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Abstract

Background: HER2-targeted therapy with the monoclonal antibody trastuzumab (HerceptinH) has improved disease-free
survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression
are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kB
overexpression and increased COX2-derived prostaglandin E2 (PGE2). Conjugated linoleic acid (CLA) has been shown to
have anti-tumor properties and to inhibit NF-kB activity and COX2.

Methods: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of
the HER2 receptor, nuclear NF-kB p65, and total and phosphorylated IkB were examined by western blot and
immunofluorescence. PGE2 levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-
Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V
staining and flow cytometry.

Results/Conclusions: We observed a significant decrease in HER2 protein expression on western blot following treatment
with 40 and 80 mM t10c12 CLA (p,0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence
that was most pronounced at 80 mM. Protein levels of nuclear NF-kB p65 were also significantly reduced at the 80 mM dose.
This was accompanied by a significant decrease in PGE2 levels (p = 0.05). Pretreatment with t10c12 CLA significantly
enhanced TNFa-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These
data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be
through CLA mediated downregulation of COX2-derived PGE2.
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Introduction

Overexpression of the HER2 oncogene occurs in 25–30% of

human breast cancers and is associated with poor outcome [1].

HER2 overexpression often occurs with estrogen receptor (ER)

negative disease, making these tumors resistant to hormonal

therapies [2]. Treatment with trastuzumab (HerceptinH) has

improved disease-free survival in patients with metastatic breast

cancer, but is limited by both cardio toxicity and inherent and

acquired resistance [3]. Significant effort is currently directed at

combining HerceptinH with traditional anticancer agents as well as

emerging therapies against additional target molecules, including

inhibitors of other receptor tyrosine kinases, nuclear factor-kB

(NF-kB), and chaperone protein HSP90 to improve clinical

outcome [2,4,5,6].

One rationale for the use of combination therapies is to

modulate multiple, deregulated tumor targets to reduce the

likelihood of acquired resistance to the primary therapy. The

molecular basis for acquired resistance to HerceptinH is poorly

understood, but may involve HER2-independent upregulation of

phosphoinositide 3 (PI3) and mitogen activated protein (MAP)

kinase pathways, possibly through upregulation of insulin-like

growth factor-1 receptor (IGF-IR) or EGFR ligand activation [7].

Chemotherapy-induced NF-kB expression attenuates the intended

cell killing effect and may play a role in drug resistance that is often

seen in HER2 and EGFR overexpression [8,9].

NF-kB is a key transcription factor in the regulation of the

inflammatory response [10]. In basal conditions, NF-kB is

sequestered in the cytoplasm by the inhibitor- kB (IkB) complex

[11]. Activation occurs when the inhibitor of IkB, IkB-kinase

(IKK) phosphorylates IkB, releasing NF-kB to migrate to the

nucleus and regulate the expression of genes involved in tumor

promotion and progression such as growth factors, cell cycle

regulators, anti-apoptotic proteins, stromal remodeling proteases,

angiogenic factors, and cell adhesion molecules [9,11,12,13].

Constitutive activity of NF-kB has been reported in a number of

cancers [14,15,16,17,18,19,20] and is known to inhibit apoptosis

and promote tumorigenesis through regulation of proliferation,
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angiogenesis, invasion, and metastasis [21,22,23,24]. In breast

cancer, constitutive activity of NF-kB causes loss of estrogen

receptor (ER) and resistance to chemo-, radiation-, and antibody-

based therapies through signaling events downstream of ERBB2 or

EGFR [9,19,25]. One of the key targets of NF-kB is the inducible

cyclooxygenase COX2, the enzyme responsible for the conversion

of arachadonic acid to prostaglandin (PG)E2 [26]. COX2 and

PGE2 have been implicated in the progression of breast and other

cancers and may act to sustain HER2 signaling [27,28,29].

Conjugated linoleic acid (CLA) belongs to a group of

conjugated diene isomers of linoleic acid that are predominantly

produced in the rumen of ruminant animals and available as

dietary supplements for weight loss. The two most prominent

isomers, cis9-trans11 (c9t11) and trans10-cis12 (t10c12), have been

shown to have anti-tumor activity including proapoptotic activity

[30,31], inhibitory effects on cell cycle progression, proliferation

[32,33], and angiogenesis [34]. NF-kB-induced signaling is a

frequent consequence of the upregulation of PI3 and MAP kinase

pathways in cancer [11] and has been demonstrated to be a target

of CLA in both cancer and non-cancer cells [35,36,37].

Though CLA has been shown to inhibit HER2 and ERBB3

protein expression in a colon cancer model [38,39], its effect in a

HER2 breast cancer model has not been previously investigated.

Based on the reported associations between NF-kB and HER2

overexpression in breast cancer, we investigated the effect of

CLA on cell growth characteristics in the HER2 overexpressing

SKBr3 breast cancer cells with the hypothesis that CLA would

inhibit HER2 by downreguating NF-kB signaling. Our results

support an isomer-specific inhibitory effect of t10c12 CLA on

HER2 protein expression and membrane association in SKBr3

breast cancer cells. Our data provide evidence that this effect

may be a consequence of CLA-induced downregulation of

COX2-induced PGE2 production secondary to inhibition of NF-

kB activity.

Materials and Methods

Reagents
Trypsin-EDTA, RPMI, PBS, fatty acid-free BSA, and DMSO

were obtained from CellGrow (Herndon, VA). Fetal bovine serum

was obtained from Atlas Biologicals (Fort Collins, CO). Penicillin/

streptomycin was obtained from GIBCO/Invitrogen (Carlsbad,

CA). Anti-beta actin, Annexin V-FITC Apoptosis Detection Kit

(APOAF), C75, HEPES buffer, DTT, MgCl2, NaCl, and KCL

were obtained from Sigma (St. Louis, MO). TritonX-100 was

obtained from Pharmacia Biosciences (Piscataway, NJ). Tissue

culture hardware was obtained form Nalge Nunc (Rochester, NY).

CLA isomers cis9-trans11 (c9t11) and trans10-cis12 (t10c12) were

obtained from Matreya (Pleasant Gap, PA. CLA was complexed

to FA-free BSA in a 4:1 molar ratio with 1 mM BSA stock.

Antibodies against HER2 were obtained from Abcam (Cam-

bridge, MA) for Western blot and from Calbiochem/Oncogene

(Gibbstown, NJ) for immunofluorescence. Antibodies against NF-

kB p65, IkB-a, phospho-IkB-a (Ser32), and p53 were obtained

from Cell Signaling (Danvers, MA), as were the positive control

lysates (#9243) for Western blot of NF-kB related proteins.

Fluorescent conjugated anti-mouse (Alexa Fluor 488) and anti-

rabbit (Alexa Fluor 564) were obtained from Molecular Probes/

Invitrogen (Carlsbad, CA). ELISA EIA kit for PGE2 determination

was obtained from Cayman Chemical (Ann Arbor, MI). The

MTT viability assay was obtained from Roche Applied Science

(Indianapolis, IN). HerceptinH (Genentech, San Francisco, CA)

was generously supplied by the Arizona Cancer Center Clinic in a

stock solution of 21 mg/ml.

Cell Culture
The Her2-overexpressing SKBr3 were obtained from American

Type Culture Collection (Manassas, VA) and independently

authenticated. Cells were cultivated in McCoy’s 5A media

supplemented with 1.5 mM L-glutamine (Hyclone, Logan, UT),

10% FBS and 1% penicillin/streptomycin, and maintained at

37uC and 5% CO2. Cells utilized in these experiments were

confirmed to be mycoplasma free. Unless otherwise indicated, all

treatments were performed in growth media.

Cell Viability/Proliferation/Apoptosis
Cell viability was determined by trypan blue exclusion using

Beckman Coulter Counter. Proliferation was determined by

metabolic activity and the reduction of MTT (3-(4,5-Dimethylthia-

zol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole). For prolifer-

ation assays, 2.56104 cells/well/100 ml media were seeded in 96-well

plates, allowed to adhere overnight, then washed and treated with

t10c12 CLA or vehicle as specified in figure legends. Determination of

metabolic reduction of MTT was performed according to manufac-

turer’s protocol (Roche Diagnostics, Mannheim, Germany). Absor-

bance was measured at 580 and 690 nm, using a microplate reader

(Biotek Synergy 2) in accordance with the manufacturer’s protocol.

Apoptosis was measured by FITC conjugated Annexin V staining

according to manufacturer’s protocol (Sigma APOAF). Absorbance

was read by flow cytometry using FACScan (BD Biosciences, San

Jose, CA) in accordance with the manufacturer’s protocol.

Preparation of Whole-Cell Lysates
Cell pellets were washed two times in cold PBS and centrifuged

at 2000 rpm for 10 minutes, then resuspended in ice-cold RIPA

buffer (16 PBS, 1% NP-40 (nonidet P40, Sigma) 0.1% SDS)

containing 1 mM phosphatase inhibitor, sodium orthovanadate,

and HALT protease inhibitor cocktail (Pierce/Thermo Scientific,

Rockford, IL). Protein concentration was determined by Pierce

Micro BCA.

Preparation of Nuclear Extracts
Cells were washed and harvested by trypsinisation, centrifuged

to remove media, and washed twice in cold PBS. The protocol for

nuclear extraction has been previously described [40]. All steps

were performed at 4uC. Briefly, cell pellets were resuspended in

hypotonic lysis buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl2,

10 mM KCL, 0.5 mM fresh DTT, 16HALT protease inhibitor

cocktail, and 0.1% TritonX-100) and transferred to microcen-

trifuge tubes. Tubes were vortexed at 16,000 rpm for 15 seconds

and allowed to incubate one hour at 4uC on a rocking platform.

Tubes were centrifuged at 16,000 rpm for 15 minutes, and the

supernatant containing the cytoplasmic extract was removed.

Nuclear pellets were resuspended in 10 ml/,8–106106cells

nuclear extract buffer (20 mM HEPES pH7.9, 25% glycerol,

420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM fresh

DTT, and 16 HALT.) Samples were vortexed at the highest

setting for 15 seconds and incubated on ice for 30 minutes,

vortexing every 10 minutes. Tubes were centrifuges as before.

Supernatant containing nuclear extracts were diluted 1:4 in

storage buffer (20 mM HEPES pH7.9, 20% glycerol, 1.5 mM

MgCl2, 100 mM KCL, 0.2 mM EDTA, 0.5 mM fresh DTT, and

16 HALT.) Protein concentration was determined by Bio-Rad

Assay (500-0006). Extracts were stored at 280uC until use.

Immunoblot
10–25 mg protein was loaded into 8 or 10% gels and separated

by SDS PAGE using the Bio-Rad Criterion Gel system (Hercules,
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CA). Proteins were transferred to polyvinylidene difluoride

membrane (Amersham Biosciences, Piscataway, NJ) by electro-

elution. Membranes were immunoblotted using standard proto-

cols. Pierce Super Signal Dura West SubstrateTM was used for

visualization of protein bands. For successive antibody probes,

blots were stripped using Pierce RestoreTM stripping reagent with

modifications to the manufacturer’s protocol. Removal of both

primary and secondary antibodies was confirmed by ECL

detection before reprobing. Densitometry of bands was performed

using Scion Image version Alpha 4.0.3.2. Protein levels were

normalized to beta actin or total protein and reported relative to

vehicle (as described in figure legends).

Immunofluorescence
Cells were grown on 12-mm glass coverslips in six-well plates at

a seeding density of 46105 cells/well/3 ml. After overnight

adherence, cells were treated with 40 or 80 mM t10c12 CLA or

BSA for 24 hours. Cells were washed briefly in 16 PBS, 0.1%

NaN3, before fixation in 2% paraformaldehyde (Pierce) for

20 minutes, and were then permeabilized in 0.2% Tween 20

(Sigma) for 5 minutes. Coverslips were blocked in 10% goat serum

for one hour at room temperature and incubated overnight with

antibodies prepared in blocking buffer (16PBS, 0.1% NaN3, 10%

goat serum, 1% TritonX). After incubation of primary antibodies,

coverslips were washed 365 minutes in washing buffer (16 PBS,

0.1% NaN3, 1% Tween 20). Dilutions of Alexa Fluor 488 anti-

mouse or 564 anti-rabbit were prepared in blocking buffer at

1:600 and 1:1000, respectively. Coverslips were incubated with

secondary antibodies for one hour at room temperature.

Coverslips were washed as before, then fixed in 100% ethanol

before being applied to 361 mm microscope slides (Fisher

Scientific, Pittsburgh, PA ) using Dako (Glostrup, Denmark)

fluorescent mounting medium. Images were taken at 406 with

Applied Precision (Issaquah, Washington) Delta Vision deconvo-

lution microscope with SoftwoRX 3.5.0 software. Negative

controls were incubated without primary antibody.

Prostaglandin E2 (PGE2) Determination
Cells were grown to confluence, harvested by trypsinisation, and

seeded in six-well plates at a seeding density of 1.06106 cells/well/

3 ml. After adherence overnight, cells were treated with t10c12

CLA at the indicated concentrations and time points. One hour

before harvesting, media was removed and replaced with serum-

free media containing 15 mM arachadonic acid as substrate for

COX2. Supernatant was collected after treatment and centrifuged

to remove cellular debris. An aliquot from each treatment was

stored at 280uC until use. Supernatant was prepared in three

dilutions using culture media (1:10, 1:20, and 1:40), and PGE2

concentration was determined by PGE2 ELISA-based immuno-

assay (Cayman Chemical, Ann Arbor, MI). Negative controls did

not receive arachadonic acid. The cells from these treatments were

harvested and counted, and viability was determined by trypan

blue. Cell pellets were then prepared for immunoblot.

Statistics
Statistically significant differences between treatments were

detected using the Student T test with a significance level of 0.05.

Results

The t10c12 CLA Isomer Inhibits HER2 Expression in SKBr3
The SKBr3 breast cancer cell line overexpresses the HER2

protein due to genomic amplification at chromosome 17q12 [41].

Figure 1 shows that t10c12 CLA significantly inhibited HER2

protein expression in SKBr3 cells by Western blot analysis in a

dose-dependent manner (Figure 1A). This effect was not seen with

the c9t11 isomer at the concentrations and time points examined

(data not shown). In agreement with Western blots, immunoflu-

orescence staining of cells treated with t10c12 CLA indicated a

reduction in surface and membrane HER2 protein at both 40 and

80 mM treatment (Figure 1B).

HER2 overexpression has been associated with an increase in

NF-kB activity [9]. Pianetti et al., demonstrated that suppression

of HER2 decreased NF-kB activity [42]. Based on this association

and the observed suppression of HER2 protein by t10c12 CLA, we

tested whether nuclear localization of NF-kB was inhibited by

t10c12 CLA treatment. Nuclear extracts from SKBr3 cells treated

with 40 and 80 mM t10c12 CLA were isolated and examined for

the relative expression of the NF-kB p65 subunit by Western blot

and immunofluoresence. Figure 2A shows a representative

Western blot of p65 protein expression following 24-hour

treatment with t10c12 CLA. Nuclear p65 was reduced at both

the 40 and 80 mM doses in replicate experiments. The effect was

statistically significant at 80 mM (p = 0.05) when compared to

untreated controls. Immunofluorescence of anti-p65 in similarly

treated cells confirmed an overall decrease in the p65 protein with

CLA treatment (see Figure 2B).

Under basal conditions, NF-kB is sequestered in the cytoplasm

by the IkB proteins. Phosphorylation of IkB by IKK targets the

IkB complex for ubiquitination and proteosomal degradation,

freeing NF-kB for nuclear localization [43]. To lend support to the

data above, total and phosphorylated IkB-a protein levels were

measured in whole cell lysates following similar treatments. In

agreement with a downregulation of NF-kB, we observed a

decrease in phosphorylated IkB protein levels at both the 40 and

80 mM dose, that was statistically significant, Figure 2C.

Treatment with t10c12 CLA or CelecoxibH Results in
Decrease in PGE2 Levels and Suppression of HER2 Protein

Cyclooxygenases (COX) 1 and 2 are the rate-limiting enzymes

in the conversion of arachadonic to prostaglandins. Constitutive

COX1 is ubiquitously expressed and active in normal cellular

processes. COX2 is induced as a consequence of NF-kB activation

in response to various stimuli including stress, growth factors,

cytokines, and oncogenes [13,28]. COX2-derived PGE2 has been

implicated in a number of pathways involved in tumorigenesis [28]

and it has been shown to be a target is of CLA in a number of cell

types [44,45,46]. We next asked if the apparent loss of NF-kB

activity supported by the Western blots would correlate to a

downregulation of COX2 activity. Supernatant obtained from the

above experiments was used to measure levels of secreted PGE2 by

ELISA as described in the Materials and Methods. As indicated in

Figure 3A, t10c12 CLA significantly inhibited PGE2 at the 80 mM

dose (p,0.05). As positive control for COX2 downregulation, cells

were treated with the COX2-specific inhibitor CelecoxibH at 20

and 40 mM for 48 hours. 40 mM CelecoxibH significantly

inhibited PGE2 production by more than 80% (p,0.001).

Consistent with a prior report that PGE2 influences HER2

expression [29], we found that reduction of HER2 correlated to a

reduction in PGE2 synthesis (Figure 3B).

The t10c12 CLA Enhances Anti-Growth Effects of TNF-a
and HerceptinH in SKBr3 Cells

Overexpression of HER2 has been associated with attenuation

of TNFa-induced apoptosis through upregulation of NF-kB

[47,48]. NF-kB inhibition has been shown to sensitize SKBr3

cells to TNFa [48,49]. Based on the observed inhibition of NF-kB
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by the t10c12 CLA, we predicted that pretreatment with the

isomer would sensitize SKBr3 to TNFa. SKBr3 cells were

pretreated with 80 mM t10c12 CLA or vehicle control for 12 or

24 hours, media was removed, and cells were exposed to either

TNFa in serum-depleted media (2% FBS) or serum-depleted

media alone for an additional six hours. Both adherent and non-

adherent cells were harvested and stained with FITC- Annexin V

following the manufacturer’s protocol (Sigma APOAF), and flow

cytometry was performed to measure Annexin V positive cell

fraction. As indicated in Figure 4A, exposure to 80 mM t10c12

CLA showed a dose-dependent effect on the relative amount of

Annexin V positive fraction following TNFa treatment that was

statistically significant in 24-hour pretreatment conditions.

The monoclonal antibody trastuzumab (HerceptinH), which

targets the extracellular domain of HER2, has been shown to

inhibit proliferation in HER2-expressing cells, and inhibition of

NF-kB has been shown to enhance these anti-proliferative effects

in breast and colon cancer cells [29,50]. Though SKBr3 cells have

been demonstrated to be sensitive to HerceptinH, anti-proliferative

response is not generally seen before three days of exposure and is

enhanced in combination with other agents [51,52,53]. Based on

its inhibition of NF-kB, we hypothesized that t10c12 CLA would

enhance the effect of HerceptinH in SKBr3 cells. In Figure 4B,

cells were pretreated with 80 mM t10c12 CLA for 24 hours, then

co-treated with 10 nM HerceptinH for an additional 24 hours. The

rationale for the pretreatment was based on the observed effect of

80 mM t10c12 CLA on NF-kB downregulation in the SKBr3 cells.

In preliminary dose escalation experiments, we did not detect a

measureable effect of HerceptinH on proliferation in SKBr3 cells

at any dose or exposure times tested (1–10 nM, 12–72 hours, data

not shown). However, pretreatment with the t10c12 CLA isomer

significantly enhanced the anti-proliferative effects of HerceptinH
by 25% (p = 0.001) compared to vehicle (Figure 4B). Neither

HerceptinH nor CLA alone effectively inhibited proliferation at the

doses and time points measured.

Discussion

SKBr3 cancer cells are highly resistant to apoptosis [49,54], a

phenotype that is likely due to the overexpression of HER2 [52]

Figure 1. t10c12 CLA reduces HER2 protein in SK-Br3 cells. (A) Representative western blot of total HER2 protein in response to 24 hr
treatment with t10c12 CLA. Cells were plated in 6-well plates, 3 wells per treatment. Cells from 3 wells were pulled and total protein was extracted as
described in Materials and Methods. 25 mg of whole cell lysate were loaded into 8% gels. Densitometry of bands was performed using Scion Image
software Alpha 4.0.3.2. Expression of HER2 was normalized to beta actin and compared to vehicle treatment. Values represent the mean +/2 std error
relative to vehicle from 5 independent experiments. (B) Immunofluoresnce of HER2 protein in SK-Br3 cells following 24 hr treatment with 40 mM
(middle panel), 80 mM (right panel) or vehicle (left panel). Cells were treated and immunofluorescence was performed as described in Materials and
Methods. Images were obtained using Delta Vision deconvolution microscope with SoftwoRX 3.5.0 software at 406 and optimized using Adobe
PhotoShop CS2 version 9.0.2.
doi:10.1371/journal.pone.0005342.g001
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Figure 2. t10c12 CLA reduces nuclear p65 in SKBr3 cells. (A) Western blots of NFkB p65 in nuclear extracts. Cells were plated in 6-well plates, 3
wells per treatment. Cells from 3 wells were pulled and nuclear extract was obtained as described in Materials and Methods. 10 mg of nuclear extract
was loaded into 10% gels. Gel electrophoresis and immunoblots were performed as described in Materials and Methods. Densitometry of bands was
performed using Scion Image software Alpha 4.0.3.2. Protein expression of p65 was normalized to total protein and compared to levels in untreated
cells (vehicle only) (* = 0.05). Values represent means +/2 std error relative to vehicle control from 3 independent experiments. (B)
Immunofluorescence of p65. Cells were treated as above. Immunoflourescence was performed as described in Materials and Methods. Top panel:
vehicle; Middle pane: 40 mM CLA; Bottom panel: 80 mM CLA. Images were obtained using Delta Vision deconvolution microscope with SoftwoRX 3.5.0
software at 406and optimized using Adobe PhotoShop CS2 version 9.0.2. (C) Western blot of total and phosphorylated IkappaB protein. Cells were
plated and treated as above. 25 mg of whole cell lysate were loaded into 10% gels. Expression levels of IkB proteins were normalized to beta actin
and compared to levels in untreated cells (vehicle only). Values represent means +/2 std dev from 3 independent experiments (* = 0.05). Gel
electrophoresis and immunoblots were performed as described in Materials and Methods. Densitometry of bands was performed using Scion Image
software Alpha 4.0.3.2.
doi:10.1371/journal.pone.0005342.g002

Figure 3. Suppression of HER2 and COX2 in SKBr3 cells. Cells were treated with t10c12 CLA for 24 hrs or Celecoxib for 48 hrs. Cells were
plated in 6-well plates, 3 wells per treatment. 30 minutes before collection, 15 mM arachidonic acid was added as substrate for COX2. Negative
controls did not receive arachadonic acid. Cells from 3 wells were pulled for isolation of total protein and PGE2 determination by ELISA. (A) Western
blots of HER2 protein following treatment with t10c12 CLA or celecoxib. Gel electrophoresis and immunoblots were performed as described in
Materials and Methods. Densitometry of bands was performed using Scion Image software Alpha 4.0.3.2. (B) PGE2 levels were measured by ELISA and
are presented as pg/ml relative to vehicle. Values represent the means +/2 std dev. from 2 independent experiments. (* = 0.05, ** = 0.001).
Experiments were performed as describe in Materials and Methods.
doi:10.1371/journal.pone.0005342.g003
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and constitutive activity of the PI-3 kinase/AKT network, and NF-

kB-induced signaling [6,22,42]. In this study, we show evidence

that the t10c12 isomer of CLA, at physiologically obtainable doses,

significantly reduced HER2 protein in SKBr3 cells. Consistent

with previous reports of NF-kB inhibition by CLA [36,55,56],

80 mM t10c12 CLA significantly reduced NF-kB nuclear localiza-

tion and the phosphorylation of IkBa. These data are noteworthy

as they demonstrate the ability of the t10c12 CLA isomer to target

two key regulators in breast tumor promotion and treatment

resistance, the HER2 receptor and NF-kB. These results support a

mechanism of CLA that has not previously been demonstrated in

an HER2-overexpressing breast cancer cell line. Although

additional experiments are needed to confirm the direct target of

CLA’s action, we postulate two possible models for the observed

effect of CLA on HER2 protein in SKBr3 cells illustrated in

Figure 5.

In Figure 5A we suggest that CLA’s inhibition of IKK indirectly

downregulated HER2. As illustrated by the directional flow of the

diagram, inhibition of IKK results in the downregulation of NF-

kB and COX2-derived PGE2 levels. Based on published evidence

supporting an inhibitor role of PGE2 on HER2 expression [29], a

decrease in HER2 protein might also be observed by this

mechanism. CLA has been associated with a decrease in IKK

protein and activity in macrophages and attenuation of COX2

expression and PGE2 synthesis [36]. In addition to the protein

analysis performed here, additional experiments, such as kinase

activity assays for IKK a and b, are needed to confirm a direct

action of CLA on IKK. Additionally, though not included here, an

electrophoretic mobility shift assay (EMSA) would be informative

in confirming the downregulation of NF-kB transcriptional activity

that would be expected with a decrease in IKK activity.

Alternatively, the data presented here may be explained by

Figure 5B where we suggest that the observed downregulation of

NF-kB signaling is through a CLA effect on the membrane-bound

HER2 protein. This may be through a direct action causing

downregulation of protein expression, as has been demonstrated in

the HT29 colon cancer cell line [38], dissociation of HER2 from

its chaperone, HSP90, as has been demonstrated in a gastric

cancer model [57], or disruption of caveoli or lipid rafts, which has

been recently demonstrated in response to CLA [58]. Any of these

scenarios could inhibit IKK through downregulation of the PI-3

kinase pathway, resulting in decreased nuclear p65 and COX2-

induced PGE2 production, as is reported here.

Though not investigated here, CLA has been shown to

downregulate COX2 by inhibiting 12-O-tetradecanoylphorbol-

13-acetate (TPA)-induced AP-1 transcriptional activity [59]. As

AP-1 proteins c-fos and c-jun have been shown to interact with

nuclear p65 to enhance NF-kB promoter activity [60], an

alternative scenario exists in which the downregulation of

COX2 by t10c12 CLA was through an AP-1 mediated

Figure 4. t10c12 CLA enhances anti-growth effects of TNFa and HerceptinH in SK-Br3 cells. (A) CLA enhances TNF-a induced apoptosis.
Cells were pretreated with 80 mM t10c12 CLA for 12 or 24 hours before exposure to 50 ng/ml recombinant TNFa for 6 hours. Cells were plated in 6-
well plates, 1 well per treatment. Annexin V staining was evaluated independently for each well and values were pulled to obtain an average Annexin
V value per treatment condition. FACS plots are from a single experiment. Quantification of effect is presented as mean fold change +/2 std dev in %
Annexin V positive staining cells relative to vehicle control and were derived from 2 independent experiments. (p = 0.05). (B) Cells were pretreated
with 80 mM t10c12 CLA for 24 hrs, then co-treated with CLA +/2 10nM HerceptinH for an additional 24 hrs. Viability was assessed by MTT and
absorbance at 580nm. Cells were plated in 96 well plates, 6 wells per treatment. Absorbance values were pulled for each treatment to obtain an
average. Values represent the mean from 3 experiments +/2 std. dev. The combination treatment significantly reduced absorbance compared to the
vehicle control. Experiments were performed as described in Materials and Methods.
doi:10.1371/journal.pone.0005342.g004

Figure 5. Proposed mechanism of CLA action in SKBr3 cells. (A) This scenario describes a direct effect on IKK by t10c12 CLA. A consequence of
IKK inhibition is reduced phosphorylation of IkB and nuclear localization of p65. A decrease in COX2-derived PGE2 synthesis will result in loss of HER2
(as described in by Benoit et al, Oncogene, 2004; 23(8):1631). (B) This scenario describes a direct effect on HER2 protein by t10c12 CLA. In this
scenario, HER2 is dissociated from the plasma membrane and targeted for ubiquitination and proteosomal degradation. Loss of HER2 signaling
downregulates PI-3 kinase and IKK activity. NFkB is sequestered in the cyotosol by IkB and its target genes such as COX2 are not transcribed.
doi:10.1371/journal.pone.0005342.g005
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mechanism. This possibility is supported by evidence in HER2

overexpressing breast epithelial cells in which overexpression of c-

jun attenuated a pharmacological inhibition of AP-1 mediated

COX2 activation [61].

There is a recognized need to develop non-toxic strategies to

improve clinical outcome in HER2-positive breast cancers.

Inhibition of NF-kB in combination with HER2-targeted

therapies may enhance treatment response, as has been demon-

strated with combination anti-COX2 and anti-HER2 therapies

[50,62,63,64]. The data presented here support further investiga-

tion into anti-NF-kB agents, such as specific isomers of CLA, in

combination with HerceptinH in the treatment of a subset of breast

cancers that are resistant to endocrine-based therapies.

There is a prevailing interest in the potential of bioactive

compounds for their efficacy in tumor prevention and treatment.

CLA has been demonstrated to have potent anti-tumor effects in

some animal models of breast carcinogenesis [65]. Though poorly

studied in humans for the prevention of breast cancer, studies in

body composition have determined it to be non-toxic at doses up

to 6g/day [66]. However, studies reporting adverse effects of

supplementation with mixed-isomers or the t10c12 isomer alone

suggest caution, and this is emphasized by recent reports of tumor

promoting activity of the t10c12 isomer in animal models [67,68].

Our data, however, add to a large body of work supporting an

anti-tumor effect of the t10c12 CLA isomer and warrant further

investigation in the prevention and treatment of breast tumors

overexpressing HER2/neu and NF-kB.
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