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Abstract

The quality of gene expression microarray data has improved dramatically since the first arrays were introduced in the late
1990s. However, the reproducibility of data generated at multiple laboratory sites remains a matter of concern, especially for
scientists who are attempting to combine and analyze data from public repositories. We have carried out a study in which a
common set of RNA samples was assayed five times in four different laboratories using Affymetrix GeneChip arrays. We
observed dramatic differences in the results across laboratories and identified batch effects in array processing as one of the
primary causes for these differences. When batch processing of samples is confounded with experimental factors of interest
it is not possible to separate their effects, and lists of differentially expressed genes may include many artifacts. This study
demonstrates the substantial impact of sample processing on microarray analysis results and underscores the need for
randomization in the laboratory as a means to avoid confounding of biological factors with procedural effects.
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Introduction

The gene expression microarray has become a ubiquitous tool in

modern biology resulting in substantial accumulation of data in

public repositories [1]. Researchers now routinely combine or

compare results from different studies. This practice raises concerns

about the reliability and reproducibility of microarray data that have

been generated across multiple laboratories. Several studies have

been conducted to compare performance across different gene

expression platforms and laboratories [2–5]. These studies have

generally concluded that, although absolute expression levels may

differ, there is a substantial concordance of results obtained. While

these findings provide confidence in microarray technology, it is

important to be aware that this positive message was based on

comparisons of the best-performing laboratories [2] or on small sets of

top ranked genes [3]. As we demonstrate here, there is still cause for

healthy skepticism regarding the reproducibility of microarray data.

Studies of the reproducibility of microarray data can vary in

scope. Most studies use a common set of samples, but the

embedded biological signals can be small or large, and they may or

may not include truth standards such as ‘spike in’ RNA or

mixtures of RNAs from knockout cell lines [2]. One could look at

performance across different platforms, across different laborato-

ries or apply different methods of analysis. We chose to look at the

effect of processing samples at different laboratory sites. We

employed a common array platform, the Affymetrix GeneChip

Mouse 430v2, and used a common set of 16 RNA samples with

moderate expression differences.

We collected kidney tissue samples from two male and two female

mice from the C57BL/6J strain and from each of three chromosome

substitution strains (CSSs) [6], C57BL/6J-Chr1A/J, C57BL/6J-

Chr6A/J and C57BL/6J-Chr15A/J. We will denote these strains as

B, A1, A6, and A15 in this paper. Sample were distributed to each of

four centers, and one center processed two sets of the 16 samples at

different times using different labeling protocols. For simplicity we

refer to these as five centers (C1–C5). We selected these strains based

on the expectation that differentially expressed genes between the

background strain B and each of the CSSs would be enriched for

genes on the substituted chromosome. However there are no truth

standards so our results reflect the precision but not necessarily the

accuracy of the platform. Samples were delivered to each of the sites

with the suggestion that they be processed according to standard

protocols in a manner typical for that laboratory. Data from each

center were provided in the form of CEL files.

To investigate variability among centers, we applied a typical

collection of interpretive analysis tools to data from each laboratory

and made quantitative comparisons of the results. These analysis

tools address the objective of generating and comparing lists of

differentially expressed genes, identifying enriched biological

pathways that are in common or differ between experiments,

clustering the samples by expression pattern, and classifying new

samples [7–10] using accumulated data.
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The efforts of user groups such as The Microarray and Gene

Expression Data (MGED) society [1] have enabled the sharing of

both primary and procedural data from microarray studies. The

value of these resources depends in part on the availability of

detailed description of the platforms and procedures used to

generate the data. In this study we demonstrate that dramatically

different results can be obtained when the same samples are

processed in different laboratories. We identify and discuss the

procedural origins of some of these differences. This illustrates

both the importance and the limitation of current experimental

annotation standards.

Results

Normalized intensity profiles
We normalized data from each center separately using the

Robust Multichip Average method (RMA) [11]. The distribution

of normalized intensities is an important diagnostic of microarray

data quality. RMA processed intensities can be plotted as

smoothed histograms as in Figure 1a. The distributions vary

dramatically across centers. Centers 2 has the highest median

intensity. This was not unexpected because center 2 used the

original Affymetrix array labeling protocol incorporating two

labeled NTPs (biotin UTP and biotin CTP), and all other centers

used a newer labeling protocol that incorporates one NTP (biotin

UTP). However, the low intensity of data from centers 4 and 5 is

notable. Distributions for centers 1 and 3 show median intensities

in the expected range.

Microarray analysis is typically focused on changes in

expression level across conditions. Thus differences in intensity

between samples are often more important than absolute intensity

levels. The median absolute deviation (MAD) across 16 arrays

within each center (Figure 1b) show that centers 4 and 5 have the

highest internal variation and center 2 has the lowest.

As an aside, we normalized the entire set of 80 arrays from all

centers together. This reduced the overall intensity differences but

created an even greater difference in MAD distributions between

centers 4 and 5 compared to the other centers. From the outset of

our analysis we can see that there are differences in the distribution

of intensity across centers that cannot be removed by normaliza-

tion procedures. All results described below are based on RMA

normalization of data from each center separately.

Differential expression
Our experiment includes two biological factors of interest, strain

and sex. We constructed statistical tests for the effects of these

factors using a linear model that included both factors as main

effects with no interaction. Thus tests for strain differences are

Figure 1. Intensity across centers. Median intensity (a) and Median absolute deviation across centers (b). Samples from each center are
individually RMA processed.
doi:10.1371/journal.pone.0003724.g001
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adjusted for sex and vice versa. For strain differences we consider a

test for overall differences as well as each of the pairwise contrasts.

Other models and comparisons could be considered but we found

these to be sufficient for illustrating the differences among centers.

We determined the numbers of genes having significant strain or

sex effects using p-value, q-value, and fold-change criteria

(Table 1; Figure 2). There are striking differences in the

numbers of differentially expressed genes across centers. For

overall strain effects, the numbers of differentially expressed genes

from centers 4 and 5 can be as much as five times that of other

centers. The same trend is seen for the pairwise strain comparisons

with two exceptions; the comparisons of B versus A1 within center

5, and the comparison of A6 versus A15 in center 4 are

comparable to the results from centers 1, 2, and 3. Conversely, for

sex effects, centers 2 and 3 have the longest lists. In all cases, these

differences are the most pronounced when using the q-value

criteria and least when fold-change criteria are used.

To further investigate the effects of the multiple test adjustment

on differential gene lists, we looked at the estimated proportions of

non-differential genes (p̂p0), and the false discovery rate [12–13]

corresponding to fixed p-value thresholds for overall strain and sex

effects (Table 2). Centers 4 and 5 have much higher estimated

proportions of differentially expressed genes (lower p̂p0) than the

other centers. For the sex effect, centers 2 and 3 have somewhat

higher estimated proportions of differentially expressed genes.

When p̂p0 is lower, the q-value corresponding to a fixed p-value is

lower. Thus the q-value criteria will tend to exaggerate differences

in the list lengths as we have observed.

The numbers of DE genes found in common among pairs of

centers and among all centers using q-value,0.05 is shown in

Table 3. Center 4 and 5 have more DE genes and thus share a

greater number of DE genes but the proportion of shared genes is

only about 17%. On the other hand, centers 1, 2, and 3 have fewer

DE genes, and fewer DE genes in common among pairs of centers,

but the proportions are higher at about 50%. For the sex effect,

centers 2 and 3 share the most common DE genes since both have

many DE genes and have proportion in common at about 54%.

For the other centers the proportion of common genes is at about

50%, indicating greater consistency across centers for sex effect

than for strain effect.

To understand the nature of different number of DE genes across

center, we studied them by chromosome. Since samples were

obtained from chromosome substitution strains, we expected to see

enrichment of DE genes on the substituted chromosomes. From the

overall and strain pairwise comparisons tests, we selected DE genes

by q-value,0.05 and obtained the proportion of significance gene

by chromosomes (Figure 3). As we expected, higher number of DE

genes were found at chromosomes 1, 6, and 15. Center 4 and 5

show the same pattern, except the number of DE genes are higher

than other centers across all chromosomes. Pairwise strain

comparison show B and A6, and B and A15 strain comparisons

have higher number of DE genes in chromosome 6 and 15,

respectively, as we expected. However, center 4 and 5 show notably

higher number of DE genes in B and A6, and A15 and A1 or A6

comparison, respectively, and we will discuss this later.

To avoid the problem of comparing lists of very different

lengths, we considered genes in rank order by the size of the Fs test

statistic or equivalently by p-value. If the rank order of genes is

preserved, we might conclude that results are consistent across

centers but that p-values are poorly calibrated. We selected lists of

various fixed lengths based on rank ordering and calculated the

proportion of genes found in common across centers. This type of

analysis has been referred to as corresponding at the top (CAT) by

Irizarray et al. [2] In general, the proportion of genes in common

across centers initially increases and then slowly decreases as the

list length is increased (Figure 4). For the overall strain

comparison, the CAT plots peak at a list length of about 70

genes with 60% to 80% pairwise correspondence, and overall

correspondence of about 50% in common across all centers. For

Table 1. Numbers of DE genes having significant sex and
strain effects at various p-value, q-value, and fold-change
thresholds.

Threshold C1 C2 C3 C4 C5

Strain effect

Overall 0.001 377 462 517 1390 1290

p-value 0.01 939 1160 1200 4907 4522

0.05 2732 3296 3119 10943 10618

Overall 0.001 116 134 170 0 184

q-value 0.05 188 219 265 571 819

0.01 285 376 423 6362 5361

1 135 103 118 216 532

Fold-change 1.5 56 44 52 69 124

2 29 23 35 34 57

3 7 6 8 8 10

Pairwise strain effect

B vs.A1 0.001 223 252 270 458 295

p-value 0.01 648 911 814 2124 989

0.05 2202 3002 2507 6185 3540

B vs.A6 0.001 119 190 198 1206 417

p-value 0.01 400 703 704 4771 1963

0.05 1699 2498 2667 10889 6121

B vs.A15 0.001 150 133 123 821 616

p-value 0.01 714 460 542 3068 2765

0.05 3067 2224 2302 7368 6962

A1 vs.A6 0.001 323 367 463 820 605

p-value 0.01 815 826 1086 2600 2407

0.05 2591 2129 3005 6390 6883

A1 vs.A15 0.001 284 301 372 1180 1005

p-value 0.01 873 986 927 3424 3728

0.05 3067 3490 2794 7495 8361

A1 vs.A15 0.001 209 287 254 313 1053

p-value 0.01 641 919 783 1531 4286

0.05 2377 3344 2552 5493 10188

Sex effect

0.001 3250 5099 5842 4003 3663

p-value 0.01 6327 10721 10959 7357 7221

0.05 10691 18039 17445 12439 12054

0.001 1452 3149 4078 2292 1568

q-value 0.01 3287 8766 9141 4697 4146

0.05 6360 18910 17475 8872 8071

1 313 277 320 347 368

Fold-change 1.5 139 126 139 167 145

2 86 70 89 110 88

3 35 31 36 54 40

Fold-change is based on the log2 transformation.
doi:10.1371/journal.pone.0003724.t001
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Figure 2. Number of differentially expressed (DE) genes having strain (a, b and c) and sex effect (d, e and f). Number of DE genes
selected by p-value (a and b), focusing on up to p-value,0.001 (c and d) and q-value (e and f). Center 4 and 5 have higher number of DE genes when
strain effect was tested. However, Center 4 has smaller number of genes than other centers until p-value,2e-04 (panel c), then the number of gets
increased, and that causes sudden increase in q-value (panel e). When sex effect is tested, center 2 and 3 show higher number of DE genes than other
centers, however the difference is not as big as that of strain effect.
doi:10.1371/journal.pone.0003724.g002
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sex effects, there is some non-monotone behavior in pairwise

comparisons. Best peak correspondence is achieved at list lengths

of 500 and, this high level of correspondence at 50% to 70%

persists for very long lists.

Strong concordance based on rank order indicates that many of

the centers are picking the same genes and suggests that

calibration of p-values and q-values is contributing to the

difference in list lengths. It does not guarantee that the lists are

biological in origin. If we had data from only one center, it would

be difficult to detect these problems or to determine how many

genes are truly differentially expressed.

Functional analysis
Gene lists established by statistical criteria may vary across

centers, but it is possible that they will still support the same

biological functions. To test this idea, we selected differentially

expressed genes for overall strain and sex effect at q-value,0.05

and identified significant GO terms [14] enriched in the selected

genes using Hypergeometric test [15] at p-value,0.01. The

numbers of significant GO terms supported by the strain effects

lists are much longer for centers 4 and 5 compared to the other

centers. There is limited pairwise overlap among the centers and

only a single GO term (GO:0048276, the process of gastrulation)

in common among all five (Table 3). For the sex effects, there are

about 50 significant GO terms for each center, and overlap is the

best among centers 1, 4 and 5. Two GO terms (GO:0019752,

carboxylic acid metabolic process; GO:0006631, fatty acid

metabolic process) were found among all five centers.

Principle components
Another way to assess the similarity among centers is to identify

common features in the major patterns of variation. We applied

principal component analysis (PCA) to data from each of the five

centers and plot the first vs. second (Figure 5) principal components.

The first principal component from each center corresponds to the

sex effect; it separates male vs. female samples. The second principal

component is different for each center. For most centers the second

principal component tends to separate strain effects but not in a

consistent manner across centers. For instance, second principal

components from centers 1 and 3 separate A1 from A6 (or A1 from

other centers) but center 5 groups these strains together.

Classification of samples
In this section we address the problem of combining data across

centers for the purpose of classification of samples. We used

nonnegative matrix factorization (NMF) method, more specifically

the metagene projection procedure as proposed by Tamayo et al. [9].

First we computed a hierarchical clustering of samples using the

original data for all centers together (Figure 6a). The data is first

clustered perfectly by center. Within centers, there is also perfect

clustering by sex, and there is a reasonably good pairing of samples

of the same strain within sexes. This reflects the relative magnitude

of signals as we observed with the PCA.

Next, following Tamayo et al. [9], we chose one center as a

training set, computed the expression profile of the metagene and

weight matrices, and projected the corresponding metagene

profiles onto the other four data sets. Clustering of the metagenes

obtained using center 3 as the training set (Figure 6b) first

separates the A1 strain from the other strains. Within A1 it

separates sex, and within the other strains it separates sex first then

separates strains. Male samples from strains B and A6 are mixed,

but in general the separation according to the strain and sex is

reasonable. However when center 4 was used as a training set,

there is no consistent pattern in the clusters (Figure 6c). Clusters

derived by training on each of the other centers vary in quality

between these two extremes (Supplementary Figure S1).

This illustrates the risks of combing data or classifying samples

using existing data. Although in one case (training on center 3) we

were able to extract a biological signal from the combined data, in

practice it may be difficult to know when the projection method is

effective.

Batch effects
We demonstrated that lists of differentially expressed genes vary

across centers. Here we consider a possible explanation for those

Table 2. The estimated proportion of non DE genes (p̂p0), and
q-values corresponding to fixed p-values for each center.

C1 C2 C3 C4 C5

Strain p̂p0 0.96 0.95 0.99 0.42 0.43

p-value q-value

0.001 0.12 0.09 0.09 0.01 0.02

0.01 0.46 0.37 0.38 0.04 0.04

0.05 0.80 0.65 0.72 0.09 0.09

Sex p̂p0 0.70 0.36 0.39 0.53 0.62

p-value q-value

0.001 0.01 0.00 0.00 0.01 0.01

0.01 0.05 0.01 0.02 0.03 0.03

0.05 0.16 0.04 0.05 0.10 0.12

doi:10.1371/journal.pone.0003724.t002

Table 3. Number of significant DE genes selected at q-
value,0.05, and GO terms enriched in DE genes using
Hypergeometric test at p-value,0.01.

Strain Sex

Num.of
Genes

Num.of GO
terms

Num.of
Genes

Num.of GO
terms

C1 285 14 6360 56

C2 376 11 18910 53

C3 426 16 17475 49

C4 6362 50 8872 48

C5 5361 47 8971 55

C1&C2 213 3 5516 10

C1&C3 229 5 5659 14

C1&C4 251 2 4808 22

C1&C5 257 1 4896 27

C2&C3 277 6 12715 14

C2&C4 320 3 7583 13

C2&C5 328 2 6803 6

C3&C4 357 6 7655 17

C3&C5 359 2 6900 14

C4&C5 1672 13 5526 24

All 182 1 4044 2

doi:10.1371/journal.pone.0003724.t003
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Figure 3. Number of significantly differentially expressed (DE) genes in each chromosome selected by q-value,0.05. Panel a shows
the DE genes from the overall test, and Panel b to f show the DE genes from the pairwise strain comparisons from each center. Center 4 and 5 have
higher number of DE genes across all chromosomes. Panel e and f show higher number of DE genes in center 4 (B vs. A16) and center 5 (A15 vs. A1 or
A6).
doi:10.1371/journal.pone.0003724.g003
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differences. Variation in the overall intensity distribution and MAD

(Figure 1) within each center suggest the differences were generated

while the samples were being processed. A retrospective analysis of

the laboratory steps used to process the samples revealed that samples

were processed together in batches in a manner that reflects some of

the differences that we observed. Affymetrix GeneChip arrays are

processed in four steps: labeling, hybridization, wash and staining,

and scanning. We identified samples that were processed together in

each of these steps in each of the centers and identified batch effects

that help to explain some of the differences that we observed between

centers. Due to personnel and equipment constraints, all samples may

not be processed at one time. For instance, one fluidics station used

for the wash and staining step, is able to process only up to four

samples. The numbers of array that can be hybridized together is

constrained along with several other steps in sample processing. Each

center resolved these limitations in different ways, and some of these

are problematic.

Center 4 hybridized samples in two days; eight samples from B and

A1 on the first day and another eight samples from A6 and A15 on

the second day. Center 5 hybridized samples over three days; B and

A1 on the first, A6 on the second, and A15 on the third day

(Supplementary Table S1). This is consistent with the long lists of

differential expressed genes among strain for these two centers. For

center 4, the pairwise comparisons between strains B and A1 and

between A6 and A15 produced relatively short lists (Table 1). For

center 5, the B versus A1 comparison is similar to centers 1, 2, and 3

(Table 1).

Both centers 2 and 3 stored male arrays at 4 degrees while

female samples were washed and stained. These centers have the

longest lists of differentially expressed genes between sexes

(Figure 2). The effect is less than that for the strain comparisons

between centers 4 and 5, which may indicate that the batch effects

of wash and staining are less dramatic or may it reflect the strength

of signal in the sex effect, or both.

Unlike other centers, center 1 randomized the samples before

processing. Arrays were hybridized in two batches, one of 12

samples and another with four samples, on the same day. Due to

chance in the randomization, the smaller batch included 3 male

samples resulting in partial confounding of batch with sex. In all

comparisons center 1 has consistently has the shortest list of

differentially expressed genes (Table 1).

In all cases where processed batches correspond to a biologically

interesting feature of the data, we see an increase in the number of

apparently differentially expressed genes. For any one center it is

not possible to distinguish the effect of batch processing from the

biological effect. The magnitude of the batch effect can be

significant or negligible, but it cannot be removed from the data

without compromising the biological signal.

Figure 4. DE genes are selected by rank of Fs test statistics. The proportion of genes shared by centers when strain (a) and sex (b) being
tested.
doi:10.1371/journal.pone.0003724.g004
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Discussion

We have described laboratory to laboratory variation in

microarray data that can be attributed to effects of processing

samples in batches. The same RNA samples were processed

independently five times in four different laboratories using the

same Affymetrix GeneChip platform. In centers 2 and 3, female

and male samples were processed separately at the washing step,

and in centers 4 and 5, samples were hybridized together in groups

defined by strain. In all cases, the gene lists corresponding to the

confounded factors were substantially longer than gene lists

obtained from the other centers where the same confounding

Figure 5. Principal component analysis is applied to data from each center, and first and second principal components are plotted.
doi:10.1371/journal.pone.0003724.g005
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was not present. Although in this study we were able to identify the

confounding factors, this kind of detailed information about

sample processing is not typically available in publicly archived

microarray data. Methods to correct for batch effects have been

proposed [16,17] and their benefits have been demonstrated.

However when a batch effect is confounded with an experimental

factor, correcting for the batch will also effectively remove the

biological signal. It is a common practice to organize samples

having similar characteristics in groups that are processed

together. We strongly recommend against this practice. It is

important to identify all potential batch effects in a sample

processing pipeline and to assign samples to batches using a

randomization mechanism.

With the benefit of hindsight, we might have recommended that

in this experiment the samples be processed in each laboratory as

follows. The samples should be hybridized in two batches of eight.

Each batch should consist of a randomly chosen sample from each

of the eight sex-strain pairs. Within each batch the wash and

staining should be done on randomly selected sets of four samples,

or with random selections balanced across sexes. In addition to

avoiding confounding, this strategy has the added benefit that

batch can be included as a random effect term in the per-gene

ANOVA model to reduce error variation and thus increase power

of the design.

We do not intend to convey a message that the microarray data

are not reliable. Instead, we wish to highlight the importance of

randomization in all laboratory procedures. Careful attention to

the potential for confounding effects of these procedures will

improve the quality of microarray data and the reliability of

analysis results. The effects we observed here primarily impact the

length of differentially expressed gene lists, and these are

exacerbated by the application of FDR correction [13]. The

Figure 6. Sample clustering of original data (a). Using center 3 and center 4 as training set, get the H matrix (containing expression level of
metagene from each sample), project the metagene to each center and cluster the projected data (b and c respectively).
doi:10.1371/journal.pone.0003724.g006
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statistical criterion is correctly identifying genes that differ between

groups, but the perturbations that causes these differences

represent a mixture of biological and technical effects. In a

randomized experiment, technical variation will be balanced

across treatment groups, and differentially expressed gene lists will

more accurately reflect the biological differences between samples.

The laboratories involved in this study have updated their

practices to incorporate randomized assignment of samples to

processing batches. This can be a challenging problem that

requires careful coordination of samples to achieve efficient

throughput without compromising data integrity.

Materials and Methods

RNA Samples
Kidney tissue samples were collected from two male and two

female mice from the C57BL/6J strain and from each of three

chromosome substitution strains (CSSs), C57BL/6J-Chr1A/J,

C57BL/6J-Chr6A/J and C57BL/6J-Chr15A/J. In these CSSs,

one chromosome derived from the inbred strain A/J has been

crossed onto the C57BL/6J background [6]. A total of 16 RNA

samples were prepared as described previously [18]. The Animal

Care and Use Committee at The Jackson Laboratory reviewed

and approved all animal procedures.

Target labeling and hybridization
All centers used the one-cycle cDNA synthesis/in vitro-

transcription (IVT) method recommended by Affymetrix to

amplify and label cRNA targets for array hybridization (Affyme-

trix GeneChip Expression Analysis Technical Manual). Centers 1,

3, 4, and 5 used the IVT reagent kit supplied by Affymetrix while

center 2 used the IVT kit supplied by ENZO. Target

fragmentation, array hybridization and post-hybridization array

processing were performed as per manufacturer’s recommenda-

tions. However, specific implementation of labeling, hybridization

and array processing protocols were according to routine

procedures in operation in each center. Several differences in

protocol implementation among centers were noted. These

include: 1) amount of hybridization solution applied to each

array; 2) rotation per minute (rpm) of hybridization oven; and 3)

batch design for labeling, hybridization and post-hybridization

processing. Details of the protocols used at each center are

provided in Supplementary Table S1.

Data analysis
Data from each center were provided in the form of CEL files.

To investigate variability among centers, we normalized and

analyzed data from each center separately.

Preprocessing to remove background signal and to normalize

across arrays was carried out using the Robust Multichip Average

method (RMA) [11] with software implemented in the R language

[19]. To identify differentially expressed genes we fit a general

linear model with terms for sex and strain to the data from each

gene. We computed the Fs statistic [20] using the MAANOVA

package and moderated F-statistic [21] from the LIMMA package,

both implemented in R. We also found that the two test statistics,

Fs and moderated F, yielded similar results as shown in Opgen-

Rhein et al. [22] and reported only the results from the Fs statistic

here. Nested permutation of sample labels was carried out to

obtain p-values for tests of sex and strain effects. Multiple test

adjustments were computed using the false discovery rate method

[12,13] as implemented in the q-value program [13]. To explore

the biological meaning of the differentially expressed gene lists, we

applied a hypergeometric test implemented in the GOstat R

package to identify over represented GO terms in the gene lists

[15].

Principal Components Analysis (PCA) is used for unsupervised

learning. PCA applies a singular value decomposition to the

covariance matrix of gene expression data to identify the

combination of conditions that explain the greatest variation in

the data. PCA was also used by Waring et al. [5] to illustrate the

reproducibility of microarray data across multiple centers. We

applied PCA separately to each center to see if the same

components of variation could be identified.

Accumulated data can be used to classify new samples [7–10].

We used non-negative matrix factorization (NMF) for classification

purpose. NMF partitions data V using two non-negative matrices

W and H, V,WH where W is a weight matrix that indicates how

much each gene contributes to each metagene pattern, and H

contains the expression profiles of the metagenes.

The metagene data can then be used to cluster genes or

samples. Among many implementation of NMF, we adopted the

metagene projection procedure as proposed by Tamayo et al. [9].

In the metagene projection method, a weight matrix W obtained

from a training set is used to compute the metagene profiles of a

target data set (H* = W21 V*, where V* is the target data).

Tamayo et al. [9] show that the projection can correctly cluster

samples from cross-platform or even cross-species studies. In our

application of this method, we chose one center as the training set,

computed the weight matrix, used it to compute a projection for

each of the other centers and clustered samples based on the

projected metagenes. We repeated this procedure using each

center as the training set, and compared the classification results.

To compare the performance of this approach, we applied

hierarchical clustering to the raw data. Euclidean distance is used

to measure the distance, and complete linkage method [23] is used

to cluster centers.

Supporting Information

Figure S1 Hierarchical clustering of H matrices from metagene

projection procedure using center 1, 2, or 5 as training sets.

Found at: doi:10.1371/journal.pone.0003724.s001 (1.69 MB TIF)

Table S1 Deatil sample processing information.

Found at: doi:10.1371/journal.pone.0003724.s002 (0.03 MB

XLS)
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