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Abstract

We have developed a method that predicts Protein-Protein Interactions (PPIs) based on the similarity of the context in
which proteins appear in literature. This method outperforms previously developed PPI prediction algorithms that rely on
the conjunction of two protein names in MEDLINE abstracts. We show significant increases in coverage (76% versus 32%)
and sensitivity (66% versus 41% at a specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases. A
retrospective analysis shows that PPIs can efficiently be predicted before they enter PPI databases and before their
interaction is explicitly described in the literature. The practical value of the method for discovery of novel PPIs is illustrated
by the experimental confirmation of the inferred physical interaction between CAPN3 and PARVB, which was based on
frequent co-occurrence of both proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships between
proteins predicted by our method are broader than PPIs, and include proteins in the same complex or pathway. Dependent
on the type of relationships deemed useful, the precision of our method can be as high as 90%. The full set of predicted
interactions is available in a downloadable matrix and through the webtool Nermal, which lists the most likely interaction
partners for a given protein. Our framework can be used for prioritizing potential interaction partners, hitherto
undiscovered, for follow-up studies and to aid the generation of accurate protein interaction maps.
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Introduction

Protein-protein interactions (PPIs), which we define as proteins

that physically interact, are crucial in most complex biological

processes. Experimental high-throughput methods such as yeast

two-hybrid screens have been used to make large inventories of

PPIs and to create protein interaction maps [1–6]. However, it is

well known that these methods merely show physical interaction

under experimental condition and not necessarily indicate a

common involvement in a biological process. Computational

methods for the prediction of PPIs could theoretically aid the

discovery of candidate biological interaction partners. There are

many different sources of information that can be used in PPI

prediction [7], including protein structures, phylogenetic distribu-

tion, interactions between homologous proteins in other organisms,

genomic neighborhood, and gene fusions. In this article, we will

focus on one source of information, which is arguably the most

comprehensive, but also the least structured: biomedical literature

itself. Until now text mining techniques are mainly used to

rediscover PPIs explicitly described in literature. Often, the now 18

million freely available abstract records of MEDLINE are used for

this purpose. PPIs extracted this way have been shown to improve

the accuracy of predicted biological networks [8,9]. Structured

information on explicit PPIs extracted from MEDLINE and other

sources is freely available in the STRING database [10], or can be

found by querying the iHOP website [11].

However, text mining can go one step further; by combining

known associations, previously unknown PPIs can be inferred.

Because most text mining research, including this study, limits

itself to MEDLINE abstracts, these ‘previously unknown’

interactions also include interactions that are effectively known,

but not explicit in MEDLINE as they are only mentioned in a full

text article. Swanson [12,13] et al. were the first to demonstrate

that text mining can lead to the discovery of new knowledge (e.g.

the treatment of Raynaud’s disease by fish oil). Other studies in the

biomedical domain verified the importance of implicit information

for knowledge discovery [14–16]. Whereas Swanson used a word-

based approach, linking entities by intermediate words that

appeared frequently in the contexts of both entities, in our work

we use a concept-based approach: different terms denoting the

same concept (i.e. synonyms) are mapped to a single concept

identifier, and ambiguous terms, e.g., identical terms used to

indicate different concepts (i.e. homonyms) are resolved by a

disambiguation algorithm. Such an approach is essential given the

wide diversity and many ambiguities in gene and protein

nomenclature [17,18].
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In order to predict PPIs, we summarize the typical context in

which each protein appears into concept profiles [15,16,19]. We

hypothesize that a high similarity between the concept profiles of

two proteins is indicative for an actual biological interaction. For

example, if two proteins are consistently mentioned together with

a particular disease, the probability that these proteins interact is

higher than the a priori probability of two randomly selected

proteins [20,21]. This probability should increase further when

they are also frequently co-mentioned with a particular pathway, a

sub-cellular localization, or other proteins.

In this article, we first demonstrate the added value of a

concept-based approach over a traditional term-based approach in

detecting explicitly described relations. We proceed to show the

added value of the concept profile-based approach over classical

direct relation extraction, including the text-mining techniques

used in the STRING database. Subsequently, we show the

predictive power of our method by doing a retrospective study; we

demonstrate that we can employ the literature available in 2005 to

predict 52% of the PPIs newly described in Swiss-Prot in 2007 at a

specificity level of 95%. We show that in addition, some of the

PPIs that we predicted but are not yet recorded in any database

represent indirect protein interactions and have biological

relevance. Finally, we confirm one of the many predicted PPIs

in three wet lab experiments, supporting our claim that the

concept profiling method is capable of previously unknown PPI

prediction from current literature.

These predictions will be useful for (i) the ranking of potential

PPIs for more specific experimental analysis, and (ii) complement-

ing other types of data such as co-expression and yeast two-hybrid

data when using an integrative systems biology approach.

Results

Improved PPI Detection Using Concept Profiles
We compared the performance of different PPI prediction

approaches in detecting known human PPIs in MEDLINE. The

online human-curated databases Biogrid, DIP, HPRD, MINT,

Reactome, and UniProt/Swiss-Prot were used to establish a set of

61,807 known human PPIs. A set of probable Non-Interacting

Protein Pairs (NIPPs) was generated from all pairs of proteins that

do not occur in the above databases nor in the IntAct [22]

database, which includes, in addition to all PPIs recorded in

UniProt/Swiss-Prot, many non-curated PPIs from high-through-

put experiments. We compare four approaches:

N Word-based direct relation. This approach uses direct PubMed

queries (words) to detect if proteins co-occur in the same

abstract. This is the simplest approach and represents how

biologists might use PubMed to search for information.

N Concept-based direct relation. This approach uses concept-recog-

nition software to find PPIs, taking synonyms into account, and

resolving homonyms. Here two concepts (in our case two

proteins) are detected if they co-occur in the same abstract.

N STRING [10]. The STRING database contains a text mining

score which is based on direct co-occurrences in literature.

N Concept profile-based relation. This approach uses the similarity in

literature context. Here two proteins (concepts) can also be

indirectly related via the concepts in their profiles. More detail

on concept profiles and their construction can be found in the

Methods section.

The word-based and concept-based direct relation methods

could find at least one abstract containing both proteins for

respectively 33% and 32% of the pairs in the PPI set. A text

mining score from STRING could be obtained for 30% of the

PPIs, in line with the co-occurrence based approach used to create

STRING. Thus, a majority of the known PPIs cannot be found

explicitly in MEDLINE. For the concept profile-based approach,

we could create concept profiles and calculate a similarity score for

76% of the PPI set.

Similar to STRING, the other three approaches can also be

used to calculate a continuous score that indicates the strength of

the relation between two proteins. Figure S1 displays the

distribution of the similarity scores of the concept profile-based

method for the PPI and NIPP sets. This figure shows that the

scores for the PPI set are higher although there is also overlap

between the two distributions. The continuous scores can be used

to rank protein pairs. After ranking the pairs in the PPI and in the

NIPP set, we calculated the sensitivity at a specificity of 99% and

95%, and the Area under the Curve (AuC), which is often used in

the evaluation of classifiers, and expresses the area under the

Receiver Operator Characteristics (ROC) curve (see supplement

S5 in Supporting Information File S1). An AuC of 0.5 indicates a

random classifier; an AuC of 1 indicates a perfect classifier. For

this analysis, we limited ourselves to those pairs in the PPI and

NIPP set for which all methods could make a prediction. We

analyzed 44,920 pairs in the PPI set, and 58,388,409 pairs in the

NIPP set.

The results show that, using concept profiles, we can detect 43%

of the known PPIs, with a specificity of 99%, and 66% of all known

PPIs with a specificity of only 95%. In contrast, the direct relations

methods and STRING show much lower scores (Table S1).

Proteins Connected via One Intermediate Protein
The results reported in the previous section indicate that not all

proteins with high similarity scores are known to interact

according to the combined protein databases. One possible

explanation for this is that the proteins are related in another

way, e.g. they could be involved in the same pathway or be part of

the same protein complex, but do not physically interact. To

determine whether this occurs, we also tested both concept-based

approaches on the detection of known connections via one

intermediate protein. For instance, if the protein pairs A-B and B-

C are recorded as PPIs in databases, we form the additional

protein pair A-C. In total we were able to create 1,028,265 of such

pairs to serve as an independent test set. When the pairs are

filtered on coverage by all methods the remaining set contains

790,245 pairs. At a specificity level of 99% and 95% the sensitivity

level of the different methods was determined for those pairs. The

results are given in Table S2 and indicate that the concept profile-

based approach is indeed superior in predicting relationships

between proteins potentially present in the same complex or

pathway.

Average Prediction Performance per Protein
Most researchers will not be interested in all PPIs, but only in

those interactions involving a (set of) protein(s) of interest.

Therefore, for each protein we created a top 10, top 100, and

top 1,000 best matching proteins according to the concept-based

direct relation, the concept profile method, and STRING. In these

lists, we calculated the number of PPIs that are either (i) part of the

PPI set, or (ii) described in the IntAct database, or else (iii) part of

the pairs that are connected through intermediate proteins as

described in the previous section. We limited our analyses to the

10,812 proteins that were detected in at least five MEDLINE

abstracts (covered by the concept profiles method). The averages

of these performance measures in terms of precision and recall are

shown in Table S3. For comparison, the average total number of

PPIs Inferred from Literature
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pairs per protein in each set is provided in the third column. For

instance, on average each protein is involved in 8.73 interactions

according to the PPI set, of which on average 6.34 are found in the

top 1,000 of the concept profile method (precision and recall of

0.006 and 0.73 respectively), and only 3.93 and 3.83 in the top

1,000 of the concept-based direct relation method and STRING

respectively. The latter two methods show a slightly better

performance for the top 10. Thus, it appears that co-occurrence-

based methods can detect a smaller number of PPIs with a

somewhat higher accuracy, but the concept profile method, by

including indirect evidence, can predict more PPIs and is therefore

likely to be more valuable for actual knowledge discovery.

Retrospective Prediction of Currently Known PPIs
Protein annotation databases are struggling to stay up-to-date

with the literature, and there is often a substantial time lag

between the first publication of a finding, and the time the PPI is

entered in a database. It could therefore be postulated that many

of the unknown PPIs predicted today are in fact correct, but may

not be entered in a database for several years. We have performed

a retrospective study to answer the question: how many of the PPIs

that would have been predicted by the different methods in 2005

were confirmed in 2007?

Both direct relation and concept profile method-based PPI

prediction scores were created using a MEDLINE corpus with

publication dates up to February 2005. We ranked the PPIs

according to the scores, and set a cut-off value at the 95% and

99% specificity levels based on PPIs present in Swiss-Prot 2005

(this is the only database for which historic versions are available).

We subsequently evaluated how many of the 3,295 PPIs that were

added to Swiss-Prot between 2005 and 2007 were above these cut-

off values in 2005. These are the sensitivity values reported in

Table S4. We also calculated the AuC based on Swiss-Prot 2007

alone.

The prediction performance is much better for concept profiles

(52% versus 38% for a specificity level of 95%). This indicates that

the majority of currently known PPIs were not yet explicitly

described in MEDLINE at our testing point, but would have been

predicted at a specificity rate of 95%. We postulate that this

finding is indicative for the assumption that based on the full

current literature a meaningful percentage of the ‘unknowns’ that

pass the prediction threshold will be actual pairs worth studying in

more detail.

Case Studies
The next logical step was therefore to investigate whether this

method can only predict PPIs that are ‘known’ but not explicit in

the literature corpus used, or whether it would also be able to

effectively predict unknown, but real PPIs. We investigated this in

two case studies. We generated predicted interactions for proteins

with two proteins that are intensively investigated in our group: (i)

Dystrophin (DMD), a structural protein causing Duchenne

muscular dystrophy when defective, and (ii) Calpain 3 (CAPN3),

a protease when mutated causing Limb-girdle muscular dystrophy

(LGMD).

DMD
We presented the list of predicted interacting proteins with

DMD ordered by descending association scores, to two experts for

evaluation. At a specificity of 99%, there are 196 proteins

predicted to interact with DMD. This list was too long to manually

evaluate and we therefore restricted the human curation analysis

to the 99.8% specificity level (top 42 proteins, Table S5). The full

list is presented as Table 7 in Supporting Information File S1. The

42 proteins include 7 of the 19 dystrophin-interacting proteins that

are known from curated databases (sensitivity of 37% at this very

high specificity level). The remaining established interaction

partners generally rank high in the list of literature-predicted

targets (13/19 in the top 196, p-value from Kolmogorov-Smirnov

test for comparison with overall ranking: 3.4 ? 10210). There are

three proteins in the predicted set with at least indirect evidence in

the literature for a physical interaction with DMD (CAV3, SPTB,

ACTN2). One protein (SLMAP) may well interact given its

distribution and localization but this needs experimental testing.

Ten proteins in the list are found in the same protein complex as

DMD but do not interact directly as far as known. Four proteins in

the list were found wrongly associated with DMD due to

homonym problems during literature indexing.

The remaining 17 proteins in the list are associated with DMD

for other reasons (e.g. also involved in muscular dystrophy, or

structural or functional homology) but are not likely to physically

interact. If we only allow direct physical interaction pairs as true

positives (11 proteins) the estimated precision is 26%. If predictions

of protein pairs in a complex also are counted as true positives (21

proteins in total), the estimated precision would be 50%. Since also

conceptually-related proteins that do not physically interact may

be of interest to the biologist, the overall precision of our

prediction method may be as high as 90%.

CAPN3
For CAPN3, an evaluation of the precision is more difficult

since there is, compared to an intensively studied protein such as

DMD, not enough established knowledge about its regulatory

partners and substrates. Table S6 summarizes the currently known

interaction partners for CAPN3: 13 interactions have been

described in the literature (not necessarily in the abstracts that

were used for our predictions, see column ‘direct relation’) and of

those, six interactions have been entered in PPI databases. These

known interaction partners generally rank high in the list of

literature-predicted targets (Table S6, p-value from Kolmogorov-

Smirnov test: 5.7 ? 1025). Interestingly, the concept profiling meth-

od correctly predicted the interaction between myosin light chain

1 (MYL1) and CAPN3 on the basis of conceptual overlap in

MEDLINE abstracts (specificity .99%), although this interaction

was only described in a full text paper [23] and not in any

MEDLINE abstract used to generate the concept profiles.

Apart from literature based rediscovery of known interactions,

we also set out to actually find new interaction partners for

CAPN3. We selected predicted interaction partners that have not

been entered in PPI databases so far and that do not have a direct

co-occurrence in MEDLINE. The top ranked conceptual match is

with Sarcoglycan-epsilon (SGCE), which is the smooth muscle

counterpart of SGCA. Like for CAPN3, mutations in SGCA cause

LGMD, but as far as we know, the protein is not expressed in

skeletal muscle.

The second highest ranking protein was deemed to be an

interesting candidate by the experts: Parvalbumin B (PARVB).

The concept profiling method yielded a high association score

because both proteins are described to have a physical interaction

with dysferlin (DYSF) [24,25], and with a-actinin (ACTN2)

[26,27], and they are both located at the Z-disc [28,29]. For this

predicted protein pair, we experimentally demonstrated a physical

interaction, using three different set-ups.

First, it was shown that immobilized GST-fused PARVB could

pull down recombinant T7-CAPN3 from bacterial lysates. Second,

immobilized GST-PARVB could pull down endogenous CAPN3

from IM2 mouse myoblasts, and vice versa (Figure S2).

PPIs Inferred from Literature
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CAPN3 is hypothesized to act as a cytoskeleton remodeler and

has been shown to interact with other focal adhesion proteins like

Talin and Vinexin [30] (see Table S6). Ectopic CAPN3 over-

expression results in cell rounding and cleavage and loss of co-

expressed Talin and Vinexin [30]. This suggests that CAPN3 is a

modulator of focal adhesions. Like CAPN3, PARVB is predom-

inantly expressed in skeletal muscle, where it plays a role in cell

spreading and localizes to focal adhesions [26] (for a review, see

[31]). The predicted interaction is coherent with this hypothesis,

and substantiates the evidence for a role for CAPN3 outside the

sarcomere.

This showcase is just one example of a correct and meaningful

PPI prediction using concept profiles. This exemplary case study can

not be seen proof that many of the other high ranking predictions

will also be true physical and biologically relevant interactions.

However none of the other consulted applications (STRING, iHOP)

predicted this pair of interacting proteins. As the predictions using

concept profiling are based on conceptual relatedness rather than an

explicit co-occurrence in MEDLINE, this case study is indicative of

the power of concept profiles to discover new, implicitly related pairs

of interacting proteins. The statistics presented in this paper support

the conclusion that predicted PPIs using our method, especially the

subset that remains after expert analysis of the top ranking list are

likely to be very significantly enriched for proteins that are

worthwhile studying in wet lab experiments.

Discussion

Scientists in general and scientific annotators in particular

derive their knowledge on PPIs not directly discovered by their

own experiments from the literature. However, as we show here,

only 32% of the known PPIs covered by curated PPI databases can

be found in MEDLINE abstracts (Table S1), the resource that is

most commonly used for concept searches in the biomedical

domain. This is despite the use of a sophisticated synonym

expansion and homonym disambiguation systems. It is likely that

many of these interactions are only mentioned in the full text of

articles, or that the interactions have never been explicitly

described in literature but were directly submitted to a database.

In either case, the applicability of the most commonly used

approach for PPI detection - the direct relation method in publicly

available literature - appears to be severely limited.

The specificity and sensitivity levels achieved by our novel

prediction method appear to be very promising. However, when

we predict interaction partners for a specific protein, the estimated

precision levels (i.e. how many of the predicted proteins are true

interaction partners) are still seemingly quite moderate. A first

consideration is that we are intrinsically unable to determine an

accurate ‘true false positive rate’ for the predicted PPIs, due to the

fact that many PPIs have simply not been discovered and

described yet. This unavoidable complication most certainly will

lead to an underestimation of precision levels. The case study of

CAPN3 and PARVB signifies this point; initially this pair would

have been classified as a ‘false positive’.

For a realistic estimation of the precision of our prediction

method, effectively each predicted protein pair should be validated

in a wet lab experiment, which is out of the realistic scope of this

study. For this reason we developed Nermal. (http://biosemantics.

org/nermal). In Nermal, researchers can enter the UniProt

identifier of a protein of interest, and the tool will return a ranked

list of proteins that are most likely to interact with the query

protein, in combination with information on whether the PPI has

already been described explicitly in MEDLINE and/or in one of

the protein databases.

A second complicating factor is the size of the ‘negative’ set

(.50 million) compared to the ‘positive’ set (44,920). This aspect is

illustrated by the average prediction performance for each protein

in Table S3 and by the case study with DMD in Table S5, where

the top 42 proteins yielded a precision of only 26%, whilst the

specificity was 99.8%. We are currently working on a further

improvement of the precision by including data sources other than

the literature in the PPI prediction algorithms. A final consider-

ation is that our predictions are yielding more conceptual

connections than physically interacting proteins only. Conceptual

overlap obviously can indicate a variety of other types of relations

between proteins. For instance, we demonstrate that many

proteins with high concept profile similarity do not interact

directly, but are connected through intermediary proteins and are

potentially part of the same complex or pathway. Therefore, the

precision is to a certain extent dependent on the definition of a

useful prediction. When other relationships than direct physical

interactions are also deemed of interest, the precision of our

method can become as high as 90%. The practical use of concept

profiles will be in knowledge discovery in general, which is much

broader than discovery of PPIs alone. In fact the hypothetical

connection between any given pair of concepts can be calculated

using our method.

To allow researchers to incorporate conceptual overlap data

into their own analyses, we have made the concept profile

similarity scores publicly available in two forms; first, a table

containing similarity scores between all human proteins can be

downloaded from our website; second, the previous mentioned

web tool dubbed Nermal.

We conclude that concept profile similarity is a significantly

better literature based predictor of PPIs than co-occurrence based

methods. These improved predictions can be used to increase the

biological interpretation and accuracy of interaction maps

generated by high-throughput experiments, or can be used to

prioritize proteins for further testing. In further studies, we will

evaluate whether the use of concept profiles can also be applied in

the prediction of other types of relations, for instance between

drugs and diseases, and between genes and diseases.

Methods

Direct Relation Detection
Direct relations are typically extracted from literature based on

co-occurrence [32]; if two proteins are mentioned in the same

sentence or document more often than can be expected by chance,

they are presumably related. We evaluated two alternatives for the

detection of protein occurrences: a word-based approach and a

concept-based approach. The word-based approach consists of

combining the names of two proteins in an ‘AND’ query in the

PubMed search engine. For the concept-based approach we have

used the concept-recognition software Peregrine [33,34], which

includes synonyms and spelling variations [35] of concepts and

uses simple heuristics to resolve homonyms. For this, Peregrine

uses a protein ontology that was constructed by combining several

gene and protein databases [36]. Even though a previous study has

shown that Peregrine achieves state-of-the-art performance (75%

precision and 76% recall on the BioCreactive II gene normaliza-

tion testset [33,34]), the concept recognition process is still error

prone.

We used the likelihood ratio [19] to indicate the strength of the

relation between two proteins. This ratio increases with the

likelihood of there being a dependency between the occurrence of

two proteins. Two hypotheses are used: (i) the occurrence of one

protein is statistically dependent on the occurrence of the other

PPIs Inferred from Literature
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protein; (ii) the occurrences are statistically independent. For each

hypothesis a likelihood is calculated based on the observed data

using the binomial distribution. The ratio of these likelihoods tells

us how much more likely one hypothesis is over the other, or, in

other words, how sure we are that there is a dependency. The

following equations give the likelihood ratio l of concepts i and j.

l i,jð Þ~
L nij ,ni,pj

� �
L nj{nij ,N{ni,pj

� �

L nij ,ni,p1

� �
L nj{nij ,N{ni,p2

� �

where N is the total number of documents in the corpus, ni, nj, and

nij are the number of documents containing i, j, and both i and j,

respectively. p~
nj

N
, the probability j occurs in an abstract

irrespective of i, p1~
nij

ni

, the probability j occurs in an abstract

containing i, p2~
nj{nij

N{ni

, the probability j occurs in a document

not containing i, and L k,l,xð Þ~xk 1{xð Þl{k
, the likelihood

function according to the binomial distribution.

Concept Profile-Based Relation Detection
To calculate the similarity of the contexts in which proteins

appear in literature, we summarize the context of each protein in a

concept profile. This profile contains all concepts that have a

direct relation with a protein as found using the direct relation

method described above. We evaluated two possible ways of

applying this method: (i) using co-occurrences within a sentence,

and (ii) using co-occurrences within an abstract. As shown in

supplement S6 (Supporting Information File S1), co-occurrence

within an abstract yields a slightly higher AuC on predicting PPIs.

We therefore used the abstract-based method in our study. The

concepts in a profile include, in addition to proteins, all other

concepts described in the Unified Medical Language System

(UMLS) [37], such as diseases, symptoms, tissues, biological

processes and many other types of concepts. We used the

uncertainty coefficient [19] to calculate the weights of the concepts

in the profiles. The uncertainty coefficient for the stochastic

variables X and Y is given by

U X jYð Þ~ H Xð Þ{H X jYð Þ
H Xð Þ

with H(X) is the entropy for X and H(X|Y) is the entropy for X

given Y. X and Y can be any concept known in the ontology, e.g.

drugs, proteins, diseases, disorders, chemicals, etc. The uncertainty

coefficient is an information-theoretical measure that takes the a

priori probability of direct relations into account. It gives extra

weight to those concepts that are very specific for the set of

documents belonging to the protein for which the concept profile

is constructed. For a detailed description of concept profiles we

refer to Jelier et al. [19].

The similarity score between two concept profiles A and B is

taken as the inner product of the concept profile vectors, following

Jelier et al. [38].

ip~
XN

k~1

Auc kð ÞBuc kð Þ

with uc(k) the kth uncertainty coefficient in the profile and N the

total number of concepts the two profiles have in common. The

inner product increases with increasing overlap in concept profiles.

If two proteins co-occur, the inner product of their concept profiles

is in general high. This is shown in supplement S4 (Supporting

Information File S1).

MEDLINE Corpus
We extracted the title and abstract of subsections of MEDLINE.

The corpus used in our main study has a time span from 1980 up

to July 2007 and contains 12,098,042 citations. The corpus used

for the retrospective study has a time span from 1980 up to

February 2005 and contains 10,363,027 citations. This is an

increase in time of 9.8% whereas the increase in published articles

over the last two years is 17%.

Generation of the PPI and NIPP Sets
There are many protein databases that describe PPIs. Not all of

these use protein identifiers that could be linked to our protein

ontology and the databases also show a high degree of overlap (see

supplement S2 in Supporting Information File S1). In our analysis

we use BioGRID [39], DIP [40], HPRD [41], IntAct [42], MINT

[43], Reactome [44], and Swiss-Prot [45] and only consider

human proteins. Except for IntAct, all these databases are curated,

meaning that they only contain PPIs that were judged to be

correct according to strict criteria. IntAct, on the other hand, also

contains unchecked results from high-throughput experiments

which could contain many false positives. For a comparison of the

prediction performance of our method on the individual databases

we refer to supplement S3 (Supporting Information File S1). The

release dates and dates of download can be found in supplement

S1 (Supporting Information File S1).

For the construction of our set of known PPIs, we only rely on the

curated databases; if a PPI was mentioned in one of these databases,

we assumed it to be a true PPI. The resulting positive set contains

61,807 PPIs. After removing pairs that are not covered by all four

prediction methods, 44,920 PPIs remain. Unfortunately, there is no

database of proteins that are known not to interact. We can

therefore only create a set of proteins which are less likely to interact.

For our NIPP set we took all pairs of human proteins that are not in

the PPI set, and are not in the high-throughput part of the IntAct

database. For computational reasons the calculation of the

specificity and AuC was done on a random sample of 44,920 pairs

of this set, setting both the positive and negative set size equal. Two

randomly selected proteins form a pair and are checked if (i) they are

not in the positive PPI set, (ii) not the same protein, e.g. proteins that

interact with themselves are not taken into account, (iii) the protein

pair is not already in the NIPP set, e.g. protein pairs can only occur

once in a set. The random sample is actually quite small compared

to the total NIPP set, however the ROC curve analysis is set size

independent if the sample size is sufficiently large.

One last remark is that the positive set is incomplete. Therefore

the creation of the NIPP set will introduce false negatives (PPIs that

should have been in the positive set and recorded in a curated

database). However the bias introduced by false negatives is negli-

gible since the ratio of expected PPIs in human compared to the total

set of formable protein pairs (,60 million) is very small [22].

STRING Database
A copy of the STRING database, version 7.1, was downloaded

from the STRING website. STRING is a pre-calculated database

in PostgreSQL format. Only the text mining score table was used

in our analysis.

Sensitivity, Specificity, Precision
In information retrieval terms like the sensitivity, specificity and

precision are frequently used. The definitions are:
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sensitivity~
TP

TPzFN

specificity~
TN

TNzFP

precision~
TP

TPzFP

where TP are the number of true positives, FN number of false

negatives, FP number of false positives, and TN number of true

negatives. A perfect predictor has a specificity and sensitivity of 1.

When both set sizes are equal (#NIPP = #PPI) the precision

equals the sensitivity. The specificity is sometimes confused with

the precision. The distinction is critical when the classes are

different sizes. A test with very high specificity can have a very low

precision if there are far more true negatives than true positives,

and vice versa.

Online Web Tool Nermal
Nermal is a web tool that prioritizes proteins that are most likely

to be related with the protein you study. Given a query protein,

the similarity scores are calculated between this protein and all

other proteins in the ontology. The proteins are ranked on the

similarity scores and presented in a table. Each row shows the

similarity score between the two proteins, the databases in which

the protein pair is known, and the sensitivity and (1-specificity) for

that similarity score. These two rates should be interpreted as

follows: given a similarity score between two proteins, (1-

specificity) is the probability that a protein pair passing that score

is a false positive. The sensitivity is the probability that you will

miss a true PPI at that same score. Nermal can be found on

http://biosemantics.org/nermal/. The full set of all protein pair

match scores for human proteins can be downloaded at this link as

well as the PPI and NIPP set used in the study.

DNA Cloning
PARVB was amplified from proliferating IM2 myoblast cDNA

with the following UTR primers: fw cgcactcgcttatgtcctc, rv

ctccacatccttgtacttggtg. The ORF was amplified with a nested

PCR introducing restriction sites for cloning into pET28aGST

(modified pET28a vector with GST tag instead of T7 [46]).

Primers were: fw aatatggatcctcctccgcgccaccacggt, rv atattctc-

gagctccacatccttgtacttgg. CAPN3 was similarly amplified with

primers fw atgccaactgttattagtc, and rv ctaggcatacatggtaagc, and

cloned into pET28aGST using fw tattacggatccatgccaactgttattagtc,

and rv gtaatactcgagctaggcatacatggtaagc. The exon 6 deletion that

does not autolyse was used for this experiment.

CAPN3c129s in pET28c was described previously [47]. All

DNA constructs were verified by direct sequencing (LGTC,

Leiden, The Netherlands), and subsequently transformed into

BL21 (DE3)-RIL E. coli cells (Stratagene) for protein production.

Protein Production and Preparation of Lysates
BL21 cells transformed with pET28aGST, pET28aGST-

PARVB, pET28aGST-CAPN3 or pET28cCAPN3c129s were

grown to log phase and stimulated with 1 mM IPTG (Fermentas),

and left to grow for 3 h at 37uC. Next cells were spun down at

3,000 g and 4uC for 15 min. Pellets were dissolved in lysis buffer A

(50 mM Tris-HCl pH 7.4, 1 mM EDTA, 1.5 mg/ml lysozyme,

0.15 M NaCl, 1% Triton, Benozonase, 2x protease inhibitor

cocktail tablet (Roche Molecular Biochemicals, Basel, Switzer-

land)), and sonicated on ice. Lysate was cleared by centrifugation

at 13,000 g, and 4uC for 30 min.

IM2 cells were grown at 33uC and 10% CO2 in DMEM 60196

(GIBCO-BRL, Grand-Island, NY) supplemented with 20% FCS,

INFc, glucose, pen/strep, glutamine and chick embryo extract.

15 cm plates (2x) were grown 75% confluent, washed 1x with PBS

(37uC) and lysed on ice with 1 ml lysis buffer B (50 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.2% Triton X-100, 2x protease inhibitor

cocktail tablet). Lysate was spun down at 13,000 g and 4uC for

30 min.

Pull-Down
GST sepharose beads (4B, Amersham, Uppsala, Sweden) were

washed with PBS (2x) and pre-equilibrated with lysis buffer (2x),

and added to the cleared GST fusion lysates. Lysates were

incubated at 4uC and tumbling for 2 h. Next the lysates were spun

down at 500 g, 4uC for 5 min, and washed 3x with lysis buffer A.

Separately, IM2 lysates were treated with washed and pre-

equilibrated GST sepharose beads (buffer B). An aliquot of the

GST fusion proteins was loaded on SDS-PAGE gel and

Coomassie stained to confirm equal loading.

IM2 lysate, or T7-CAPN3c129s lysate, was added to the bait,

and incubated O/N at 4uC and tumbling. GST sepharose beads

were spun down and the sup was stored as non-bound fraction.

The beads were washed 5x with ice cold lysisbuffer (A or B, 3x

short, 2x five minutes tumbling). All remaining sup was removed

with an insulin syringe and proteins were eluted with 2x Laemmli

sample buffer and boiled 5 min. An aliquot of the non-bound

fraction was similarly prepared.

Western Blot
Samples were loaded onto SDS-PAGE gels, separated and

blotted to PVDF membrane. Blots were blocked in 4% skimmed

milk PBS (Marvel) and incubated with primary antibody O/N at

4uC. Next morning blots were washed with 0.05% Tween in PBS,

and incubated with secondary antibody for 1 h. Blots were washed

again and scanned with an Odyssey scanner (Licor) or incubated

with ECL plus (Amersham) and exposed to a Kodak XAR film.

The following antibodies were used for Western detection:

GaGST (1;10,000 Stratagene) MaCAPN3 (1;100, 12A2 Novo-

casta, Newcastle, UK), GaPARVB (1;200 Santa Cruz), GaMou-

seIRDye680 (1;5,000 Westburg, Leusden, NL), DaGIRDye800

(1;5,000 Westburg), RaMouseHRP (1;2,000 Dako Cytomation,

Glostrup, Denmark), DaGoatHRP (1;10,000 Promega).

Supporting Information

Figure S1 Histogram of the distributions of similarity scores of

the concept profile-based method for the PPI and NIPP sets. A log

transformation is applied to the similarity scores for better

visualization.

Found at: doi:10.1371/journal.pone.0007894.s001 (1.35 MB TIF)

Figure S2 CAPN3 and PARVB can directly interact. A:

Immobilized GST-fused PARVB can pull down recombinant

CAPN3 from a bacterial T7-tagged CAPN3 lysate (Lane 2 vs 1),

where unfused GST cannot (Lane 4 vs 3). As CAPN3 is an

unstable protein that outside skeletal muscle rapidly autolyses we

used the active site mutant C129S48. All fractions were resolved

on SDS-PAGE gel and analyzed by immunoblotting with anti-

CAPN3. The lanes represent: GST-PARVB non-bound fraction

(1), GST-PARVB bound fraction (2), GST non-bound fraction (3),

GST bound fraction (4). B: Equal loading was confirmed with
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anti-GST (Lane 1 GST-PARVB, Lane 2 GST). C: GST-fused

PARVB can pull down endogenous full-length CAPN3 from an

IM2 lysate (Lane 1 vs 2), contrary to unfused GST (Lane 3 vs 4).

Lane 1 GST-PARVB bound fraction, Lane 2 non-bound fraction,

Lane 3 GST bound fraction, Lane 4 non bound fraction. D:

Likewise, GST-CAPN3 can pull down endogenous PARVB (Lane

1), contrary to GST (Lane 2). Both PARVB translation products

bind. Here we used the D6 variant of Capn3 that does not autolyse

yet retains function30, 49, and is expressed in the proliferating

IM2 myoblasts. The arrows indicate the detected proteins and in

all panels a molecular marker is depicted on the left.

Found at: doi:10.1371/journal.pone.0007894.s002 (1.67 MB TIF)

Table S1 Performance of different PPI prediction approaches

on detecting known PPIs in MEDLINE. CDR stands for Concept-

based Direct Relation method.

Found at: doi:10.1371/journal.pone.0007894.s003 (0.03 MB

DOC)

Table S2 Performance on predicting proteins that are connected

via an intermediate protein.

Found at: doi:10.1371/journal.pone.0007894.s004 (0.03 MB

DOC)

Table S3 Analysis of the top 10, 100, and 1,000 returned by the

Concept Profile (CP) method, the Concept-based Direct Relation

(CDR) method, and by STRING. The analysis shows the

precision and recall of protein pairs that are in the PPI set, of

additional pairs that are found in IntAct, and of additional pairs

that are in the set of protein pairs that are connected via an

intermediate protein. In the field of information retrieval the term

recall is more often used instead of sensitivity.

Found at: doi:10.1371/journal.pone.0007894.s005 (0.04 MB

DOC)

Table S4 Results of the retrospective prediction of PPIs added to

Swiss-Prot between 2005 and 2007. PPIs are ranked based on

MEDLINE up to 2005, and specificity levels are based on Swiss-

Prot 2005.The sensitivity is determined on Swiss-Prot 2007.

Found at: doi:10.1371/journal.pone.0007894.s006 (0.03 MB

DOC)

Table S5 Top 42 ranked proteins with DMD. In total 10,812

proteins were matched against DMD. 7 proteins as known to

interact with DMD. Only 4 proteins are real false positives due to

homonyms problem resulting in a precision over 0.9.

Found at: doi:10.1371/journal.pone.0007894.s007 (0.09 MB

DOC)

Table S6 List of proteins known to interact with Calpain-3. In

total 10,812 proteins known to have a concept profile are matched

against Calpain-3.

Found at: doi:10.1371/journal.pone.0007894.s008 (0.05 MB

DOC)

Supporting Information File S1 Supplementary data.

Found at: doi:10.1371/journal.pone.0007894.s009 (0.59 MB

DOC)
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