

and therefore the exploration of the differences between the

outputs of the two approaches conducted here is necessary to

identify where possible differences could lie.

Sumpter [38] also presents a model based on [32], exploring

social foraging by a pair of animals that can choose to forage or

rest during a given period. The model describes a cost-benefit

analysis, where foraging leads to a state-dependent increase in

fitness that is balanced by a fitness reduction due to a constant

predation cost. The severity of this cost is reduced if the pair of

individuals choose to forage at the same time. Resting is seen as a

neutral activity, which incurs no additional gains or reductions in

fitness. The model therefore frames a scenario where an

individual’s behaviour is not tempered by a possible risk of

starvation, and also where predation doesn’t lead to a potential

cataclysmic reduction in future fitness to zero (which could occur if

the individual was eaten). Despite these major differences,

Sumpter’s model gives a similar strategy to the rule-of-thumb

suggested in [30,32] that is implemented in results described in the

current paper, which could justify tying the purely mechanistic

rule-of-thumb with a more solid functional grounding. Sumpter

also extends this single-decision framework to consider a co-

ordination game where resting does incur a cost, and where there

is some stochasticity in metabolic expenditure. Stochasticity

appears to be implemented in a different manner to that used

here and in [30,32], which may explain why pairs of individuals

within a pair in [38] are never able to switch in role from being the

heavier to the lighter individual. Therefore, in Sumpter’s model,

the nutritional state of the members of a pair will not be a

consequence of synchronisation, whilst (contrary to Sumpter’s

discussion), in the dynamic games of Rands et al. [30,32],

synchronisation is a direct result of the assumptions made about

how changes in energetic state are related to fitness.

What I demonstrate in this manuscript is a lack of agreement

between two modelling techniques (the dynamic games presented

in [30,32], and the rule-of-thumb simulations presented here),

which suggests that the rules-of-thumb extracted from the

dynamic games may not be catching some of the subtler

behavioural interactions between the pair members that are

specified by the games’ more detailed behavioural policies.

However, there is agreement for some of the parameters, which

in turn suggests that the simplified rules aren’t necessarily

inappropriate. Care therefore needs to be taken in translating

the subtler details of the dynamic game policies to a format that is

computationally simple enough to be implemented usefully

within a simulation involving multiple independent agents: it

makes more sense to use rules based on some biological reality

rather than rules that are based purely on guesswork [31]. It is

therefore important to conduct investigations such as those

presented here, to allow us to understand the limitations of both

techniques. As Hutchinson & Gigerenzer [39] explicitly state,

optimality modelling provides us with clues for what heuristics

might be being used within natural systems, and conducting

comparative tests such as those given here give us a handle on

what could work and what might not.

The simulations presented here only consider a pair of foragers,

but it is reassuring that the predictions coming from both the

current simulations and the dynamic game model give broadly

similar trends in response to the energetic parameters put into

them. It is computationally difficult to extend state-dependent

game theoretic modelling to larger groups (especially if individuals

are not identical), and having some validation of these simpler

rules gives some support to the generalised multi-agent simulations

conducted by Rands et al. [33,34]. There are still many variations

on this foraging rule-set to consider theoretically, such as using

them to explore how group behaviour affects predation risk (e.g.

[40–46]), or to consider the effects of non-egalitarian decision-

making within the group (e.g. [23,34,47,48]). Being able to build on
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validated rule-sets should give us some grounding in how agent-

based rules could developed from a functional perspective.

It should also be noted that optimal behaviour as predicted by

the dynamic game models may not be biologically valid due to

developmental and other constraints. By considering simple

approximations of these rules, we are instead considering ‘best

attempts’ at good behaviours that could be feasibly selected for in

an organism that faces biological constraints in its development.

McNamara & Houston [49] argue that we need to pay more

attention to how behavioural systems are built to deal with these

constraints, as the mechanisms generating these behaviours may

not be flexible enough to allow the optimal behaviour to be

performed. This would give a finite number of possible sets of

behaviours, which an organism would have to use when

responding to the environment. Rules that have been generated

by natural selection may work very badly [50], whilst some rules

that work very well may make little sense [51]. Considering both

function and possible mechanistic constraints when creating a

model is an important step towards understanding the design of

decision-making systems (see, for example, [52–56]). Characteris-

ing the limitations and differences between both, using techniques

such as those described here, is an important step towards this

understanding.

Supporting Information

Figure S1 Proportions of the population surviving 2,500
timesteps, in response to the manipulation of target
parameters. The left column illustrates the cases where pair

members are identical in all their parameters, and the right hand

column illustrates the case where the target parameter of

individual B is manipulated whilst that of individual A is held

constant. From top to bottom, the figures illustrate what happens

when the target parameter being manipulated is: the mean

energetic gain; the standard deviation of the energetic gain; the

mean energetic loss during a timestep; the standard deviation of

the energetic loss; and the behavioural switchpoint determining

the behaviour shown by an individual dependent upon its

energetic reserves. The black line represents the mean proportion

alive (6 s.d., given as black error bars) when individuals in a pair

followed a ‘paired’ rule; the red line represents the mean

proportion alive (6 s.d., given as orange error bars) when

individuals in a pair followed a ‘solo’ rule. Paired and solo lines are

displayed slightly offset for clarity. These results are summarised in

Table 1.

(PDF)

Figure S2 Rôle switches in response to the manipula-
tion of target parameters. Figures display the mean number

of timesteps (6 s.d.) that individuals switched in their ‘rôle’

between being the heavier and the lighter member of the pair.

Layout is as described for Figure S1. These results are summarised

in Table 1.

(PDF)

Figure S3 Mean differences in a pair’s energy reserves,
in response to the manipulation of target parameters.
Figures display the mean energetic difference (6 s.d.) within a pair

during a timestep. Layout is as described for Figure S1. These

results are summarised in Table 1.

(PDF)

Figure S4 Changes in individual behavioural switches
in response to the manipulation of target parameters.
Figures show: a) mean number of behavioural switches (6 s.d.)

shown by a focal individual (when foragers are identical) or

individual A (when foragers are non-identical); b) mean number of

behavioural switches (6 s.d.) shown by individual B (when foragers

are non-identical). Layout is as described for Figure S1. These

results are summarised in Table 1.

(PDF)

Figure S5 Changes in individual foraging behaviour in
response to the manipulation of target parameters.
Figures show: a) mean number of timesteps (6 s.d.) where foraging

behaviour was conducted by a focal individual (when foragers are

identical) or individual A (when foragers are non-identical); b)

mean number of timesteps (6 s.d.) where foraging behaviour was

conducted by individual B (when foragers are non-identical).

Layout is as described for Figure S1. These results are summarised

in Table 2.

(PDF)

Figure S6 Synchronisation behaviour in response to the
manipulation of target parameters. Figures show: a) mean

number of timesteps (6 s.d.) where both individuals in a pair were

conducting the same behaviour. Layout is as described for Figure

S1. These results are summarised in Table 2.

(PDF)

Figure S7 Changes in pair behaviour in response to the
manipulation of target parameters. Figures show: a) mean

number of timesteps (6 s.d.) where both members of a pair

foraged; b) mean number of timesteps (6 s.d.) where both

members of a pair rested; c) mean number of timesteps (6 s.d.)

where pair members conducted differing behaviours (when

foragers were identical) or where individual A foraged and

individual B rested (when foragers are non-identical); d) mean

number of timesteps where individual A rested and individual B

foraged (when foragers were non-identical). Layout is as described

for Figure S1. These results are summarised in Table 2.

(PDF)
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